
Triviality of Hierarchical P (φ) Model

Kenshi Hosaka1

Abstract

We consider the Kadanoff-Wilson renormalization group (RG) for
a class of hierarchical P (φ) model above four dimensions by using
Gawȩdzki and Kupiainen’s analysis. We prove triviality for the class,
namely, prove existence of critical trajectory that leads to the Gaus-
sian fixed point.

KEY WORDS: Hierarchical model; triviality; renormalization group; P (φ)
model.

1 Introduction

Hierarchical spin model is an equilibrium statistical mechanical system intro-
duced by Dyson, Bleher and Sinai [3] [1] [2]. This model is known as a model
suitable for tracing block spin renormalization group (RG) trajectories, i.e.,
the RG transformation is reduced to the following nonlinear transformation
R of a function (single spin potential) v = v(φ):

exp[−Rv(φ)]

=

∫
exp[−1

2
Ld[v(L−(d−2)/2φ+ z) + v(L−(d−2)/2φ− z)]]dν(z)∫

exp[−L4v(z)]dν(z)
(1)

where dν(z) = 1
(2π)1/2 exp(−1

2
z2)dz, and L is an even integer valued constant.

It is easy to see that the trivial function v(φ) ≡ 0 is a fixed point of R, which
we call the Gaussian fixed point. If, for a class of single spin potentials,
RG trajectories with initial potentials in the class, converge to the Gaussian
fixed point, then we say that the class of functions is trivial. Gawedzki
and Kupiainen studied this recursion in detail, and proved (among other
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things) the triviality for φ4 models with some small φ4 coupling constant in
4 dimensions [4] [5] [6]. See [6] for a review of their results together with the
relation of (1) and the hierarchical spin model. The purpose of our work is
to extend the results of Gawedzki and Kupiainen and prove triviality for a
wider class of potentials. To be specific, We consider the following class of
single spin potentials:

v0(φ) = µφ2 + λP (φ), (2)

P (φ) =
N∑
k=2

a2k : φ2k :, (3)

where : φ2k : is given by∫ ∞
−∞

Ld
∑
±

: (L−(d−2)/2φ± z)2k : dν(z) = L2k−(k−1)d : φ2k : . (4)

(For example : φ6 := φ6− 15
1−L−2φ

4− 45
1−L−4φ

2+ 90
(1−L−2)(1−L−4)

φ2+“const”.) Let

us define a class of initial single spin potentials V0(N,L,D,C1, n0) satisfying
the following conditions for constants L, D, C1, and n0,

(Pa) for |Imφ| < C1n
1/2N
0 , exp[−v0(φ)] is analytic, positive for real φ, even,

and satisfies

|e−(v0)≥4(φ)| ≤ exp[D −
N∑
k=2

a
1/k
2k,0|φ|2 +

N∑
k=2

A2ka2k,0(Imφ)2k], (5)

where {A2k} are universal constants, and a2k,0 = λ · a2k

(Pb) for |φ| < C1n
1/2N
0 , (v0)≥4(φ) is analytic,

(v0)≥4(φ) = λ0

N∑
k=2

: φ2k : +(v0)≥2N+2(φ) (6)

with

C−−L
−4

n0

≤ a4,0 ≤
C++L

−4

n0

, C−−(N) >
1

48
, C++(N) <

1

24
, (7)

C0L
−4n−1

0 < a2k,0 < C ′0L
−4n−1

0 , C0 > 0 (8)

|(v0)≥2N+2(φ)| ≤ n
−3/2N
0 . (9)

We will prove the following for our class.
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Theorem 1.1 In d ≥ 4, there exist positive constants:

D(N), C̄1(N,L,D) ≥ L, n̄0(N,L,D,C1) ≥ L48,

such that the following holds. Let C1 ≥ C̄1(N,L,D), n0 ≥ n̄0(N,L,D,C1).
Define the RG as (1). Then there exists µcrit ∈ R such that the iterates vn
of the recursion converge to zero uniformly on compacts in C1, if we start
from v0 ∈ V0(N,L,D,C1, n0) with µ0 = µcrit.

To prove of the triviality for (1) with potentials of the form (Pa)-(Pb), we
will show that the parameters will enter the region where the Theorem of
Gawȩdzki and Kupiainen [6] can be applied (i.e. G-K region), after some it-
erations (finite time iterations) of the RG. The point of our proof is to change
the induction hypothesis after some iterations to reflect the dominant terms
in the potential. The proof goes along the following line. In the beginning,
we are in the region where (vn)≥2N(φ) is dominant. For properly chosen ini-
tial data, (vn)≥2N(φ) decreases rapidly, and we then go into the region where
φ2N−2 term of vn(φ) is comparable to (vn)≥2N(φ). As the recursion proceeds,
the φ2N−2 term becomes positive and dominant, and then φ2N−4 becomes
positive and dominant etc. After all, vn(φ) enters the G–K region. To trace
the trajectory, we will divide up the induction into N + 1 parts along the
trajectory and impose different induction hypothesis for the a2k,n dominant
regime for k = N,N − 1, · · · , 2, 1. (Compare the induction hypotheses L1.2a
and L1.2b with L1.3a and L1.3b, respectively.) We will prove this by means
of two lemmas. First, for N > m > 2, n ≥ 0, let Vmn (N,L,D,C1, n0) be the
class of potentials vn satisfying:

L1.2a for |Imφ| < C1(L(2m−4)nn0)1/2m, exp[−vn(φ)] is analytic, positive for
real φ, even, and

|e−(vn)≥4(φ)| ≤ exp[D −
N∑
k=2

a
1/k
2k,n|φ|2 +

N∑
k=2

A2ka2k,n(Imφ)2k], (10)

L1.2b for |φ| < C1(L(2m−4)nn0)1/2m, (vn)≥4(φ) is analytic, and

(vn)≥4(φ) =
N∑
k=2

a2k,nφ
2k + (vn)≥2N+2(φ), (11)

with

|a4,n − L(d−2k)na2k,0| ≤ nL(d−2k)nn
−1−2/N
0 , for k = 1, · · · , N (12)

|(vn)≥2N+2| ≤ (n
−3/2N
0 )L−n/N . (13)
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Lemma 1.2 Let 3 ≤ m ≤ N There exist constants

D(N), C̄1(N,L,D) ≥ L, n̄0(N,L,D,C1) ≥ L48 (14)

such that the following holds. Let 1/2N > δ > 0, C1 ≤ C̄1(N,L,D), n0 ≥
n̄0(N,L,D,C1) and n ≥ 0 satisfy the inequality

(L(d−2m)nn−1
0 )1/2m ≥

{
(L(d−2m+2)nn−1

0 )1/(2m−2) if m > 3,
(n0 + n)−1/4 if m = 3.

(15)

Suppose also that v0 ∈ V0(N,L,D,C1, n0), and vn ∈ Vmn (N,L,D,C1, n0).
Then, there exists a closed interval Jn ⊂ In = [−(n0 + n)−1−δ, (n0 + n)−1−δ]
such that for µn running through Jn, vn+1 ∈ Vmn+1(N,L,D,C1, n0). Further,
the map µn 7→ µn+1 sweeps In+1 continuously.

Since V0(N,L,D,C1, n0) = VN0 (N,L,D,C1, n0), we can iterate Lemma 1.2
for m = N , and for n ≥ 0 as long as (15) is satisfied. For 3 ≤ m ≤ N − 1,
put

nm = min{n ∈ N|(L(d−2m)nn−1
0 )1/2m ≤ (L(d−2m+2)nn−1

0 )1/(2m−2)}. (16)

Obviously, 1
d

logL n0 ≤ nm < logL n0. By Lemma 1.2 for m = N ,

vnN−1
∈ VNnN−1

(N,L,D,C1, n0) = VN−1
nN−1

(N,L,D,C1, n0). (17)

Therefore we can restart applying Lemma 1.2 for m = N − 1. Since

Vmnm−1
(N,L,D,C1, n0) = Vm−1

nm−1
(N,L,D,C1, n0) (18)

for each m, this can be continued until n = n3. Let

n2 = min{n : (n0 + n)1/4 ≤ (L2nn0)1/6}, (19)

and let us define a class of single spin potentials V2
n2+n(N,L,D,C1, n0) sat-

isfying:

L1.3a for |Imφ| < C1(n0 + n2 + n)1/4, exp[−vn2+n] is analytic and positive
for real φ, even, and

|e−(vn2+n)≥4(φ)|

≤ exp[D −
N∑
k=2

a
1/2k
k,n2
|φ|2 +

N∑
k=2

A2ka2k,n2+n(Imφ)2k], (20)
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L1.3b for |φ| < C1(n0 + n2 + n)1/4, (vn2+n)≥4(φ) is analytic,

(vn2+n)≥4(φ) =
N∑
k=2

a2k,n : φ2k : +(vn2+n)≥2N+2(φ), (21)

with

|a4,n2+n − a4,0| ≤ (n2 + n)n
−1−2/N
0 , (22)

|a2k,n2+n − L(d−2k)(n2+n)n0| ≤ (n2 + n)L(d−2k)(n2+n−1)n
−1−2/N
0 , (23)

|(vn1+n)≥2N+2(φ)| ≤ L−3n−n2/Nn
−3/2N
0 . (24)

Lemma 1.3 There exist constants

N,D(N), C̄1(N,L,D) ≥ L, n̄0(N,L,D,C1) ≥ L48

such that the following holds. Let N−1 > δ > 0, C1 ≥ C̄1(N,L,D), n0 ≥
n̄0(N,L,D,C1), logL n0 ≥ n ≥ 0. v0(φ) ∈ V0(N,L,D,C1, n0), and vn2+n ∈
V2
n2+n(N,L,D,C1, n0). Then, there exists a closed interval Jn2+n ⊂ In2+n =

[−(n0 + n2 + n)−1−δ, (n0 + n2 + n)−1−δ] such that for µn2+n running through
Jn2+n, vn2+n+1 ∈ V2

n2+n+1. Further, the map µn2+n 7→ µn2+n+1 sweeps In2+n+1

continuously.

The proof of Lemma 1.3 is close to the proof of Lemma 1.2. A different point
from Lemma 1.2 is the difference in the condition of the region where vn2+n(φ)
satisfies analyticity. In fact we require that exp[−vn2+n(φ)] is analytic for
|Imφ| < C1(n0+n2+n)1/4 in Lemma 1.3. Because φ4 term becomes dominant
compared with (vn1+n)≥6(φ) this time.

With Lemma 1.3 we can continue iterations, and we can make sure that
after a finite number of iterations, this potential is in the region where
Gawȩdzki and Kupiainen studied [6]:

G-Ka e−(vn)≥4(φ) is analytic in |Imφ| < C1(n0 + n)1/4, positive for real φ,
even and

| exp[−(vn)≥4(φ)]| ≤ exp[D − λ1/2
n |φ|2 + A1λn(Imφ)4], (25)

G-Kb for |φ| < C1(n0 + n)1/4, (vn)≥4(φ) is analytic,

(vn)≥4(φ) = λnφ
4 + (vn)≥6(φ) (26)

with
C−L

−4

n0 + n
≤ λn ≤

C+L
−4

n0 + n
, C− =

1

48
, C+ =

1

24
, (27)

|(vn)≥6(φ)| ≤ (n0 + n)−3/4 (28)
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In this class VG−Kn (L,D,C1, n0), Gawȩdzki and Kupiainen proved the
following,

Theorem 1.4 (Gawȩdzki and Kupiainen) There exist constants D,
C̄1(L,D), n̄0(L,D,C1) such that the following holds. Let C1 ≥ C̄1(L,D),
n0 ≥ n̄0(L,D,C1) and n ≥ 0.

Put

vn(φ) = µn −
6λn

1− L−2
φ2 + (vn)≥4(φ) (29)

where (vn)≥4(φ) ∈ VG−Kn (L,D,C1, n0). Then, there exists a closed interval
Jn ⊂ In such that for µn running through Jn, (vn+1)≥4(φ) = vn+1(φ) −
µn+1φ

2 + 6λn+1

1−L−2φ
2 ∈ VG−Kn+1 (L,D,C1, n0). Further, the map µn 7→ µn+1 sweeps

In+1 continuously.

2 Proof of Lemma 1.2

Now we start to prove Lemma 1.2. Let 2 < m < N , we will only prove that
v′n(φ) = vn+1(φ) is in Vmn+1(N,L,D,C1, n0), if µn is in In. As before, we sepa-
rate the cases into two ; small field case or large field case corresponding to the
cases either |φ| < C1(L(2m−4)(n+1)n0)1/2m, or |Imφ| < C1(L(2m−4)(n+1)n0)1/2m

respectively. In the small field case, we prove that v′n(φ) satisfies L1.2b′,
the condition L1.2b with n being replaced by n + 1, by using the Taylor
expansion, and some estimation of the Gaussian integrals as in [6]. As for
the large field region, we only investigate global behavior of v′n(φ), i.e., we
confirm that v′n(φ) satisfies (13) of L1.2a′, the condition L1.2a with n being
replaced by n+ 1. We use K for calculable absolute constants, whose values
will vary in each occurrence.

2.1 Small field region analysis

Let vn ∈ Vmn . We must also prepare some notations. Write χ1(z) = χ(|z| <
(L(2m−4)nn0)1/2m) and throughout this subsection, we assume that φ is in the
region |φ| < 10

11
LC1(L(2m−4)nn0)1/2m. Note that we have to put C1 to satisfy

the inequality |L−1φ ± z| < C1(L(2m−4)nn0)1/2m for |z| < (L(2m−4)nn0)1/2m

and |φ| < 10
11
LC1(L(2m−4)nn0)1/2m. Next, decompose vn+1(φ) as follows,

vn+1(φ) = v′n(φ) =
∼
v′n (φ)+

≈
v′n (φ), (30)

e−
∼
v′n(φ) =

∫
exp[−L

4

2

∑
±
vn(L−1φ± z)]dν1(z)/(φ = 0)small, (31)
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where

(φ = 0)small =
∫

exp[−L4vn(z)]dν1(z), (32)

dν1(z) ≡ χ1(z)e−z
2/2 dz√

2π
. (33)

2.1.1 Estimation of
∼
v′n (φ)

Let us take a logarithm of (31).

∼
v′n (φ) =

N∑
k=1

L4−2k(a2k,n − c2k,n)φ2k

− log
∫
e−wφ(z)dν1(z) + log(φ = 0)small, (34)

where c2k,n, wφ(z) are given by

N∑
k=1

a2k,n : φ2k :=
N∑
k=1

(a2k,n − c2k,n)φ2k, (35)

wφ(z) = w0(z) + w2(z)φ2 + w4(z)φ4 + w6(z)φ6 + w≥8(φ, z), (36)

w0(z) = L4vn(z)

w2p(z)

=
N∑
k=1

L4−2p{
(

2k

2p

)
(a2k,n − c2k,n)z2p +

d2(N−p)

dz2(N−p) (vn)≥2N+2(z)}φ2N−2p, (37)

for p = 0, · · · , N − 1 and

w≥2N+2(φ, z) =
L−4φ2N+2

(2N + 1)!
{
∫ 1

0
dt(1− t)2N+1 d

2N+2

dz2N+2
(vn)≥2N+2(L−1tφ+ z)

+
∫ 1

0
dt(1− t)2N+1 d

2N+2

dz2N+2
(vn)≥2N+2(L−1tφ− z)}. (38)

From the conditions L1.2a - L1.2b, vn(φ) is even and analytic. We can

estimate d2N+2

dz2N+2 (vn)≥2N+2(φ) on the support of dν1(z) as follows by using the
Cauchy formula and (13),

|(vn)≥2N+2(z)|

≤ 1

(2N + 2)!

∫ 1

0
dt(1− t)2N+1|z2N+2 d

2N+2

dz2N+2
(vn)≥2N+2(tz)|

≤ C1

(2N + 2)!(C1 − 1)2N+3
n
− 3

2N
0 n

− (N+1)
m

0 L−( 1
N

+
(N+1)(m−2)

m
)n|z|2N+2. (39)
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d2

dz2 (vn)≥2N+2(z) to d2N

dz2N (vn)≥2N+2(z) can be estimated as (39). From the
perturbation expansion:

− log
∫
e−wφ(z)dν1(z)

= − log
∫
dν1(z) + 〈wφ(z)〉0 −

∫ 1

0
dt(1− t)〈wφ(z);wφ(z)〉t, (40)

where

〈 · · · 〉t ≡
∫
· · · e−twφ(z)dν1(z)/

∫
e−twφ(z)dν1(z). (41)

Now, we shall estimate each part of (40). Using the estimation of the Gaus-
sian integrations, we get

〈wφ(z)〉0 = L4〈vn(z)〉0

+
N−1∑
p=0

N∑
k=1

L4−2k

(
2k

2p

)
(a2k,n − c2k,n)φ2N−2p(2p− 1)!!

+
N∑
k=2

∼
R

0,0

2k (L, n0, n)φ2k + 〈w≥2N+2(φ, z)〉0, (42)

where, the terms
∼
R

0,0

2i (L, n0, n), i = 1, · · · , N satisfy

|
∼
R

0,0

2i (L, n0, n)| ≤ (n
−3/2N
0 )n

−(N+1)/m
0 L−(1/N+(N+1)(m−2)/m)n. (43)

From (39) and the similar estimates for d2

dz2 (vn)≥2N+2, · · ·,
d2N

dz2N (vn)≥2N+2, we obtain,

|〈w≥2N+2(φ, z)〉0| ≤ L4−n/N(1 + (n0)−1/mL(4−2m)n/m)(n
−3/2N
0 ). (44)

Next we estimate∫ 1

0
dt(1− t)〈wφ(z);wφ(z)〉t =

∫ 1

0
dt(1− t)

∑
i,j

〈w̃2i; w̃2j〉t

=
∫ 1

0
dt(1− t)〈w0(z);w0(z)〉t +

∫ 1

0
dt(1− t)

∑
i,j 6=0

〈w̃2i; w̃2j〉t, (45)

where

w̃2i =

{
w2i(z)φ

2i i = 0, · · · , 2N
w≥2N+2(φ, z) i = N + 1.

The cumulants are

〈w̃2i; w̃2j〉t = 〈e−twφ(z)〉−1
0 〈w̃2iw̃2je

−twφ(z)〉0
−〈e−twφ(z)〉−2

0 〈w̃2ie
−twφ(z)〉0〈w̃2je

−twφ(z)〉0. (46)
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Note that the support of dν1(z) is |z| < (L(2m−4)nn0)1/2m. From (15), we get
the uniform estimate |wφ(z)| ≤ K · L2NC2N

1 for |z| < (L(2m−4)nn0)1/2m and
|φ| < 10LC1

11
(L(2m−4)nn0)1/2m. Hence,

|
∑

(i,j)6=(0,0)

〈w̃2i; w̃2j〉t|

≤ eK·L
2NC2N

1

∑
(i,j)6=(0,0)

(〈|w̃2i||w̃2j|〉0 + 〈|w̃2i|〉0〈|w̃2j|〉0). (47)

From (37)-(38), we can estimate |
∫ 1
0 dt(1− t)

∑
(i,j) 6=(0,0) 〈w̃2i; w̃2j〉t| similarly

as in (39), and we obtain

|2nd term of RHS of (45)|

≤ KeK·C
2N
1 L−2n−2

0 (|φ|2 +
N∑
k=2

L−(4−2k)n−2|φ|2k)

+|higher order terms|. (48)

The higher order terms are estimated as follows,

|higher order terms| ≤ KeK·L
NC2N

1 L4(N−1)−n/NC
4(N−1)
1 (n

−4/2N
0 ). (49)

Next, we estimate
∫ 1
0 dt(1−t)〈w0(z);w0(z)〉t. Since 〈w0(z);w0(z)〉t is analytic

function in |φ| < 10
11
LC1(L(2m−4)n0)1/2m, by Cauchy formula we get

|
∫ 1

0
dt(1− t)〈w0(z);w0(z)〉t −

∫ 1

0
dt(1− t)〈w0(z);w0(z)〉t|φ=0|

≤ K exp(K · L2NC2N
1 ) · L−2n−2

0 |φ|2. (50)

So we have,

|
∫ 1

0
dt(1− t)〈wφ(z);wφ(z)〉t −

∫ 1

0
dt(1− t)〈w0(z);w0(z)〉t|φ=0|

≤ K exp(K · L2NC2N
1 )L−2n−2

0 (|φ|2 + · · ·+ L−(4−2N)n|φ|2N)

+|higher order terms|, (51)

|higher order terms| ≤ KeK·L
2NC2N

1 L4(N−1)−n/NC
4(N−1)
1 (n

−4/2N
0 ). (52)

These coefficients are large, but not terrible, because we can take n0 suffi-
ciently large. In the following, we put n

1/2N
0 ≥ K ·C4(N−1)

1 L4(N−1)eK·L
2NC2N

1 .
From (34) and (40), we infer that

∼
v′n (φ) =

N∑
k=1

L4−2k(a2k,n − c2k,n)φ2k
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+
N∑
p=1

N∑
k=1

L4−2k
2k C2p(a2k,n − c2k,n)(2N − 2p− 1)!!φ2p

+
2N∑
k=1

∼
R2k (N,L, n0, n)φ2k+

∼
(vn)′≥2N+2 (φ), (53)

where, the terms
∼
R2i (N,L, n0, n), i = 1, · · · , N satisfy

|
∼
R2i (N,L, n0, n)| ≤ L−10−(4−2i)nn

−2+1/2N
0 + |

∼
R

0,0

2i (N,L, n0, n)|,
i = 1, · · · , N, (54)

and from (44) and (52),
∼

(vn)′≥2N+2 (φ) satisfy

|
∼

(vn)′≥8 (φ)| ≤ L4−n/N(1 + L−(4−2m)n/m(n0)−1/m + L−4)(n
−3/2N
0 ), (55)

for |φ| < 10
11
LC1(L(4−2m)nn0)1/2m. Notice that

(φ = 0)small = log
∫
dν1(z)− 〈w0(z)〉0 +

∫ 1

0
dt(1− t)〈w0(z);w0(z)〉t|φ=0.

So we can check that the constant term (φ = 0)small vanishes. The esti-
mate (55) is a little weaker than what we want (see (13)). So, we need a

stronger estimate. Since
∼
v′n (φ) is analytic in |φ| < 10

11
LC1(L−(4−2m)nn0)1/2m,

φ−2N−2
∼

(vn)′≥8 (φ) is also analytic in |φ| < 10
11
LC1(L−(4−2m)nn0)1/2m. We

obtain from the maximum principle

|
∼

(vn)′≥2N+2 (φ)| ≤ (
|φ|

(10L/11)C1(L−(4−2m)nn0)1/2m
)2N+2(n

−3/2N
0 )

×(L4−n/N(1 + L−(4−2m)n/m(n0)−1/m + L−4)), (56)

so that for |φ| < C1(L−(4−2m)(n+1)n0)1/2m,

|
∼

(vn)′≥2N+2 (φ)| ≤ (
11

10
)2N+2L−(2N+2)(1−(4−2m)/2m)

×(L4−n/N(1 + L−(4−2m)n/m(n0)−1/m + L−4)(n
−3/2N
0 )). (57)

2.1.2 Estimation of
≈
v′n (φ) for |φ| < 10

11
LC1(L−(4−2m)nn0)1/2m

Represent (30) as

≈
v′n (φ) = log (1 +

∫
exp[−1

2
L4∑

± vn(L−1φ± z)](1− χ1(z))dν(z)

e−
∼
v′n(φ)(φ = 0)small

)

+ log(φ = 0)small − log(φ = 0). (58)

10



We want to prove that
≈
v′n (φ) is analytic in|φ| < 10

11
LC1(L(2m−4)nn0)1/2m and

sufficiently smaller than
∼
v′n (φ). To prove these properties, we have only to

prove that ∫
exp[−1

2
L4∑

± vn(L−1φ± z)](1− χ1(z))dν(z)

e−
∼
v′n(φ)(φ = 0)small

(59)

is analytic and sufficiently small in |φ| < 10
11
LC1(L(2m−4)nn0)1/2m. First of all,

we estimate the denominator of (59). We can show that the denominator
is bounded from below by a constant which depends on C1, but not on n0.
From L1.2b, and (54) together with uniform estimate of w0(z) under the
condition of (15), we estimate denominator as follows,

|denominator of (59)| ≥ exp[−K · L2NC2N
1 ]. (60)

Next, we estimate the numerator part of (59),

|numerator of (59)|

≤
∫

(1− χ1(z))
∏
±
| exp[−vn(L−1φ± z)]|L4/2dν(z). (61)

Using (10) of L1.2a for |L−1φ± z| < C1(L(2m−4)nn0)1/2m, we have

|numerator of (59)|

≤ exp[K + L4D +
N∑
k=2

A2kC
′
0C

2k
1 −

1

4
(L(2m−4)nn0)1/m]. (62)

So,

|(59)|

< exp[K · L2NC2N
1 + L4D +

2N∑
k=2

A2kC
′
0C

2k
1 −

1

4
(L(2m−4)nn0)

1
m ]. (63)

For given L, D and C1, we can take n0 large enough to obtain

RHS of (63) ≤ exp[−1

8
(L(2m−4)nn0)1/m]. (64)

This estimate is also valid for log(φ = 0)− log(φ = 0)small. According to (64),

we can show that
≈
v′n (φ) is analytic and

|
≈
v′n (φ)| ≤ 2e−1/8(L(2m−4)nn0)1/m

. (65)

11



2.1.3 Estimation of coefficients

Now, we assume that |φ| < C1(L(2m−4)(n+1)n0)1/2m i.e. φ is in the small
field region of v′n(φ). Notice that the small field region is in the region
|φ| < 10

11
LC1(L(2m−4)nn0)1/2m, so we can use the argument above. Thus,

≈
v′n (φ) is analytic in the small field region of v′n, and we can obtain power

series expansion of
≈
v′n (φ). With the use of Cauchy’s estimate, we see that

coefficients of φ2 to φ2N satisfy,

| 1
k!

dk

dφk

≈
v′n (0)| ≤ e−1/8(L(2m−4)nn0)1/m

, k = 2, 4, · · · , 2N. (66)

Using the bounded convergence theorem, we see that 1
2
d2

dφ2

≈
v′n (0), 1

4!
d4

dφ4

≈
v′n

(0), · · · 1
2N !

d2N

dφ2N

≈
v′n (0) are continuous functions of µn on In. From (57) and

(65), if n0 is sufficiently large, then we have

|(vn)′≥2N+2(φ)| ≤ L−(n+1)/N(n
−3/2N
0 ), (67)

for |φ| < C1(L(2m−4)(n+1)n0)1/2m. From (4), (53), (54), and (66), we know
that

|a2k,n+1 − L4−2ka2k,n| = |R2k(N,L, n0, n) +
1

2k!

d2k

dφ2k

≈
v′n (0)|

≤ L(4−2k)nn
−1−2/N
0 , k = 3, · · · 2N. (68)

Thus, if n0 is sufficiently large, we have

|a2k,n+1 − L(4−2k)(n+1)a2k,0| < (n+ 1)L(4−2k)nn
−1−2/N
0 (69)

which proves (13) of L1.2b′. From (53), (54), we know

|a4,n+1 − a4,n| ≤ n
−1−2/N
0 . (70)

Thus, we have

|a4,n+1 − a4,0| < (n+ 1)n
−1−2/N
0 , (71)

which completes the proof of L1.2b′. Similarly, we get estimation of coeffi-
cient µ′n as follows,

|µ′n − L2µn| ≤ K × n−1−2/N
0 . (72)

We know that map R : µ 7→ µ′ is continuous, and image R(In) include
In+1. So that we can take for Jn+1 a connected component of this inverse
image R−1(In+1) ⊂ In.

This ends the analysis of the small field properties.
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2.2 Large field region analysis

Next, we prove that e−(vn)′(φ) satisfy the condition L1.2a′. First, we prove
it in the case where |Reφ| > C1(L(2m−4)(n+1)n0)1/2m. Next, we prove it in
|φ| < 10

11
LC1(L(2m−4)nn0)1/2m i.e. this region includes the small field region

of v′n(φ).

2.2.1 The case where |Reφ| > C1(L(2m−4)(n+1)n0)1/2m

Note that the definition of the RG (1) has the following expression

e−v
′
n(φ) =

∫ ∏
±

exp[−vn(L−1φ± z)]L4/2dν(z)/(φ = 0). (73)

|Im(L−1φ ± z)| < C1(L(2m−4)nn0)1/2m, if |Imφ| < C1(L(2m−4)(n+1)n0)1/2m.
From the condition L1.2a,

|e−(vn)′≥4(φ)| ≤ exp[L4D − L2
N∑
k=2

a
1/2k
2k,n |φ|2 +

N∑
k=2

L4−2kA2ka2k,n(Imφ)2k]

×
∫ ∞
−∞

e−L
4µnz2−L4

∑2N

k=2
a

1/2k
2k,n

z2

dν(z)/(φ = 0). (74)

Note that, {a2k,n} are positive and sufficiently small, hence, this integral part
and (φ = 0) estimated as absolute constants, so we get

RHS of (74)

≤ exp[L4D − L2
N∑
k=2

a
1/2k
2k,n |φ|2 +

N∑
k=2

L4−2kA2ka2k,n(Imφ)2k +K]. (75)

If D and L are given, we take C1 sufficiently large and then we take n0

sufficiently large. Thus, we obtain

| exp(−(v′n)≥4(φ))|

< exp[D −
2N∑
k=2

a
1/2k
2k,n+1|φ|2 +

2N∑
k=2

A2ka2k,n+1(Imφ)2k], (76)

for |Imφ| < C1(L(2m−4)(n+1)n0)1/2m, |Reφ| > C1(L(2m−4)(n+1)n0)1/2m.

2.2.2 The case where |φ| < 10
11
LC1(L(2m−4)nn0)1/2m

Now we prove remainder part of large field region. Let µn ∈ In, and |φ| <
10
11
LC1(L(2m−4)nn0)1/2m. From (55), (69), (71), (72), and K(n0 + n)1/4 >
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(L(2m−4)nn0)1/2m for m ≥ 3, we have

|e−((vn)′)≥4(φ)| ≤ exp[K
2N∑
k=2

L−2C2k
1 n

−1/k
0 ]

× exp[−
N∑
k=2

a2k,n+1(Reφ2k) + L4n
−1/2
0 ]. (77)

And, we estimate a2k,n+1(Reφ2k) as follows,

a2k,n+1(Reφ2k) ≥ a2k,n+1(
1

4
(Reφ)2k −K(Imφ)2k)

≥ −1

2
D2k + 2(a2k,n+1)1/k|φ|2 − A2ka2k,n+1(Imφ)2k. (78)

Notice that D2k does not depend on C1, n0 or n. Put D =
∑N
k=2 D2k. From

(77) to (78),

|e−((vn)′)≥4(φ)| ≤ exp[D −
N∑
k=2

(a2k,n+1)1/k|φ|2 +
N∑
k=2

A2ka2k,n+1(Imφ)2k]

× exp[−1

2
D +K · L−2C2

1n
−1/2
0 ]

× exp[K · L4/3C2N
1 (L(4−2m)(n+1)n0)1/m + L4n

−1/2
0 ], (79)

which is smaller than

exp[D −
N∑
k=2

a
1/k
2k,n+1|φ|2 +

N∑
k=2

A2ka2k,n+1(Imφ)2k], (80)

if n0 is sufficiently large. Proof of Lemma 1.2 is completed.

3 Proof of Theorem 1.1

Finally, we prove Theorem 1.1, using Lemma 1.2, Lemma 1.3 and Theorem
1.4. First of all, we notice that it is possible to take constants L, D(N),
C1(N,L,D), n0(N,L,D,C1) to satisfy Lemma 1.2, Lemma 1.3, and Theorem
1.4. We can check that potential v(φ) can be iterated n2 times if initial
parameters satisfy the conditions (Pa) and (Pb) because of Lemma 1.2.
Notice that vn2(φ), the potential after n2 iterations, satisfies the conditions
L1.3a and L1.3b with n = 0, and so Lemma 1.3 can be applied to this
potential. We have to iterate R using Lemma 1.3, sufficiently many times so
that the iterated potentials satisfy the G-K conditions. Put

n1 = min{n ∈ N : |(vn2+n)≥6(φ)| < (n0 + n2 + n)−3/4

for |φ| < C1(n0 + n2 + n)1/4}. (81)
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Then,

a6,n1+n2−1 < (n0 + n1 + n2 − 1)−9/4. (82)

By calculation, n1 can be estimated as n1 < K logL n0. Since, a2k,n1+n2 ≥ 0,
and by (22)

a4,n1+n2 − c4,n1+n2 < a4,0 + (n1 + n2)n
−1−2/N
0

<
C++

L4
n−1

0 + 2(logL n0)n
−1−2/N
0 <

C+

L4
(n0 + n1 + n2)−1. (83)

Similarly, by (82) we have

a4,n1+n2 − c4,n1+n2 >
C−
L4

(n0 + n1 + n2)−1. (84)

So, we checked the condition G-Kb completely. Next, let us check the con-
dition G-Ka. Notice that analyticity, positivity for real φ, and even function
of vn1+n2(φ) are checked easily. Now, We check the bound of vn1+n2(φ)

| exp[−vn1+n2(φ)]| ≤ exp[D −
2N∑
k=2

a
1/k
2k,n1+n2

|φ|2]

× exp[+
2N∑
k=2

A2ka2k,n1+n2(Imφ)2k]. (85)

Notice that −∑2N
k=3 a

1/2k
2k,n1+n2

|φ|2 +
∑2N
k=3 A2ka2k,n1+n2(Imφ)2k is nonpositive

for (Imφ) < C1(n0 + n1 + n2)1/4 from the definitions of n1 and n2. So we
have the following inequality

| exp[−vn1+n2(φ)]| ≤ exp[D − a1/2
4,n1+n2

|φ|2 + A4a4,n1+n2(Imφ)4]. (86)

We have checked all of the G-K conditions. Since a2k,n1+n2−1, k ≥ 3 is suffi-
ciently small by (82), we know

|µn1+n2 − L2(µn1+n2−1 − c2,n1+n2−1 +
6λn1+n2−1

1− L−2
)| ≤ K · n−1−2/N

0 . (87)

As in the proof lemma 1.2 and Lemma 1.3, we can take for Jn1+n2 a suitable
connected component. So, we can adapt Theorem Gawȩdzki and Kupiainen
[6]. Now, Theorem 1.1 is finished.
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