Renormalization for Near-Parabolic Fixed Points of Holomorphic Maps

Hiroyuki Inou and Mitsuhiro Shishikura

Consider a fixed point z_0 of a holomorphic function f(z). We say z_0 is parabolic if its multiplier $\lambda = f'(z_0)$ is a root of unity. Here we consider the case $\lambda = 1$ and it is nondegenerate, i.e., $f''(z_0) \neq 0$. By a Möbius transformation sending z_0 to infinity, f(z) is conjugate to $\check{f}(z) = z + 1 + O(1/z)$. There exist univalent maps $\Phi_{\pm} : \{z; \pm \text{Re } z > L\} \to \mathbb{C}$ for sufficiently large L such that

$$\Phi_{\pm}(\hat{f}(z)) = \Phi_{\pm}(z) + 1 \tag{1}$$

where both sides are defined. We call Φ_+ (resp. Φ_-) attracting (resp. repelling) Fatou coordinate for $\check{f}(z)$ (or f(z)). We can extend the domain of definition of Fatou coordinates (or its inverses) by the functional equation (1), and then Φ_{\pm} are defined on $W_{\pm} = \{z; \pm \text{Im } z > M + | \text{Re } z| \}$ for sufficiently large M. Therefore, $E_f = \Phi_+ \circ \Phi_-^{-1}$ is well-defined on $\Phi_-(W_{\pm})$. Since $E_f(z+1) = E_f(z) + 1$, it can be extended to $\{z; | \text{Im } z| > L' \}$ for sufficiently large L'. It is called a *horn map*. Since $\Phi_+(z) + c_+$ and $\Phi_-(z) + c_-$ ($c_{\pm} \in \mathbb{C}$) are also Fatou coordinates for $\check{f}(z)$, we can replace $\Phi_{\pm}(z)$ by $\Phi_{\pm}(z) + c_{\pm}$ for some c_{\pm} so that $E_f(z)$ is normalized as $E_f(z) = z + o(1)$ as $\text{Im } z \to +\infty$.

Define $\Pi : \mathbb{C} \to \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ by $\Pi(z) = e^{2\pi i z}$. Then we can define a map $\hat{E}_f : \{0 < |z| < e^{-2\pi L'}\} \cup \{|z| > e^{2\pi L'}\} \to \mathbb{C}^*$ satisfying $\hat{E}_f \circ \Pi = \Pi \circ E_f$. We can extend \hat{E}_f holomorphically at 0 and ∞ . They are fixed points of \hat{E}_f and by the normalization above, 0 is a parabolic fixed point for \hat{E}_f of multiplier 1.

When we perturb f(z) in an appropriate direction, z_0 bifurcates to two fixed points and return maps near each of the fixed points can be defined (cf. Yoccoz renormalization for a holomorphic germ of an indifferent fixed point). Consider the case $f(z) = e^{2\pi i\alpha}z + O(z^2)$ is an perturbation of $f_0(z) = z + z^2 + O(z^3)$ and assume $\alpha \neq 0$, $|\arg \alpha| < \pi/4$. For f sufficiently close to f_0 , we can still define Fatou coordinates and the horn map E_f . Then the return map around a fixed point 0 can be written as Return $(f)(z) = E_f(z) - 1/\alpha$. Taking a semiconjugacy by Π , we obtain a map $\widehat{\text{Return}}(f)(z) = e^{-2\pi i/\alpha} \widehat{E}_f(z)$.

Since $E_f(z)$ converges to $E_{f_0}(z)$ locally uniformly on an appropriate domain, horn maps play an important role in studying bifurcations at parabolic fixed points (e.g. linearizability at a fixed point, existence of a Julia set of positive measure, satellite renormalizations,...). Furthermore, if $\alpha = 1/(n - \alpha_1)$ for $n \in \mathbb{Z}$ sufficiently large, we have $(\widehat{\text{Return}}(f))'(0) = \alpha_1$. If α_1 is also small, $|\arg \alpha_1| < \pi/4$ and $(\widehat{\text{Return}}(f))''(0) \neq 0$, then we can again consider the return map $\widehat{\text{Return}}^2(f)(z)$ for $\widehat{\text{Return}}(f)(z)$. Hence, for $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ which has the continued fraction of the form

$$\alpha = \frac{1}{a_1 - \frac{1}{a_2 - \cdots}}, \quad a_i > \exists N \gg 1$$
(2)

and appropriate $f_0(z) = z + z^2 + O(z^3)$, we can consider a sequence of return maps $e^{2\pi i \alpha_n} f_n(z) = \widehat{\text{Return}}(e^{2\pi i \alpha_{n-1}} f_{n-1})$, where $\alpha_0 = \alpha$ and $\alpha_n \equiv -1/\alpha_{n-1} \mod \mathbb{Z}$. To obtain such an infinite sequence $\{f_n\}$, we must have some a priori estimate for f_0 . Let us denote $\mathcal{R}_{\alpha}f = e^{-2\pi i/\alpha}\widehat{\text{Return}}(e^{2\pi i \alpha}f)$ if it is defined.

Our aim here is to define a space of holomorphic maps which is invariant by \mathcal{R}_{α} and to obtain contraction property of \mathcal{R}_{α} on it. Since $\mathcal{R}_{\alpha} \to \mathcal{R}_0$ when $\alpha \to 0$, we first study the operator $\mathcal{R} = \mathcal{R}_0$. We call $f \rightsquigarrow \mathcal{R}(f)$ parabolic renormalization. Let

$$\mathcal{F}_{0} = \left\{ f: U_{f} \to \mathbb{C} \middle| \begin{array}{l} 0 \in U_{f}: \text{ open and connected in } \mathbb{C}, f: \text{ holomorphic in } U_{f}, \\ f(0) = 0, f'(0) = 1, f: U_{f} \setminus \{0\} \to \mathbb{C}^{*} \text{ is a branched covering} \\ \text{with a unique critical value, all critical points have local degree 2} \end{array} \right\}$$

We can define \mathcal{R} on \mathcal{F}_0 and the following theorem is known:

Theorem 1. (i) $\mathcal{R}(\mathcal{F}_0) \subset \mathcal{F}_0$.

(ii) Let $f_{\text{Koebe}} = z/(1-z)^2$ and $f_{\bigstar} = \mathcal{R}(f_{\text{Koebe}})$. Then f_{\bigstar} is defined on \mathbb{D} and $f_{\bigstar} \in \mathcal{F}_0$. Any $f \in \mathcal{R}(\mathcal{F}_0)$ can be written as $f = f_{\bigstar} \circ \phi^{-1}$ where $\phi : \mathbb{D} \to U_f$ a conformal map with $\phi(0) = 0, \phi'(0) = 1$.

Hence there exists a bijection between $\mathcal{R}(\mathcal{F}_0)$ and $\mathcal{S} = \{\phi : \mathbb{D} \to \mathbb{C}; \text{ univalent, holomorphic,} \phi(0) = 0, \phi'(0) = 1\}$. We consider a topology on $\mathcal{R}(\mathcal{F}_0)$ which is induced from local uniform convergence topology on \mathcal{S} by this bijection.

However, considering this space is not sufficient to study \mathcal{R}_{α} for $\alpha \neq 0$ (e.g. $\mathcal{R}_{\alpha}f$ have infinitely many critical values). Therefore, we need to relax covering property and we obtain the following:

Main Theorem 1. Let $P = z(1-z)^2$. There exist simply connected domains $V, V' \subset \mathbb{C}$ such that V contains the fixed point 0 and the critical point -1/3 for P, $V \subseteq V'$, V is a quasidisk and

$$\mathcal{F}_1 = \left\{ f = P \circ \phi^{-1} \middle| \begin{array}{c} \phi : V \to \mathbb{C} \text{ is conformal, } \phi(0) = 0, \phi'(0) = 1, \\ \text{and has a quasiconformal extension to } \mathbb{C} \end{array} \right\}$$

satisfies the following:

- (i) $\mathcal{F}_0 \setminus \{ \text{quadratic polynomial} \} \hookrightarrow \mathcal{F}_1$. In particular, $\mathcal{R}_0^n(z+z^2) \in \mathcal{F}_1 \ (n \ge 1)$.
- (ii) $\mathcal{R}_0 f \in \mathcal{F}_1$ for $f \in \mathcal{F}_1$. If $\mathcal{R}_0 f = P \circ \psi^{-1}$, then ψ can be extended conformally on V'.
- (iii) $f \rightsquigarrow \mathcal{R}_0$ is "holomorphic".
- (iv) There exists $\alpha_0 > 0$ such that \mathcal{R}_{α} ($0 < \alpha < \alpha_0$) also satisfies (ii) and (iii).

Main Theorem 2. There exists a metric d on \mathcal{F}_1 such that \mathcal{R}_{α} $(0 \leq \alpha < \alpha_0)$ is a uniform contraction with respect to d.

Corollay 2. For α satisfying (2) and $f = f_0 \in \mathcal{F}_1$, the sequence of return maps $\{e^{2\pi i\alpha_n} f_n = \widehat{\operatorname{Return}}^n(e^{2\pi i\alpha}f)\}$ $(\alpha_n \equiv -1/\alpha_{n-1} \mod \mathbb{Z} \text{ and } f_n = \mathcal{R}_{\alpha_{n-1}}f_{n-1} \ (n = 1, 2, ...))$ is defined and $f_n \in \mathcal{F}_1$. It is also true for $f(z) = z + z^2$.

Corollay 3. For α in Corollary 2, $g(z) = e^{2\pi i \alpha} z + z^2$ does not have dense critical orbit in its Julia set.