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a piece of “condensed matter” consists of an enormous
swarm of electrons moving nonrelativistically
—– A. Zee, “Quantum Field Theory in a Nutshell”

Abstract

This is a brief report of the author’s talk on some of bipolaron problems in the
light of mathematical physics.

1 Introduction

Over the past few decades a considerable number of studies have been made on
bipolaron by physicists from the point of view of physics on high-temperature su-
perconductor [5, 3], and also by chemists from the point of view of chemistry on
conducting polymers [20]. In this paper we will focus our mind on some of bipo-
laron problems in the light of mathematical physics. The details of physical aspects
written in this report will appear in [11].

When the energy of a lattice vibration of an ionic crystal (or metal) is quantized,
the energy is called a phonon. This vibration makes a transverse (T) wave or lon-
gitudinal (L) one in 3-dimensional space R

3. Moreover, phonons are classified into
two branches of dispersion relation, i.e., acoustic (A) phonon or optical (O) one.
We treat two electrons coupled with LO phonons in this paper. By electron-phonon
interaction, an electron in a crystal (or metal) dresses itself in the phonon cloud.
This dressed electron is the so-called polaron. The electron-phonon interaction may
be assumed to have the form of

r−1 × electron charge density × ion charge density, (1.1)

where r is the distance of the electron and phonon. Moreover, we can expect electrons
in the ionic crystal (or metal) to interact strongly with LO phonons through the
electric field of the polarization wave. This electron dressed in LO-phonon cloud is
the Fröhlich polaron.

We consider two electrons in the crystal now. Then, the Coulomb repulsion
occurs between the two electrons. As written above, each electron makes a polaron.
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If the two electrons are far away from each other, each electron dresses itself in
the individual phonon cloud. So, there is no exchange of phonons between the two
electrons, and no force by the phonon exchange occurs between the two. Thus, there
are two isolated single polarons in the crystal. On the other hand, if the distance
between the two electrons is so short that the phonon exchange occurs, the attraction
may appear between the two electrons and they are bound. This bound polarons is
called bipolaron.

The author is interested in the following problems which have been considered
by solid state physicists:

Problem 1. Find the critical point, namely, the border between existence and non-
existence of ground state of bipolaron.

Problem 2. Estimate the size of a bipolaron.

Problem 3. Does the following hold?
Binding Energy 2ESP − EBP > 0 ⇐⇒ Bipolaron has a ground state,

where ESP and EBP are the ground state energies of single polaron and
bipolaron, respectively.

Problem 4. Calculate the effective mass of bipolaron.

Problem 5. Does H tend to the Hamiltonian of two single polarons in a sense,
when U � λ? Here U is the strength of the Coulomb repulsion and λ
the coupling strength with the phonon field.

Problem 6. We have to break translation invariance in the Hamiltonian of bipo-
laron we treat, when we obtain a ground state of bipolaron. Then, does
the Nambu-Goldstone bosons appear to recover the translation invari-
ance? If so, are such Goldstone bosons acoustic phonons?

etc.

Problem 1 proposes another enhanced-binding-problem than Hiroshima-Spohn’s
[13]:

Hiroshima-Spohn’s Idea: Their physical image of enhanced binding is that the
effective mass increases and V (x) causes attraction. For the effective Hamiltonian
with an effective mass m∗,

Heff =
1

2m∗ p
2 + V (x),

there is a critical mass mc such that{
m∗ > mc =⇒ Heff has a ground state,
m∗ < mc =⇒ Heff has no ground state.

Namely, their V (x) is attractive, but it is so shallow that Heff has no ground state
when m∗ < mc. Since V (x) is attractive, once m∗ puts on weight so that m∗ > mc,
the attraction by V (x) functions well and Heff has a ground state. On the other
hand, in our case V (x) makes the Coulomb repulsion! So, their idea does not work
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well for the bipolaron problem. In this sense, bipolaron problems propose another
enhanced-binding-problem.

Concerning Problems 1-3, we will mainly study formation and deformation in
this paper.

2 Hamiltonians

Let m be the mass of electron. The LO phonons are scalar bosons and can be
assumed to be dispersionless, ωk = ωLO. The free polaron radius is defined by
rfp ≡ (�/2mωLO)1/2. Let ε∞ be the optic (high-frequency) dielectric constant and ε0
the static dielectric constant. We set Vk ≡ − �ωLO

(
4παrfp/k2V

)1/2 for the crystal
volume V . For the electric charge e, the dimensionless electron-phonon coupling
constant is defined by

α ≡ 1
�ωLO

e2

2

(
1
ε∞

− 1
ε 0

)
1
rfp
.

The ionicity of the crystal is defined by η ≡ ε∞/ε0, which satisfies 0 < η < 1. The
strength of the Coulomb repulsion is denoted by U ≡ e2/ε∞.

The total Hamiltonian of bipolaron is given by

H =
∑

j=1,2

[
1

2m
p2

j +
∑

k

{
Vke

ikxjak + V ∗
k e

−ikxja†k
}]

+
U

|x1 − x2| +
∑

k

�ωk a
†
kak,

where ak and a†k are annihilation and creation operators of LO phonon with the
momentum �k, respectively. Each position of the two electrons are denoted by xj ∈
R

3, j = 1, 2.
Kornilovitch studied bipolaron problems introducing the attraction radius R > 0

[15]. We take this R into H. Let χ
S
(r) be the characteristic function on a set S, i.e.,

χS (r) =

{
1 if r ∈ S,
0 if r /∈ S.

Then, the Hamiltonian with R is

H(R) =
∑

j=1,2

[
1

2m
p2

j + χ|x1−x2|≤R
(|x1 − x2|)

∑
k

{
Vke

ikxjak + V ∗
k e

−ikxja†k

}]

+
U

|x1 − x2| +
∑

k

�ωk a
†
kak,

Namely, the attraction caused by phonon exchange occurs in the region |x1−x2| ≤ R.

2.1 Continuum Approximation

For the sake of simplicity in a mathematical treatment, we employ the units, � =
m = ωLO = 1, and the following continuum approximation:

(
V

(2π)3

)1/2

ak ≈ a(k) and
1
V

∑
k

≈
∫

d3k

(2π)3
.
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For an ultraviolet cutoff Λ with the dimension of wave number, we define

χ
R,Λ

(x, k) := χ|x|≤R
(|x|)χ|k|≤Λ

(|k|), x, k ∈ R
3.

The continuum-approximated Hamiltonian is

HBP(R) =
∑

j=1,2

[
1
2
p2

j + λ

∫
d3k√
(2π)3

χ
R,Λ

(x1 − x2, k)

×
{
g(k)eikxja(k) + g(k)∗e−ikxja†(k)

}]

+
U

|x1 − x2| +
∫
d3k a†(k)a(k),

where λ ≡ (4παrfp)1/2 , g(k) ≡ − i|k|−1.
We have to note that the continuum approximation may be unacceptable for the

intermediate-coupling large bipolaron as in Alexandrov-Mott’s textbook [3].

3 Deformation of Bipolaron

Let EBP(R) be the ground state energy of HBP(R). Let ESP(R) be the ground state
energy of the Hamiltonian of single polaron:

HSP(R) =
1
2
p2 + λ

∫
d3k√
(2π)3

χ
R,Λ

(x, k)
{
g(k)eikxa(k) + g(k)∗e−ikxa†(k)

}
+
∫
d3k a†(k)a(k),

where p and x are the momentum and position operators of electron.
Taking account of Emin’s work [6], there may be an energy E(R) > 0 such that

EBP(R) = 2ESP(R) − E(R) +
U

R
.

Therefore, we have

Binding Energy 2ESP(R) − EBP(R) < 0 ⇐⇒ E(R) <
U

R
.

Thus, if E(R) < U/R, we cannot expect that bipolaron has a ground state, because
it is more stable that each of the two electrons is in the individual ground state of
two isolated single polarons than it is that they are in the ground state of bipolaron.
We now regard E(R) as coming from the phonon field and estimate it at a constant
E independent of R.

We set

E =
2λ2Λ
π2

. (3.1)

Then, by developing Lieb’s idea in [19], we obtain that if E < U/R, then HBP(R)
has no ground state.
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4 Formation of Bipolaron

In this section we consider formation of bipolaron following the method which is
similar to Adamowski’s in [1] and ours in [12],

4.1 Strategy for Existence of Ground State

Step 1: Our Hamiltonian HBP(R) has the form of

HBP(R) = Hel-el +Hph +Hel-ph(R,Λ).

So, we find a canonical transformation U(θ) with a parameter θ ≥ 0 such that

U(θ)∗HBP(R)U(θ) = Heff(θ,R) +Hph +Hel-ph(θ,R,Λ)
+Errorθ(R,Λ) + Σθ(R,Λ), (4.1)

where Σθ(R,Λ) is an UV divergent energy in U(θ)∗HBP(R)U(θ), Errorθ(R,Λ) an
error term (bounded operator) such that lim

Λ→∞
Errorθ(R,Λ) = 0 for every R > 0.

In (4.1) Heff(θ,R) = Hel-el + V (θ,R) becomes an effective Hamiltonian in quan-
tum mechanics. The potential V (θ,R) in Heff(θ,R) should be derived from the
electron-phonon interaction, and we expect that there exists a critical θc such that
for the Hamiltonian Hrel

eff (θ,R) of the relativistic motion of Heff(θ,R),{
θ > θc =⇒ Hrel

eff (θ,R) has a ground state,
θ < θc =⇒ Hrel

eff (θ,R) has no ground state.

Here the Hamiltonian of the relativistic motion of Heff(θ,R) means the Hamiltonian
after separating the part of the center-of-mass motion from Heff(θ,R). Based on
(1.1), we can expect V (θ,R) include a Coulomb attractive potential. We derive
Heff(θ,R) in the following. In the physicists’ context, for the phonon vacuum Ωph,

Heff(θ,R) = lim
Λ→∞

〈Ωph |U(θ)∗HBP(R)U(θ) − Σθ(R,Λ) |Ωph〉,

which means

Heff(θ,R) ≡ lim
Λ→∞

PΩph
(U(θ)∗HBP(R)U(θ) − Σθ(R,Λ))PΩph

,

where PΩph
is the projection onto the space spanned by the phonon vacuum Ωph.

Step 2: We consider whether the Hamiltonian H̃rel
BP(θ,R) of the relativistic mo-

tion of
H̃BP(θ,R) = Heff(θ,R) +Hph +Hel-ph(θ,R,Λ)

has a ground state or not.

4.2 Effective Hamiltonians in Quantum Mechanics

As we succeeded in deriving the Coulomb attractive potential from the electron-
phonon interaction in [12], we use the canonical transformation with test functions.
This canonical transformation appears before we determine the test functions for a

5



self-energy in the procedure for Tomonaga’s intermediate coupling approximation
[26] by Lee, Low, and Pines [17, 16, 18].

We denote by U(β1, β2) the unitary operator with test functions βj , j = 1, 2,
which makes our canonical transformation with test functions. We assume

βj(k)∗ = βj(−k), j = 1, 2. (4.2)

Now we choose βj as βj(k) = θ(1 + k2/2)−1 for a parameter θ ≥ 0. In the
case θ = 1, U(β1, β2) is the unitary operator in Tomonaga’s intermediate coupling
approximation, and it was named canonical transformation of Gross by Nelson [9,
10, 23]. Then, we have U(β1, β2)∗HBP(R)U(β1, β2) in the same way as in [12]. Thus,
we obtain

Heff(θ,R) = HQM + error
R
(θ), (4.3)

where

HQM =
1
2
p2
1 +

1
2
p2
2 +

√
2α
(

1
1 − η

− θ(2 − θ)
)

1
|x1 − x2|

+
√

2αθ(2 − θ)
e−

√
2|x1−x2|

|x1 − x2| −
√

2αθ2e−
√

2|x1−x2|,

error
R
(θ) = χ|x1−x2|≥R

(|x1 − x2|)
(
− θ(2 − θ)

|x1 − x2| +
√

2αθ(2 − θ)
e−

√
2|x1−x2|

|x1 − x2|
−
√

2αθ2e−
√

2|x1−x2|
)
.

So, since 0 < η < 1 and 0 ≤ θ(2 − θ) ≤ 1 for 0 ≤ θ ≤ 2, we cannot derive enough
attraction from the electron-phonon interaction.

From now on, we employ βj satisfying

β1(k)∗ + β2(k) − β1(k)∗β2(k) = θ/2, k ∈ R
3. (4.4)

For example, if we take β1(k) = −β2(k) =
√
θ/2 or β1(k) = −(−1 +

√
1 + 4θ)/4

and β2(k) = (−1 +
√

1 + 4θ)/2, then β1 and β2 satisfy (4.4). Then, we obtain

Heff(θ,R) =
1
2
p2
1 +

1
2
p2
2 +

U(θ)
|x1 − x2| + error

R
(θ), (4.5)

where

U(θ) = U − λ2θ

2π
,

errorR(θ) = χ|x1−x2|≥R
(|x1 − x2|) λ2θ

2π|x1 − x2| .

Let us fix µ > 0 arbitrarily. If θ and R are sufficiently large such that

µ+ 2
√

2α
[

1
1 − η

− θ

{
1 − µ2

(
R+

1
2µ

)
e−2µR

}]
< 0, (4.6)

then Hrel
eff (θ,R) has a ground state. Some values of α for formation of bipolaron were

physically studied in [1, 28]. For the case of finite temperature, see [25, 27].
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Judging from the sufficient condition for deformation of bipolaron and the R-
dependence in (4.6), we may expect formation of bipolaron when R = ∞. Namely,
when the distance between the two electrons gets longer and longer, the Coulomb
repulsion between the two weakens. On the other hand, if the phonon cloud still
grasps the two electrons, then there is a possibility that the attraction caused by
phonons wins over the Coulomb repulsion and the two electrons are bound. Actually,
we obtain

2ESP(∞) −EBP(∞) > 0, (4.7)

developing the technique in [8].

For one of establishment of the above conjecture, we consider HBP(R) breaking
the translation symmetry in HBP(R).

We introduce the center-of-mass coordinates, X1 = (x1+x2)/2, P1 = (p1+p2)/2,
and the relativistic coordinates, X2 = x1−x2, P2 = p1−p2. We set masses M1 = 1/2
and M2 = 2. Then, our Hamiltonian HBP(R) can be identified with

∑
j=1,2

[
1

2Mj
P 2

j + λ

∫
d3k√
(2π)3

χ
R,Λ

(X2, k)c(X2, k)

×
{
g(k)eikX1a(k) + g(k)∗e−ikX1a†(k)

}]

+
U

|X2| +
∫
d3k a†(k)a(k), (4.8)

where

c(X2, k) = 2 cos
kX2

2
= eikX2 + e−ikX2,

s(X2, k) = 2 sin
kX2

2
= eikX2 − e−ikX2.

Because of the form of the electron-phonon interaction in (4.8), we cannot generally
make the complete separation of the center-of-mass motion from HBP(R).

In order to derive a more effective attraction from the electron-phonon interac-
tion, we use the notion of a virtual phonon as Feynman introduced in [7] (also see
[22]) and we set our physical situation the same as in [12]. We consider a virtual
phonon as a classical particle and suppose that it makes the phonon field. We as-
sume that the virtual phonon sits on the center Q ∈ R

3 of the segment made by
the two electrons. Namely, we suppose that the virtual phonon becomes the fixed
source of the phonon field at

Q =
x1 + x2

2
(4.9)

and the desired attraction occurs from the source like a nucleon is fixed and it makes
a nuclear force caused by π-mesons. Moreover, we nail down the virtual phonon at
the origin, i.e., Q = 0. Because the virtual phonon attracts the two electrons, the
center of mass of the two electron is also nailed down at the origin Q = 0 now. So,
we have x1 = X2/2 and x2 = −X2/2. We have p1 = P2/2 and p2 = −P2/2 since
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P1 = (p1 + p2)/2 = (ẋ1 + ẋ2)/2 = 0. Let β1(k) = −β2(k) =
√
θ/2. Then, we are

allowed to regard H̃BP(θ,R) as the following.

H̃BP(θ,R) =
1

2M1
P 2

1 + H̃rel
BP(θ,R), (4.10)

where

H̃rel
BP(θ,R) =

1
2M2

P 2
2 +

U(θ)
|X2| +

∫
d3k a†(k)a(k)

+λ
∫

d3k√
(2π)3

χR,Λ(X2, k)

×
{
g(k)

(
c(X2, k) − i

√
θ

2

(
1 +

k2

2

)
s(X2, k)

)
a(k)

+g(k)∗
(
c(X2, k) + i

√
θ

2

(
1 +

k2

2

)
s(X2, k)

)
a†(k)

}

+
λ
√
θ

2
√

2

{
P2

∫
d3k√
(2π)3

χR,Λ(X2, k)kg(k)c(X2 , k)a(k)

+
∫

d3k√
(2π)3

χR,Λ(X2, k)kg(k)∗c(X2, k)a†(k)P2

}

+
λ2θ

4

{(∫
d3k√
(2π)3

χ
R,Λ

(X2, k)kg(k)eikX2/2a(k)

)2

+

(∫
d3k√
(2π)3

χ
R,Λ

(X2, k)kg(k)e−ikX2/2a(k)

)2

+2

(∫
d3k√
(2π)3

χ
R,Λ

(X2, k)kg(k)∗e−ikX2/2a†(k)

)

×
(∫

d3k√
(2π)3

χ
R,Λ

(X2, k)kg(k)eikX2/2a(k)

)

+2

(∫
d3k√
(2π)3

χ
R,Λ

(X2, k)kg(k)∗eikX2/2a†(k)

)

×
(∫

d3k√
(2π)3

χ
R,Λ

(X2, k)kg(k)e−ikX2/2a(k)

)

+

(∫
d3k√
(2π)3

χR,Λ(X2, k)kg(k)∗e−ikX2/2a†(k)

)2

+

(∫
d3k√
(2π)3

χ
R,Λ

(X2, k)kg(k)∗eikX2/2a†(k)

)2}
. (4.11)

Namely, we can separate the center-of-mass motion from H̃BP(θ,R) and the Hamil-
tonian of the relativistic motion is given by H̃rel

BP(θ,R). We note that the electron-
phonon interaction in H̃rel

BP(θ,R) has the form obtained by combining the forms of
the interaction of the Nelson model and that of Pauli-Fierz model. So, using the
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method in [8] and [24], we can say the following. Let us fix µ > 0 arbitrarily. If θ
and R are sufficiently large such that (4.6) holds, then Hrel

BP(R) has a ground state.

5 Acoustic Phonons as Nambu-Goldstone Bosons

De Luca, Ricciardi, and Umezawa showed in [21] that acoustic phonons are the
Nambu-Goldstone bosons recovering the translation invariance. We break the trans-
lation invariance in HBP(R) to obtain a ground state. Then, does the Nambu-
Goldstone theorem work? If so, what are the Nambu-Goldstone bosons? Are there
acoustic phonons as in [21]?

We remember the following. Let HS be the Schrödinger operator with a delta
potential:

HS = − 1
2
∆ + δ(x), x ∈ R

3.

We define a non-relativistic, classical field ϕ(x, t) by

ϕ(x, t) := e−iHStϕ(x)

with an initial field ϕ(x). Then, ϕ(x, t) satisfies the wave equation,

i
∂

∂t
ψ(x, t) = HSψ(x, t).

Let ϕ̂(x, t) be the second quantization of ϕ(x, t) which satisfies the canonical com-
mutation relation (CCR). We define the Hamiltonian Ĥ by

Ĥ :=
∫

1
2
∇ϕ̂(x, t)∗∇ϕ̂(x, t)dx+

∫ ∫
ϕ̂(x, t)∗ϕ̂(y, t)∗δ(x− y)ϕ̂(y, t)ϕ̂(x, t)dydx.

Inserting Ĥ into the Heisenberg equation for ϕ̂(x, t) and using CCR, we obtain the
following non-linear Schrödinger equation,

i
∂

∂t
ϕ̂(x, t) = − 1

2
∆ϕ̂(x, t) + ϕ̂(x, t)∗ϕ̂(x, t)ϕ̂(x, t). (5.1)

It is well known that the non-linear Schrödinger equation (5.1) causes the Nambu-
Goldstone bosons. Therefore, the delta potential in the Schrödinger operator plays
an important role to derive the Nambu-Goldstone bosons in a sense. In this point
of view, we attempt to find a delta potential in Heff(θ,R).

In this section we employ the approximation by Bassani, Iadonisi, et al. [14, 4].
We define the total momentum by

Π = P1 +
∫
d3k ka†(k)a(k).

Then, we have [HBP(R),Π] = 0. We consider the case Π = 0 ∈ R
3. We neglect a

residual phonon-phonon interaction, i.e.,(∫
d3k ka†(k)a(k)

)2

≈
∫
d3k k2a†(k)a(k),
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and take the canonical transformation, a(k) −→ e−ikX1a(k). Then, we reach

HΠ=0
BP (R) =

1
2M2

P 2
2 +

U

|X2| +
∫
d3k

(
1 +

k2

2M1

)
a†(k)a(k)

+λ
∫

d3k

(2π)3
χ

R,Λ
(X2, k)c(X2, k)

{
g(k)a(k) + g(k)∗a†(k)

}
. (5.2)

We can show that for E given in (3.1) HΠ=0
BP (R) has no ground state if E < U/R.

Moreover, there is a unitary operator U(θ) such that

HΠ=0
eff (θ,R) = lim

Λ→∞
〈Ωph |U(θ)∗HΠ=0

BP (R)U(θ) − ΣΠ=0
θ (R,Λ) |Ωph〉

=
1

2M2
P 2

2 +
U(θ)
|X2| + γδ(X2) + error

R
(θ), (5.3)

where ΣΠ=0
θ (R,Λ) is a divergent energy of U(θ)∗HΠ=0

BP (R)U(θ) and

U(θ) = U +
λ2

2π
(
θ2 − θ

)
,

γ = λ2θ2

(
1
M1

+
1

4M2

)
,

error
R
(θ) =

λ2

2π
(
θ2 − θ

)
χ|X2|≥R

(|X2|) 1
|X2| .

Therefore, we can take θ = θ0 ≡ α/
√

2+
√
α2/2 −√

2α/(1 − η), provided that (1−
η)α > 2

√
2. Then, U(θ0) = 0. Namely, HΠ=0

eff (θ,R) becomes our desired Schrödinger
operator. But we cannot say anything about whether acoustic phonons appear as
the Nambu-Goldstone bosons in bipolaron yet.

We note the following. Even if U(θ) > 0, HΠ=0
eff (θ,R) can have a bound state

with negative energy under a certain boundary condition around X2 = 0 [2, Theorem
2.1.3].
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