Anderson localization for a random flux model
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Abstract

This is the review of the work [7]. We prove Anderson localization
on the bottom of the spectrum for the discrete Schrodinger operator
with certain random magnetic field. Our strategy of the proof is to
show Lifschitz tail estimate and Wegner estimate on the bottom of the
spectrum from which Anderson localization follows via the multiscale
analysis.

1 Introduction

It is Anderson [1] who first discussed that certain disorder may cause ma-
terials to have insulating property. From the mathematical point of view,
it is expressed as the presence of localized states of Hamiltonians with ran-
dom potentials where it has pure point spectrum with exponentially decaying
eigenfunctions, which was first proved by [4] for one-dimensional case, and
by [3] for multi-dimensional case with an simplification by [9].

The purpose of this paper is to study the spectral properties of the Hamil-
tonians with random magnetic flux with no random potential. Such models
originated in a theory of the quantum Hall effect and are actively studied in
physics community recently, mainly on nature of states near the middle of
the spectrum band. However, there seems to be an agreement of the presence
of the localized states on the spectral bottom which is our main topic.

Our Hamiltonian is the Schrodinger operator on the two dimensional
lattice given by

(Hu)(z) = > (u(z) —e"Vu(y)), ue (27

lz—y|=1



where A : Z? x Z2 — T 2 [-m,7) is the vector potential satisfy-
ing A(z,y) = —A(y,z), =,y € Z?. Let F be the set of plaquettes on
Z%:. For f = {z1,m9,73,24} € F (indexed counterclockwise), B(f) :=
2 _0A(zj,zj41) € T is called the magnetic flux through f. It is well known
that the spectral properties of H are determined only on {B(f)}sc# and
independent of the choice of {A(x,y)}syez2 such that dA = B.
We consider the case in which {B(f)}ser are random variables which

locally distribute as plus-minus pairs given as follows.

B,(2n,m), (r=2n+1,m),y=2n+1,m+1))
Ay(z,y) :=¢ —B,(2n,m), (z=02n+1,m+1),y=(2n+1,m))
0, otherwise

where {B(2n, m) },, mez are independent, identically distributed random vari-
ables on a probability space (€2, F,P) such that the common distribution
has a density g satisfying (i) supp g € T \ (—c¢,¢) for some 0 < ¢ < 7, (ii)
+c¢ € supp g, and (iii) g is Lipshitz continuous.

It then follows that

o(H) = 4(1—005%),4(1—&—003%) ,  a.s.

Let Ey :=info(H) = 4(1 — cos §). Our main result is the following.

Theorem 1.1 There exists E; > Ey such that spectrum of H in [Ey, E;| are
dense pure point with exponentially decaying eigenfunctions.

The essential ingredient of the proof is the Lifschitz tail and Wegner estimate.
Then the exponential decay of the eigenfunctions follows by the use of the
multiscale analysis [3, 9]. To be precise, we introduce the integrated density
of states. Let Ay := [—L, L]* N Z? be a finite box of size 2L and let Hy, be
the Hamiltonian on Ay defined by restricting H on Ay in certain sense to be
defined in section 2. The integrated density of states is given by

: 1 :
k(E) = Lh_)n;<> Mﬂ {eigenvalues of H;, < E}

which is known to be non-random almost surely. The following theorem gives
an upper bound on k(FE) which is called the Lifshitz tail.



Theorem 1.2

i sup, [08(— 108 k(E))
wir, log(E — Ey)

< 1.

Theorem 1.2 roughly says k(E) & e~ (E-Fo)™" a5 E | E, which contrasts
with the power law growth of £(F) in usual non-random cases. The naive
picture of that is, because of the randomness, most states go up so that the
density of states near the bottom of spectrum becomes exponentially thin.
The Wegner estimate concerns the probability of finding eigenvalues of Hp,
in a fixed small interval.

Theorem 1.3 There exists constants Ej > Ey,C > 0 such that
P{d(E,0(HL)) < e} < C|ALle
for any Ey < E < Ej, L >0 and € > 0.

Theorem 1.3 roughly says eigenvalues of H;, “typically” arrange with distance
of the order of ﬁ each other.

Having established Theorem 1.2, 1.3, the multiscale analysis proceeds as
follows. Let GL(E;z,y) =< 0., (H, — E) '6, > be the Green function of
Hj. Theorem 1.2 says for Ly > 1, there are no eigenvalues of Hp, near
Ey so that Gr,(F;z,y) decays exponentially with probability close to 1.
On the other hand, Theorem 1.3 says G (F;x,y) decays exponentially with
certain probability and thus, together with the resolvent equation, we prove
exponential decay of G, for larger and larger boxes Ay inductively.

For the Hamiltonian with random flux, Theorem 1.2 follows, roughly
speaking, by the diamagnetic inequality which says, if magnetic flux goes
up, so does the lowest eigenvalue of Hy. The argument of proof follows
that in [6] with a improvement to adjust it to the case in which ¢ > 0. To

OE

prove Theorem 1.3, it is sufficient to have an estimate such as TR —<

Uug, %UE >> 0, where F, ug are the eigenvalue and eigenvector of Hip,
respectively; because this inequality says that once we change |B(f)| on a
plaquette, then eigenvalues moves rapidly enough so that the probability to
find eigenvalues near E becomes small. If H were the free Laplacian plus
the random potential, this inequality would follow from the fact that, when



the value of the potential at one site goes up, so do the eigenvalues of Hy.
However, in the case of random magnetic flux, some eigenvalues go up but
others may go down under the variation of |B(f)|. Moreover, in contrast to
the case of random potential, ugr may change globally, which can be regarded
as a kind of Aharonov-Bohm effect.

Our strategy is to decompose H;, to the sum of that on each plaquettes.
Eigenstates of H; near the bottom of the spectrum should “close” to the
superpositions of those on each plaquettes, so that the assumption ¢ > 0
leads us to the statement % > 0. By our assumption that magnetic
fluxes are locally in plus-minus pairs, the Aharonov-Bohm effect mentioned
in the preceding paragraph can be controlled in our case.

In the next section, we briefly sketch the proof of Theorem 1.2, 1.3. De-
tails are given in [7]. Some extentions to other lattices, such as triangular or
hexagonal lattice as well as their line graphs are discussed in [8], where the
theory discussed in [10, 11] is used.

2 Sketch of Proofs

The precise definition of the local Hamiltonian Hy, on Ay is

<wu,Hpu>:= > ‘u(x) - eiA(m’y)u(y)‘Q.

|$*y|:1,$,yEAL
_ a) |

=) B(B(f))

zef

Let

1 1
I<a<l——, =—(1-
V2 7 4(

B(t) := min {1 — oS %, a} , Wpg

—~~
8 g‘»—t
~—r (\W)

The key lemma for the proof of Theorem 1.2 is :
Lemma 2.1 <u, Hpu >>< u, Wpu > +v < |u|, Hy |u| > .

Hy is the free local Hamiltonian which is defined by setting A = 0 in
the definition of H;. Once we have Lemma 2.1, Theorem 1.2 is proved
in the following step. Let E be the eigenvalue of Hj sufficiently close to
Ey. Then Lemma 2.1 says there exists £’ ~ Fy which is the eigenvalue of
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vHy 1, + Wg. Then Temple’s inequality says that there should be sufficiently
many plaquettes f € F such that B(f) is close to +¢ whose probability is
exponentially small by the large deviation principle.

Proof. We decompose < u, Hpu > into the forms of plaquettes in A as
follows.

<uHu>= Y |uf@) - ()

|z—y|=1

=y ¥ ‘ ) — e4EW)y(y)

JE€F (, y)Ef

=: Z < uf,Hfo >
ferF

|2

where uy = ul;. We pick f € F arbitrary and label f = {1, 2, 3,4} counter-
clockwise. We adjust the gauge such that the vector potential is constant:
3

L 1 ~ B
<up, Hpup > = < Uy, Hptiy >:= 5 > lag(s) — ezguf(] + 1)
=0

Let A\; = 1 — cos (—-L) ( = 0,1,2,3) be the eigenvalues of Hf with II;
orthogonal projection onto \; eigenspaces. Then

3
<wug, Hpup > = < g, Hyiig >= Y \j|[Tjiig?

> BBl + (1 - Tl 1)

Here we use the fact that (1 — Ily)@y is orthogonal to the lowest eigenvector
of Hy ;. Since Myiiy = 120 g (g) = uo,

3

11 = Mo)asl® = 3" |as (7) — wol” >

Jj=0

Z:IIW D= lasG+DIF. (2:2)

»Jkli—‘

Substituting (2.2) into (2.1) and summing up w.r.t. f € F, we have the
desired conclusion. [ ]

The idea of proof of Theorem 1.3 is as follows. As in the proof of Lemma
2.1, < u,Hu >= Y er 0o \jlILug|l. Let Hyu = Eu, |lull =1 and E ~
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B
e
we may argue < uy, a|B( )|Uf > 3|B(f)‘ > 1 zsin § > 0. The problem now is
to clarify ~ in the above computation.

Let v; (j =0,1,2,3) be normalized eigenvectors of H; and

Ey. Then for each f € .7-' Uy mostly “live” on Ran IIy. Since A\g = 1 — cos

1
3 2
ap = | <wvo,up > |, PBr:= (Z|<vjauf>\2> , b:=|B(f)].

=1

The intuition discussed above implies ;% = 4 4 o(1), ;67 = o(1) as
E | E,.

Lemma 2.2 Let Hyu = Eu, ||u|| =1, and E ~ Ey. Then

Y2 >d—c(E-E), Y0 <c(E-E)
f f

for some ¢y, co < .

Lemma 2.3

OH,
o|B(f)|

1. ¢
< uy, up >> —sin Za? —03afﬁf—c4ﬂj2c

4

for some c3,cq < 0.

The key fact is that there is no quadratic contribution of oy in the error
term.

Proof. For simplicity, let \; := ab , etc. Then

OH;
< ur, WU}P >

3
Z()\|<uf,vj>| +Aj < up, vy ><wj,up > 4N < up, vy >< ), Uy >)

]:
=TI+ II+1II.
By using v; = >, < vy, v > vy, < vj,vp >= — < vj, vy >, we have

II1+111= Z)\ —/\k)<vk,v > up, v >< v, Up >
1k



We notice the diagonal term vanishes, and arrive at the conclusion. []

By combining Lemma 2.2, 2.3, we have

oOH . c
z < u, 8|T(;)|u >> sin —c5(E — Ey) — cg\/E — Ey
f

for some ¢5, g < 0o. For the rest of proof of Theorem 1.3, we refer [7]. We
remark that some ideas in [5, 2] are used : integration by parts in the com-
putation of the expectation values (and thus we need the Lipshitz continuity
of g), and the use of the spectral shift function.
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