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Abstract

In the last symposium (Jul. 2001), T. Shirai talked about the spectrum
of the infinitely extended Sierpinski lattice [7, 3]. Their results are based
on some relations between the spectra of an infinite regular graph and its
line-graph. In this report, we extend their results to the cases of discrete
magnetic Schrödinger operators on infinite regular graphs.

1 Definitions

A graph G = (V (G), A(G)) is a pair of the vertex set V (G) and the oriented
edge set A(G). We say that two vertices x, y are adjacent if there exists an edge

x

y

α = xy

α = yx

Figure 1: a graph G

which connects them. We denote x ∼ y if x and y are adjacent. Let α ∈ A(G),
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which has direction from the origin x ∈ V (G) to the terminus y ∈ V (G). Then,
we denote α = xy, o(α) = x and t(α) = y. We denote α the reverse edge of α,
that is, α = yx. We assume that α ∈ A(G) provided α ∈ A(G).

Let

Ax(G) = {α ∈ A(G); o(α) = x},
deg(x) = #Ax(G).

We call deg(x) the degree of x. If there exists a constant d such that deg(x) = d
for all x ∈ V (G), then the graph G is called d-regular. Regularity has important
role in this report.

Throughout this report, we assume that (i)G is locally finite, that is, deg(x) <
∞ for all x ∈ V (G); (ii) G has no loop or multiple edge.

We define the discrete Laplacian 4G on a graph G. We work on the Hilbert
space

l2(G) =



f : V (G) → C;

∑

x∈V (G)

|f(x)|2 <∞


 .

The discrete Laplacian 4G acts f ∈ l2(G) as follow:

(4Gf)(x) =
1

deg(x)

∑

α∈Ax(G)

[f(t(α))− f(x)]

=
1

deg(x)


 ∑

α∈Ax(G)

f(t(α))


− f(x)

=
1

deg(x)

[∑
y∼x

f(y)

]
− f(x).

We denote Spec (−4G) the spectrum of −4G.

Remark 1. It is a well-known fact that Spec (−4G) ⊂ [0, 2]. We remark that all
of the operators in this report is bounded.

We use three graphs associated with a given graph G. First one is the subdi-
vision graph S(G). See Figure 2. We make S(G) by adding one vertex |α| at the
midpoint of each edges α ∈ A(G). We note |α| = |α|. Formally, we give

V (S(G)) = V (G) ∪ E(G),

A(S(G)) = {xα, αx; x ∈ V (G), α ∈ Ax(G)}.
Here, we put

E(G) = {|α|; α ∈ A(G)}.
We call E(G) the (unoriented) edge set of G.
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Figure 2: a graph G and its subdivision graph S(G)

Second one is the line graph L(G). See Figure 3. A vertex of L(G) is an edge
of G;

V (L(G)) = E(G).

The vertices |α|, |β| ∈ V (L(G)) are adjacent on L(G) if and only if α, β ∈ A(G)
are adjacent on G;

A(L(G)) = {αβ; α, β ∈ A(G), α ∼ β}.

α

β
γ

|α|

|β|
|γ|

αβ

βγ

γα

Figure 3: a graph G and its line graph L(G)

Last one is the para-line graph P (G) introduced by Yu. Higuchi [2]. See
Figure 4. To construct P (G), we add two vertices x′ and y′ on each edges xy ∈
A(G) in this order and then connect x′ and y′. Moreover, if o(α) = o(β), then
we connect o(α)′ and o(β)′.

As a result, we have
P (G) = L(S(G)), (1)

that is, the para-line graph is the line graph of the subdivision graph. It seems
that this P (G) has more information of G than S(G) or L(G).
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x y x′ y′

Figure 4: a graph G and its para-line graph P (G)

We have a natural question on the relation among the spectra of the four
laplacians, 4G, 4S(G), 4L(G), 4P (G). Yu. Higuchi and T. Shirai gave the answer.
In the next section, we review their results (See, [3, 7]).

2 Higuchi and Shirai’s results

Figure 5: n-dim. infinitely extended Sierpinski lattice Sn

In the last symposium (Jul. 2001), T. Shirai talked about the spectrum of the
infinitely extended Sierpinski lattice Sn [3, 7]. On the spectrum, the following
theorem by Fukushima and Shima, and Teplyaev are known.

Theorem 2 (Fukushima and Shima (1992), Teplyaev (1998)).

Spec (−4Sn) =
∞⋃

k=0

[
g−k

(
n+ 1

2n

)
∪ g−k

(
n+ 3

2n

)]
∪ {n+ 1

n
}

Here, g(x) = −2nx2 + (n+ 3)x.
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They proved this theorem using approximation by finite lattices. Higuchi and
Shirai gave new proof based on some relations between the spectra of an infi-
nite regular graph and its line-graph, without any approximation. They proved
Theorem 2 as a conclusion of the following four lemmas.

Lemma 3 (Shirai [6]). Let G be a d-regular graph with d ≥ 3. We have

Spec (−4S(G)) = ψ−1(Spec (−4G)) ∪ {1}
Here, ψ(x) = 2(2x− x2).

Lemma 4 (Shirai [6]). Let G be a d-regular graph with d ≥ 3. We have

Spec (−4L(G)) =
2

2d− 2
Spec (−4G) ∪ {d+ 2

d
}.

Shirai proved Lemma 3 and Lemma 4 using the weak Weyl criterion on es-
sential spectrum; He constructed a weak sequence for −4S(G) from a eigenvector
of −4G and vice versa.

Lemma 5 (Shirai [6]). Let G be d-regular with d ≥ 3. We have

Spec (−4P (G)) = φ−1(Spec (−4G)) ∪ {1} ∪ {d+ 2

d
}.

Here, φ(x) = −dx2 + (d+ 2)x.

This Lemma 5 can be obtained from Lemmas 3 and 4 and the fact Eq. (1).

Lemma 6 (Higuchi and Shirai [3]). Let Sn be n-dim. Sierpinski lattice. Then,
there exists a (n+ 1)-regular graph Gn such that

P (Gn) = Gn and Sn = L(Gn).

Outline of HS’s proof of Theorem 2. By Lemmas 5 and 6, we have the equation
of the set Spec (−4Gn),

Spec (−4Gn) = φ−1(Spec (−4Gn)) ∪ {1} ∪ {n+ 3

n+ 1
}.

Since the map from Spec (−4Gn) to RHS is a contraction map, there exists a
unique solution of this equation and we can derive Spec (−4Gn) exactly. Since
Sn = L(Gn), Lemmas 4 implies the desired result. For more detail, see Refs. [3,
7, 6].

Our goals in this report are (i) we give another simplest proof of Lemma 3
and Lemma 4 using supersymmetry; (ii) we extend these to magnetic Schrödinger
case. We devote the next section to (i) and do the last section to (ii).

Remark 7. Shirai proved that 1 is always the infinitely degenerate eigenvalue of
−4S(G) and (d + 2)/d is always the infinitely degenerate eigenvalue of −4L(G).
Though we are interested in these eigenvalues, we omit the discussions on these
(Remark 18).

5



Figure 6: Sierpinski pre-lattice Gn for Sn

3 Supersymmetry

In this section, we give our new proof on the relations among the spectra of G,
S(G) and L(G). We summarize the facts on supersymmetry. Let H1, H2 be
Hilbert spaces and A be a densely defined closed linear operator from H1 to H2.

Theorem 8 (Deift [1]). We have

Spec (AA∗) \ {0} = Spec (A∗A) \ {0}

with taking account of multiplicity.

Corollary 9 (I. Shigekawa [5]). Let

D =

(
0 A∗

A 0

)
on H1 ⊕H2

and

H = D2 =

(
A∗A 0

0 A∗A

)
.

Then, we have that

Spec (H) \ {0} = Spec (A∗A) \ {0} = Spec (AA∗) \ {0}

and
Spec (D) \ {0} = (

√
Spec (H) ∪ −

√
Spec (H)) \ {0}.

In physics literatures, D is called a superchage and H is called a SUSY-
Hamiltonian. We remark that we can ignore the condition, which A must be
densely defined and closed, since all of our operators is bounded (Remark 1).
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3.1 the spectra of bipartite graph

We start to prove a well-known fact on spectrum of graph using supersymmetry.
Let G be bipartite, that is,

V (G) = V1 ∪ V2,

V1 ∩ V2 = ∅,
x 6∼ y for all x, y ∈ Vi (i = 1, 2).

V1 V2

Figure 7: bipartite graph and non-bipartite graph

Lemma 10. If G is bipartite, then Spec (−4G) is symmetric w.r.t. 1.

Proof. We have l2(G) = l2(V1) ⊕ l2(V2). Let φ12 be an operator from l2(V1) to
l2(V2) defined by

(φ12f)(y) =
1

deg(y)

∑
x∼y

f(x).

Then, we have

4G + 1 =

(
0 φ∗12
φ12 0

)
.

Thus, Spec (−4G − 1) is symmetric w.r.t. 0.

Similarly, we define the operator φ21from l2(V2) to l2(V1) by

(φ21g)(x) =
1

deg(x)

∑
y∼x

g(y).

Then we have φ21 = φ∗12. These operators φ12 and φ21 are used in our new proofs
in the following.
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3.2 the spectra of subdivision graph

We consider the relation between G and S(G).

Lemma 11 (SUSY version of Lemma 3). For arbitrary graph G, we have

Spec (−4S(G)) = ψ−1(Spec (−4G)) ∪ {1}

Here, ψ(x) = 2(2x− x2).

V1

V2

Figure 8: the subdivision graph as a bipartite graph

Proof. S(G) is bipartite (See, Fig. 8). In fact, we can take V1 = V (G) and
V2 = E(G);

V (S(G)) = V (G) ∪ E(G) = V1 ∪ V2.

Thus, we have

4S(G) + 1 =

(
0 φ21

φ12 0

)
.

Moreover, we can see

(4S(G) + 1)2 =

(
1
2
(4G + 2) 0

0 φ12φ21

)
.

Indeed, we can write φ12 and φ21 as follows:

(φ12f)(|α|) =
1

2
[f(t(α)) + f(o(α))],

(φ21g)(x) =
1

deg(x)

∑

α∈Ax(G)

g(|α|).
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Therefore,

(φ21φ12f)(x) =
1

deg(x)

∑

α∈Ax(G)

[φ12f ](|α|)

=
1

deg(x)

∑

α∈Ax(G)

1

2
[f(t(α)) + f(o(α))]

=
1

2


 1

deg(x)


 ∑

α∈Ax(G)

f(t(α))


 + f(x)




=
1

2
(4G + 2)f(x)

Thus, we obtain

Spec (4S(G) + 1) \ {0} = ±
√

Spec (
1

2
(4G + 2)) \ {0}.

Thus, the spectral mapping theorem implies Lemma 1.

Via supersymmetry, we can not see that 1 is an infinitely degenerate eigenvalue
of −4S(G). We need another discussion, but omit it here (Remark 18).

We remark that we do not need the regularity condition as in Lemma 3.

3.3 the spectra of line graph

We consider the relation between G and L(G).

Lemma 12 (SUSY version of Lemma 4). Let G be d-regular with d ≥ 3.
Then, we have

Spec (−4L(G)) =
2

2d− 2
Spec (−4G) ∪ {d+ 2

d
}.

Proof. We use same φ21 and φ12 as in Lemma 1 and we have

4S(G) + 1 =

(
0 φ21

φ12 0

)
on l2(V1)⊕ l2(V2).

Here, V1 = V (G), V2 = E(G). We can identify E(G) and V (L(G)). (See, Fig. 9.)
If G is d-regular, then L(G) is 2d − 2-regular. Therefore, l2(L(G)) and l2(V2) is
unitary equivalent through the unitary operator U defined by

U : l2(L(G)) → l2(V2), Uf =
√
d− 1 f.
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V1 = V (G)

V2 = E(G)

Figure 9: Identification between E(G) and V (L(G))

Using this U , we obtain

(4S(G) + 1)2 =




1

2
(4G + 2) 0

0 U

[
d− 1

d
(4L(G) +

d

d− 1
)

]
U∗




by direct computations. Thus,

Spec

(
1

2
(4G + 2)

)
\ {0} = Spec

(
d− 1

d
(4L(G) +

d

d− 1
)

)
\ {0}.

Via supersymmetry, we can not see that (d+ 2)/d is an infinitely degenerate
eigenvalue of −4L(G). We need another discussion, but omit it here (Remark 18).

4 discrete magnetic Schrödinger operator

For simplicity, we assume that the transition probability on G is isotropic. We
can remove this restriction.

We introduce the space of 1-forms (vector potentials) on graph G.

C1(G) = {θ : A(G) → R; θ(α) = −θ(α)}.
We define the discrete magnetic Schrödinger operator Hθ,G with a 1-form θ by

Hθ,Gf(x) =
1

deg(x)

∑

α∈Ax(G)

[
eiθ(α)f(t(α))− f(x)

]
.

=
1

deg(x)


 ∑

α∈Ax(G)

eiθ(α)f(t(α))


− f(x).
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Our problem is whether we can extend Lemma 11 and Lemma 12 for Hθ,G.

Remark 13. In ordinary, Hθ,G is defined with the opposite sign. Then Hθ,G is non-
negative. But, in this report, we want to compare it to the discrete Laplacian, so
we choose this sign.

For later use, we introduce a quantity related to 1-form. Let C be an oriented
cycle on G, i.e.,

C = {α0, α1, α2, . . . , αn−1} ⊂ A(G)

such that t(αi) = o(αi+1) (αn = α0). For this cycle C and θ, we set

Ψ(θ, C) =
∑
α∈C

θ(α).

We call this Ψ(θ, C) the magnetic flux through the cycle C.

4.1 the spectra of subdivision graph

Lemma 14 (magnetic case of Lemma 11). Let G be an arbitrary graph.
Assume that θ ∈ C1(G) and θS ∈ C1(S(G)) satisfy that

θ(α) = θS(o(α)|α|) + θS(|α|t(α)) for all α ∈ A(G).

Then,
Spec (−HθS ,S(G)) = ψ−1(Spec (−Hθ,G)) ∪ {1}

Here, ψ(x) = 2(2x− x2).

Proof. Let

(φ12f)(|α|) =
1

2

∑

β∈{α,α}
eiθs(|α|t(β))f(t(β)),

(φ21g)(x) =
1

deg(x)

∑

α∈Ax(G)

eiθs(x|α|)g(|α|).

Then, by direct computations, we obtain that

HθS ,S(G) + 1 =

(
0 φ21

φ12 0

)
,

(HθS ,S(G) + 1)2 =

(1

2
(Hθ,G + 2) 0

0 φ12φ21

)
.

This implies the desired result.
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α01
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α21

α22

Figure 10: Same cycle on G and S(G)

Remark 15. The assumption of this Lemma 14 is natural. These θ and θS has
same magnetic flux for same cycle. Let

C = {α0, α1, . . . , αn},
CS = {α01, α02, α10, α11, . . . , αn,0, αn,1}.

See Figure 10. Then, we have

Ψ(θS, CS) =
∑
α∈CS

θS(α) =
n∑

i=0

(θS(αi,0) + θS(αi,1))

=
n∑

i=0

θ(αi) =
∑
α∈C

θ(α) = Ψ(θ, C).

Of course, via supersymmetry, we can not see that 1 is an infinitely degenerate
eigenvalue of −Hθs,S(G). We need another discussion, but omit it here. (cf.
Remark 18).

4.2 the spectra of line graph

Lemma 16 (magnetic case of Lemma 12 (Lemma 4)). Let G be d-regular
with d ≥ 3. Assume that θ ∈ C1(G), θS ∈ C1(S(G)), θL ∈ C1(L(G)) satisfy that

θ(α) = θS(o(α)|α|) + θS(|α|t(α)) for all α ∈ A(G),

θL(αβ) = θS(|α|x) + θS(x|β|) for all αβ ∈ A((L(G)).

Then

Spec (−HθL,L(G)) =
2

2d− 2
Spec (−Hθ,G) ∪ {d+ 2

d
}.

Proof. We use same identification betweenE(G) and V (L(G)), l2(V2) and l2(L(G))
using U . Then, using same φ12 and φ21 in the proof of Lemma 14, we have

(−Hθs,S(G) + 1)2 =




1

2
(−Hθ,G + 2) 0

0 U

[
d− 1

d

(
−HθL,L(G) +

d

d− 1

)]
U∗


 .
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Thus, we can obtain the desired result.

α0

α1

α2

β

α1α2

α2α0

α0α1

βα2

α0β

Figure 11: Same cycle on G and L(G)

Remark 17. The assumption of this Lemma 16 is natural. These θ and θS has
same magnetic flux for same cycle. Let

C = {α0, α1, . . . , αn},
CL = {α1α2, α2α3, . . . , αnα1}.

Then, it holds that Ψ(θL, CL) = Ψ(θ, C). The pair of C = {α0, α1, α2} and
CL = {α0α1, α1α2, α2α0} in Figure 11 is an example. But, L(G) maybe has some
cycles, which has no corresponding cycles on G. The cycle {α2α0, α0β, βα2} in
Figure 11 is an example. These cycles have zero magnetic flux.

Remark 18. As in Remark 7, though we omit the discussions on the eigenvalue
1 of −Hθ,G and the eigenvalue (d + 2)/d of −HθL,L(G), these are corresponding
to kerφ12 and kerφ21. In other words, these eigenvalues are zero-modes in SUSY
context. So, we must investigate these states in detail [4].

Acknowledgements

This work is supported by the Grant-In-Aid 14740113 for Encouragement of
Young Scientists from Japan Society for the Promotion of Science (JSPS).

References

[1] P. A. Deift. Applications of a commutation formula. Duke Math. J.,
45(2):267–310, 1978.

[2] Y. Higuchi. Random walks and isoperimetric inequalities on infinite planar
graphs and their duals. PhD thesis, University of Tokyo, Komaba, Meguro-ku,
Tokyo 153, Japan, January 1995.

13



[3] Y. Higuchi and T. Shirai. Some spectral and geometric properties for infinite
graphs. Contemporary Math., 2003. to appear.

[4] O. Ogurisu. Supersymmetric analysis of discrete magnetic Schroödinger op-
erators. preprint, 2003.

[5] I. Shigekawa. Spectral properties of Schrödinger operators with magnetic
fields for a spin 1/2 particle. J. Funct. Anal., 101:255–285, 1991.

[6] T. Shirai. The spectrum of infinite regular line graphs. Trans. Amer. Math.
Soc., 32(1):115–132, 1999.

[7] T. Shirai. The spectrum of the infinitely extended sierpinski lattice
(japanese). In Proceedings of Applications of RG Methods in Mathe-
matical Sciences, RIMS, 2001 July 25–27. RIMS, Kyoto Univ., 2001.
http://www.setsunan.ac.jp/mpg/confs/rims01/proc/shirai.pdf.

14


