A Path Integral Preliminary Approach to the FKG Inequality for Yukawa ${ }_{2}$ Quantum Field Theory＊

金沢大理 一頼 孝（Takashi Ichinose）
Department of Mathematics，Faculty of Science，Kanazawa University

1．By the method used in our previous paper［II］，we construct a countably additive path space measure for the 2－D Euclidean Dirac equation in the polar coordinates to give a path integral representation to its Green＇s function（For a brief survey，see［I2］）． This is a report of trying a preliminary approach with use of the result to give an alternative proof of the FKG inequality for Yukawa ${ }_{2}$ quantum field theory obtained by Battle－Rosen［BR］，though not yet incomplete．

G．A．Battle and L．Rosen used Vekua－Bers theory of generalized analytic functions to show the FKG inequality for Y_{2} QFT．The Y_{2} measure is formally given by

$$
\begin{aligned}
& \nu:=\frac{1}{Z} e^{W(\phi)} \prod_{x \in \mathbf{R}^{2}} d \phi(x) \\
& W(x):=\frac{1}{2}\left(\phi,\left(-\Delta+m_{b}^{2}\right) \phi\right)+\operatorname{Tr} K-\frac{1}{2}: \operatorname{Tr} K^{*} K:+\operatorname{Tr} \ln (1-K) K,
\end{aligned}
$$

with Z is a normalized constant，where

$$
\begin{aligned}
K(x, y) & :=S(x, y) \phi(y) \chi_{\Lambda}(y), \phi: \text { Boson field }\left(\text { mass : } m_{b}\right), \\
\chi_{\Lambda} & : \text { indicator function of a square } \Lambda \subset \mathbb{R}^{2},
\end{aligned}
$$

and

$$
\begin{array}{cl}
S(x, y):=\left(-\beta \partial_{x}+m_{f}\right)^{-1} \Gamma, & \beta \partial_{x}=\beta_{0} \partial_{0}+\beta_{1} \partial_{1}, x=\left(x_{0}, x_{1}\right), \\
& \beta_{0}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\sigma_{1}, \quad \beta_{1}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\sigma_{3},
\end{array}
$$

with $m_{f} \geq 0$ the Fermi mass．They considered the two models

$$
\text { a) } \Gamma:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}\left(\text { scalar } Y_{2}\right), \quad \text { b) } \Gamma:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=-i \sigma_{2} \quad\left(\text { pseudo-scalar } Y_{2}\right)
$$

[^0]Then FKG enequality (like $\langle f g\rangle \geq\langle f\rangle\langle g\rangle$) holds: $\frac{\delta^{2} W}{\delta \phi(x) \delta \phi(y)} \geq 0, x \neq y$.
By some heuristic arguments, this is equivalent to showing

$$
\operatorname{tr} S^{\prime}(x, y) S^{\prime}(y, x) \leq 0, \quad x \neq y
$$

where $S^{\prime}:=(1-K)^{-1} S$ is the Green's function (vanishing at ∞) for 2D- Euclidean Dirac equation

$$
\left[\Gamma^{-1}\left(-\beta \partial_{x}+m_{f}\right)-\phi(x) \chi_{\Lambda}(x)\right] S^{\prime}(x, y)=\delta(x-y)
$$

Battle and Rosen proved the above inequality for $m_{f} \geq 0$ in the case a) and for $m_{f}=0$ in the case b).

So, the first thing to do is to construct this Green's function.
In [I1], we constructed a countably additive path space measure to give a path integral representent for the Green's function for $3 D$-Dirac equation in the radial coordinate.

The aim of this talk is to give a preliminary approach to ask whether this method can apply to get the Green's function for the above $2 D$-Euclidean Dirac equation to show the desired inequality.

Put the 2D-Euclidian operator $L^{2}\left(\mathbb{R}^{2}\right)^{2} \equiv L^{2}\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}^{2}$ as:

$$
\begin{aligned}
T_{\Gamma}: & =\Gamma^{-1}\left(-\beta \partial_{x}+m_{f}\right)-V(x), \quad V(x):=\phi(x) \chi_{\Lambda}(x) \\
& =\Gamma^{-1}\left[-\sigma_{1} \frac{\partial}{\partial x_{0}}-\sigma_{3} \frac{\partial}{\partial x_{1}}+m_{f}\right]-V(x), \quad x=\left(x_{0}, x_{1}\right) \in \mathbb{R}^{2}, \\
& \beta=\left(\beta_{0}, \beta_{1}\right), \beta_{0}=\sigma_{1}, \beta_{1}=\sigma_{3} .
\end{aligned}
$$

They considered the two models: a) scalar Y_{2} model: $\Gamma=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I_{2}$ b) pseudoscalar Y_{2} model: $\Gamma=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$

In this note let us consider only a) the scalar Y_{2} model.
2. Since $\Gamma=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, we have by the polar coordinates $x_{0}=r \cos \theta, x_{1}=r \sin \theta(0 \leq$ $r<\infty, 0 \leq \theta<2 \pi)$,

$$
T_{\Gamma}=-C(\theta) \frac{\partial}{\partial r}-\frac{1}{r} D(\theta) \frac{\partial}{\partial \theta}+m_{f}-V,
$$

where

$$
\begin{aligned}
& C(\theta):=\sigma_{1} \cos \theta+\sigma_{3} \sin \theta=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
\cos \theta & -\sin \theta
\end{array}\right), \\
& D(\theta):=-\left(\sigma_{1} \sin \theta-\sigma_{3} \cos \theta=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
-\sin \theta & -\cos \theta
\end{array}\right) .\right.
\end{aligned}
$$

We write $\mathbb{R}_{+}=(0, \infty)$ and $\overline{\mathbb{R}_{+}}=[0, \infty)$.
Making the unitary tansformation

$$
U(\theta):=\frac{1}{\sqrt{2}}\left(\begin{array}{lc}
\sqrt{1+\sin \theta} & \frac{\cos \theta}{\sqrt{1+\sin \theta}} \\
-\frac{\cos \theta}{\sqrt{1+\sin \theta}} & \sqrt{1+\sin \theta}
\end{array}\right)
$$

we have

$$
U(\theta) T_{\Gamma} U(\theta)^{-1}=\left[-\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{\partial}{\partial r}+\frac{1}{2 r}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)-\frac{1}{r}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{\partial}{\partial \theta}\right]+m_{f}-V
$$

in $L^{2}\left(\mathbb{R}^{2}\right)^{2}=L^{2}\left(\overline{\mathbb{R}_{+}} \times[0,2 \pi) ; r d r d \theta\right)^{2}$.
We make one more unitary transformation W of the $r d r$-measure space to the $d r$ measure space:

$$
W: L^{2}(\mathbb{R})^{2} \equiv L^{2}\left(\overline{\mathbb{R}_{+}} \times[0,2 \pi) ; r d r d \theta\right)^{2} \ni f \mapsto r^{1 / 2} f \in L^{2}\left(\overline{\mathbb{R}_{+}} \times[0,2 \pi) ; d r d \theta\right)^{2}
$$

to get

$$
W U(\theta) T_{\Gamma} U(\theta)^{-1} W^{-1}=\left[-\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{\partial}{\partial r}-\frac{1}{r}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{\partial}{\partial \theta}\right]+m_{f}-V
$$

Then we multiply $r^{1 / 2}$ from the left and the right and then multiply the factor i to put

$$
\begin{aligned}
H_{s c}(r V) & :=i r^{1 / 2} W U(\theta) T_{\Gamma} U(\theta)^{-1} W^{-1} r^{1 / 2} \\
& =\left[-i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) r^{1 / 2} \frac{\partial}{\partial r} r^{1 / 2}-i\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{\partial}{\partial \theta}\right]+i\left(m_{f}-V\right) r .
\end{aligned}
$$

Since the operator $-i \frac{\partial}{\partial \theta}$ is a selfadjoint operator in $L^{2}([0,2 \pi) ; d \theta)$ having as the spectrum consisting of only the eigenvalues $\{k\}_{k \in \mathbb{Z}}$ with eigenfunctions $\left\{\frac{e^{i k \theta}}{\sqrt{2 \pi}}\right\}_{k \in \mathbb{Z}}$, our L^{2} space $L^{2}\left(\overline{\mathbb{R}_{+}} \times[0,2 \pi) ; d r d \theta\right)^{2}$ admits the direct sum decomposition:

$$
L^{2}\left(\overline{\mathbb{R}_{+}} \times[0,2 \pi) ; d r d \theta\right)^{2}=\sum_{k \in \mathbb{Z}} \oplus\left(L^{2}\left(\overline{\mathbb{R}_{+}} ; d r\right)^{2} \otimes\left[\frac{e^{i k \theta}}{\sqrt{2 \pi}}\right]\right)
$$

Then we have

$$
\begin{aligned}
& H_{s c}(r V)=\sum_{k \in \mathbb{Z}} \oplus H_{s c}(k), \\
& H_{s c}(k):=\left[-i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) r^{1 / 2} \frac{\partial}{\partial r} r^{1 / 2}+k\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right]+i\left(m_{f}-V\right) r .
\end{aligned}
$$

We want to find a path integral representation for the Green's function for this operator having a singularity at $r=0$.

For each fixed $k \in \mathbb{Z}$, put the free part of $H_{s c}(k)$ to be equal to

$$
H_{0}(k):=-i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) r^{1 / 2} \frac{\partial}{\partial r} r^{1 / 2}+k\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

which is an operator in $L^{2}\left(\overline{\mathbb{R}_{+}} ; d r\right)^{2}$. We can show that $H_{0}(k)$ is essentially selfadjoint on $C_{0}^{\infty}\left(\mathbb{R}_{+}\right)^{2}$, which is a non-trivial result. Therefore the Cauchy problem for it :

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi(r, t) & =-i H_{0}(k) \psi(r, t), \quad t \in \mathbb{R} \\
\psi(r, 0) & =g(r), \quad t=0
\end{aligned}
$$

is L^{2} well-posed. In other words, we can solve it in the space $L^{2}\left(\overline{\mathbb{R}_{+}} ; d r\right)^{2}$.
Crucial is that this Cauchy problem is even L^{∞} well-posed. Namely, we have the following lemma.
Lemma. There exists a unique solution $\psi(r, t)=\left(e^{-i t H_{0}(k)} g\right)(r)$ which satisfies

$$
\|\psi(\cdot, t)\|_{\infty}=\left\|e^{-i t H_{0}(k)} g\right\|_{\infty} \leq e^{|t|(|k|+1 / 2)}\|g\|_{\infty}
$$

By the method in [I1] based on this lemma, we can construct a 2×2-matrix-distribution-valued countably additive path space measure $\mu_{t, 0}^{k}$ on the space $C([0, t] \rightarrow$ $\overline{\mathbb{R}_{+}}$) of the continuous paths $R:[0, t] \rightarrow \overline{\mathbb{R}_{+}}$which represents the solution of the above Cauchy problem: for every pair of f and g in $C_{0}^{\infty}\left(\mathbb{R}_{+}\right)^{2}$,

$$
\begin{aligned}
(f, \psi(\cdot, t)) & =\int_{0}^{\infty}{ }_{t} \overline{f(r)}\left(e^{-i t H_{s c}(k)} g\right)(r) d r=\int_{0}^{\infty} \int_{0}^{\infty}{ }_{t} \overline{f(r)} e^{-i t H_{s c}(k)}(r, \rho) g(\rho) d r d \rho \\
& =\int_{C\left([0, t] \rightarrow \overline{\mathbb{R}_{+}}\right)}\left\langle{ }^{t} \overline{f(R(t))}, d \mu_{t, 0}^{k}(R) g(R(0))\right\rangle e^{\int_{0}^{t}\left(m_{f}-V(R(s)) R(s) d s\right.}
\end{aligned}
$$

Hence, supposing that we can get the inverse of the operator $H_{s c}(k)$ as $H_{s c}(k)^{-1}=$ $i \int_{0}^{\infty} e^{-i t H_{s c}(k)} d t$ by the Laplace transform, we have the following path integral representation for its Green's function, which is a little formally expressed, suppressing the use of test funtions:

$$
\begin{aligned}
& H_{s c}(k)^{-1}(r, \rho) \\
& =i \int_{0}^{\infty} d t \int_{C\left([0, t] \rightarrow \overline{\mathbb{R}_{+}}\right), R(0)=\rho, R(t)=r} r^{1 / 2} \rho^{1 / 2} e^{\int_{0}^{t}\left(m_{f}-V(R(s)) R(s) d s\right.} d \mu_{t, 0}^{k}(R) .
\end{aligned}
$$

3. We have

$$
T_{\Gamma}^{-1}=i r^{1 / 2} W U(\theta) H_{s c}(r V)^{-1} U(\theta)^{-1} W^{-1} r^{-1 / 2}
$$

Here, if we use the polar coordinates for $x=\left(x_{0}, x_{1}\right), y=\left(y_{0}, y_{1}\right) \in \mathbb{R}^{2}$

$$
\begin{aligned}
& x_{0}=r \cos \theta, \quad x_{1}=r \sin \theta(0 \leq r<\infty, 0 \leq \theta<2 \pi) \\
& y_{0}=r^{\prime} \cos \theta^{\prime}, y_{1}=r^{\prime} \sin \theta^{\prime}\left(0 \leq r^{\prime}<\infty, 0 \leq \theta^{\prime}<2 \pi\right)
\end{aligned}
$$

we may write the integral kernel of the operator $H_{s c}(r V)^{-1}$ as

$$
\begin{aligned}
& H_{s c}(r V)^{-1}\left(r, \theta ; r^{\prime}, \theta^{\prime}\right) \\
& =\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} H_{s c}(k)^{-1}\left(r, r^{\prime}\right) e^{-i k\left(\theta-\theta^{\prime}\right)} \\
& =\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} e^{-i k\left(\theta-\theta^{\prime}\right)} i \int_{R(0)=r^{\prime}, R(t)=r} r^{1 / 2} r^{1 / 2} e^{\int_{0}^{\infty}\left(m_{f}-V(R(s))\right) R(s) d s} d \mu_{t, 0}^{(k)}(R) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{tr} & {\left[T_{\Gamma}^{-1}\left(r, \theta ; r^{\prime}, \theta^{\prime}\right) T_{\Gamma}^{-1}\left(r^{\prime}, \theta^{\prime} ; r, \theta\right)\right.} \\
= & -\operatorname{tr}\left[r^{-1 / 2} W U(\theta) H_{s c}(r V)^{-1}\left(r, \theta ; r^{\prime}, \theta^{\prime}\right) U\left(\theta^{\prime}\right)^{-1} W^{-1} r^{-1 / 2}\right. \\
& \left.\times r^{-1 / 2} W U\left(\theta^{\prime}\right) H_{s c}(r V)^{-1}\left(r^{\prime}, \theta^{\prime} ; r, \theta\right) U(\theta)^{-1} W^{-1} r^{-1 / 2}\right] \\
= & -\operatorname{tr}\left[r r^{\prime} H_{s c}(r V)^{-1}\left(r, \theta ; r^{\prime}, \theta^{\prime}\right) H_{s c}(r V)^{-1}\left(r^{\prime}, \theta^{\prime} ; r, \theta\right)\right] \\
= & -r r^{\prime} \operatorname{tr}\left[\left(\sum_{k \in \mathbb{Z}} H_{s c}(k)^{-1}\left(r, r^{\prime}\right) \frac{e^{-i k\left(\theta-\theta^{\prime}\right)}}{2 \pi}\right)\left(\sum_{\ell \in \mathbb{Z}} H_{s c}(\ell)^{-1}\left(r^{\prime}, r\right) \frac{e^{-i \ell\left(\theta^{\prime}-\theta\right)}}{2 \pi}\right)\right] \\
= & -\frac{r r^{\prime}}{(2 \pi)^{2}} \operatorname{tr}\left[\sum_{k, \ell \in \mathbb{Z}} H_{s c}(k)^{-1}\left(r, r^{\prime}\right) H_{s c}(\ell)^{-1}\left(r^{\prime}, r\right) e^{-i(k-\ell)\left(\theta-\theta^{\prime}\right)}\right] \\
= & -\frac{r r^{\prime}}{(2 \pi)^{2}} \operatorname{tr} \sum_{k, \ell \in \mathbb{Z}} a_{k \ell} e^{-i(k-\ell)\left(\theta-\theta^{\prime}\right)} .
\end{aligned}
$$

Here we seem to have

$$
\begin{aligned}
a_{k \ell}:= & i \int_{0}^{\infty} e^{-i t H_{s c}(k)}\left(r, r^{\prime}\right) d t(-i) \int_{0}^{\infty} e^{i u H_{s c}(\ell)}\left(r^{\prime}, r\right) d u \\
= & \int_{0}^{\infty} d t \int_{0}^{\infty} d u \\
& \times \int_{C\left([0, t] \rightarrow \overline{\mathbb{R}_{+}}\right), R_{1}(0)=r^{\prime}, R_{1}(t)=r} e^{\int_{0}^{t}\left(m_{f}-V\left(R_{1}(s)\right) R_{1}(s) d s\right.} d \mu_{t, 0}^{k}\left(R_{1}\right) \\
& \times \int_{C\left([0, u] \rightarrow \overline{\mathbb{R}_{+}}\right), R_{2}(0)=r^{\prime}, R_{2}(u)=r} e^{\int_{u}^{0}\left(m_{f}-V\left(R_{2}(s)\right) R_{2}(s) d s\right.} d \mu_{0, u}^{\ell}\left(R_{2}\right) \\
= & \int_{0}^{\infty} d t \int_{0}^{\infty} d u \int_{C\left([0, t] \rightarrow \overline{\mathbb{R}_{+}}\right), R_{1}(0)=r^{\prime}, R_{1}(t)=r} \int_{C\left([0, u] \rightarrow \overline{\left.\mathbb{R}_{+}\right)}\right), R_{2}(0)=r^{\prime}, R_{2}(u)=r} \\
& \times e^{\int_{0}^{t}\left(m_{f}-V\left(R_{1}(s)\right) R_{1}(s) d s-\int_{0}^{u}\left(m_{f}-V\left(R_{2}(s)\right) R_{2}(s) d s\right.\right.} d \mu_{t, 0}^{k}\left(R_{1}\right) d^{t} \mu_{u, 0}^{\ell}\left(R_{2}\right),
\end{aligned}
$$

where ${ }^{t} \mu_{u, 0}^{\ell}$ is the transposed of the 2×2-matrix-distribution valued-measure $\mu_{0, u}^{\ell}$.
Then the problem is to show in the case a) that

$$
\operatorname{tr} \sum_{k, \ell \in \mathbb{Z}} a_{k \ell} e^{-i(k-\ell)\left(\theta-\theta^{\prime}\right)} \geq 0 .
$$

But our the argument is stopped here, and will be discussed elsewhere.

References

[BR] Battle, G. A. and Rosen, L., The FKG inequality for the Yukawa ${ }_{2}$ quantum field theory, J. Stat. Phys., 22, no.2, 123-192 (1980).
[I1] Ichinose, T., Path integral for the radial Dirac equation, J. Math. Phys. 46, 022103, 19 pages (2005).
[I2] Ichinose, T., On path integral for the radial Dirac equation, to appear in the Proceedings of the 8-th International Conference "Path Integrals. From Quantum Information to Cosmology", Prague, June 6-10, 2005.

[^0]: ＊Talk given at the Workshop＂Applications of Renormalization Group Methods in Mathematical Sciences＂，RIMS，Kyoto University，Sept．7－9，2005．Partially supported by the Grand－in－Aid for Exploratory Research No．17654030，Japan Society for the Promotion of Science．

