Fourier Transformation of 2D O(N) Spin Model and Anderson Localization

Department of Math. and Phys., Setsunan Univ., Osaka, Japan T. Hiroshi 2

Department of Math., Kanazawa Univ. Kanazawa, Japan F. Hiroshima 3

Department of Math., Kyushu University, Fukuoka, Japan (September 08,2005)

1: Introduction

It is a longstanding problem to prove or disprove non-existence of phase transitions in 4D lattice gauge theories or in 2D sigma models. In the latter model, the model is transformed in to a (complex valued) random potential system [1, 2]. We expect that this problem can be solved from this point of view.

Scaling $\phi \in S^{N-1}$ by $(N\beta)^{1/2}$, we put $\phi_x \in (\beta N)^{1/2}S^{N-1}$. Using $\delta(\phi_x^2 - \beta N) = \int \exp[i\psi_x(\phi_x^2 - \beta N)]d\psi_x$, we start with the expression for the two-point function:

$$\langle \phi_0 \phi_{\zeta} \rangle = \frac{1}{Z} \int \phi_0 \phi_{\zeta} \exp[-\langle \phi, (-\Delta) \phi \rangle] \prod \delta(\phi_x^2 - \beta N) d^N \phi_x$$
$$= \frac{1}{Z} \int \frac{1}{-\Delta + m^2 + i\kappa \psi} (0, \zeta) F(\psi) \prod d\psi_x$$

where Δ is the Laplacian defined on the lattice space Z^2 ((Δ)_{xy} = $-4\delta_{x,y}$ + $\delta_{|x-y|,1}$), $\kappa = 2/\sqrt{N}$ and

$$F(\psi) = \det^{-N/2} (1 + i\kappa G\psi) \exp[i\sqrt{N}\beta \sum \psi_x],$$

$$G(x,y) = \frac{1}{-\Delta + m^2} (x,y)$$

We choose m > 0 so that $G(0) = \beta$ and then

$$F(\psi) = \det_{2}^{-N/2} (1 + i\kappa G\psi) = \det_{3}^{-N/2} (1 + i\kappa G\psi) \exp[-\text{Tr}(G\psi)^{2}]$$

2: Anderson Localization means mass generation

We investigate this model as a variation of Anderson's tight binding Hamiltonian[2]. The distribution of ψ is

$$F(\psi) = \det_{3}^{-N/2} (1 + i\kappa G\psi) \exp[-\langle \psi, G^{\circ 2}\psi \rangle],$$

$$\text{Tr}(G\psi)^{2} = \sum_{x,y} \psi(x)\psi(y)G^{2}(x,y) = \langle \psi, G^{\circ 2}\psi \rangle$$

We set

$$G^{(ave)}(x,y) \equiv \frac{1}{Z} \int \frac{1}{-\Delta + m^2 + i\kappa\psi}(x,y) F(\psi) \prod d\psi_{\zeta}$$

lito@mpg.setsunan.ac.jp

 $^{^2}$ tamurah@kenroku.kanazawa-u.ac.jp

³hiroshima@math.kyushu-u.ac.jp

and we would like to prove the following conjecture

Conjecture:

$$G^{(ave)}(x,y) < ce^{-\alpha|x-y|}, \quad \alpha > 0$$

for all $\beta > 0$ and N >> 2.

Our present result is several steps before the goal. Assume that the interaction is restricted to a finite rectangular region $\Lambda \subset Z^2$ and study the limit $\Lambda \to Z^2$. We decompose Λ into many small squares $\Lambda = \bigcup_{i=1}^n \Delta_i$ and apply the Feshbach formula to obtain det $^{-N/2}(1+i\kappa G_{\Lambda}\psi_{\Lambda})$ in the following form:

$$\left[\prod_{i=1}^{n-1} \det^{-N/2} \left(1 + W(\Delta_i, \Lambda_i) \right) \right] \prod_{i=1}^n \det^{-N/2} \left(1 + i\kappa G_{\Delta_i} \psi_{\Delta_i} \right)$$
 (1)

where $\kappa = 2/\sqrt{N}$, $\Lambda_k = \bigcup_{i=k+1}^n \Delta_i$, $G_{\Delta} = \chi_{\Delta} G \chi_{\Delta}$, $\Lambda G_{\Delta} = \chi_{\Lambda} G \chi_{\Delta}$ and

$$W(\Delta_i, \Lambda_i) = -(i\kappa)^2 \frac{1}{1 + i\kappa G_{\Delta_i} \psi_{\Delta_i}} G_{\Delta_i, \Lambda_i} \psi_{\Lambda_i} \frac{1}{1 + i\kappa G_{\Lambda_i} \psi_{\Lambda_i}} G_{\Lambda_i, \Delta_i} \psi_{\Delta_i}$$

 $[G_{\Lambda}]^{-1}$ is a Laplacian with free boundary conditions at $\partial \Lambda_i$. To apply cluster expansion to prove the long-standing conjecture, we will have to show that $W(\Delta, \Lambda)$ are small. So this work is the first step in this direction.

We prove that $([G_{\Lambda_i}]^{-1} + i\kappa\psi_{\Lambda_i})^{-1}$ behaves as massive Green's functions which decrease fast (localization). The measure restricted to each block is

$$d\mu_{\Delta} = \det_{3}^{-N/2} \left(1 + \frac{2i}{\sqrt{N}} G_{\Delta} \psi_{\Delta} \right) \exp\left[-\left(\psi_{\Delta}, G_{\Delta}^{\circ 2} \psi_{\Delta}\right) \right] \prod_{x \in \Delta} d\psi(x) \tag{2}$$

which is almost equal to the Gaussian measure $\exp[-(\psi_{\Delta}, G_{\Delta}^{\circ 2}\psi_{\Delta})]\prod_{x\in\Delta}d\psi(x)$. In this talk, we show that our Conjecture is proved if we use the localized measure $\prod d\mu_{\Delta}$ is used for $F(\psi)\prod d\psi_x$, [3, 4]. We also show that $W(\Delta, \Lambda)$ are rather small to such an extent that the polymer-expansion is applicable.

References

- [1] D. Brydges, J. Fröhlich and T. Spencer, The Random Walk Representation of Classical Spin Systems and Correlation Inequalities, Commun. Math. Phys. 83: 123 (1982).
- [2] J. Fröhlich and T. Spencer, Absence of Diffusion in the Andeson Tight Bindin Model for Large Disorder or Low Energy, Commun. Math. Phys.88: 151 (1983)
- [3] K.R.Ito, Renormalization Recursion formulas and Flows of 2D O(N) Spin Models, Jour. Stat. Phys., 107: 821-856 (2002).
- [4] K. R. Ito, F.Hiroshima and H. Tamura, Study of Two-Dimensional O(N) Spin Model by the Feshbach-Krein Expansion of the Determinant, Preprint (2005, Jan)