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1. By the method used in our previous paper [I1], we construct a countably additive
path space measure for the 2-D Euclidean Dirac equation in the polar coordinates to
give a path integral representation to its Green’s function (For a brief survey, see [I2]).
This is a report of trying a preliminary approach with use of the result to give an
alternative proof of the FKG inequality for Yukawa2 quantum field theory obtained by
Battle–Rosen [BR], though not yet incomplete.

G.A.Battle and L.Rosen used Vekua–Bers theory of generalized analytic functions to
show the FKG inequality for Y2 QFT. The Y2 measure is formally given by

ν : =
1

Z
eW (φ)

∏

x∈R2

dφ(x)

W (x) :=
1

2
(φ, (−∆ +m2

b)φ) + TrK − 1

2
: TrK∗K : + Tr ln(1 −K)K,

with Z is a normalized constant, where

K(x, y) : = S(x, y)φ(y)χΛ(y), φ : Boson field (mass : mb),

χΛ : indicator function of a square Λ ⊂ R
2,

and
S(x, y) : = (−β∂x +mf )−1Γ, β∂x = β0∂0 + β1∂1, x = (x0, x1),

β0 :=

(

0 1
1 0

)

= σ1, β1 :=

(

1 0
0 −1

)

= σ3,

with mf ≥ 0 the Fermi mass. They considered the two models

a) Γ :=

(

1 0
0 1

)

= I2 (scalar Y2), b) Γ :=

(

0 −1
1 0

)

= −iσ2 (pseudo-scalar Y2).
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Then FKG enequality (like 〈fg〉 ≥ 〈f〉〈g〉) holds:
δ2W

δφ(x)δφ(y)
≥ 0, x 6= y.

By some heuristic arguments, this is equivalent to showing

trS′(x, y)S′(y, x) ≤ 0, x 6= y.

where S′ := (1 − K)−1S is the Green’s function (vanishing at ∞) for 2D- Euclidean
Dirac equation

[Γ−1(−β∂x +mf ) − φ(x)χΛ(x)]S′(x, y) = δ(x− y).

Battle and Rosen proved the above inequality for mf ≥ 0 in the case a) and for mf = 0
in the case b).

So, the first thing to do is to construct this Green’s function.
In [I1], we constructed a countably additive path space measure to give a path integral

representent for the Green’s function for 3D-Dirac equation in the radial coordinate.
The aim of this talk is to give a preliminary approach to ask whether this method

can apply to get the Green’s function for the above 2D-Euclidean Dirac equation to
show the desired inequality.

Put the 2D-Euclidian operator L2(R2)2 ≡ L2(R2) ⊗ C2 as:

TΓ : = Γ−1(−β∂x +mf ) − V (x), V (x) := φ(x)χΛ(x),

= Γ−1
[

− σ1
∂

∂x0
− σ3

∂

∂x1
+mf

]

− V (x), x = (x0, x1) ∈ R
2,

β = (β0, β1), β0 = σ1, β1 = σ3.

They considered the two models: a) scalar Y2 model: Γ =

(

1 0
0 1

)

= I2

b) pseudoscalar Y2 model: Γ =

(

0 −1
1 0

)

In this note let us consider only a) the scalar Y2 model.

2. Since Γ =

(

1 0
0 1

)

, we have by the polar coordinates x0 = r cos θ, x1 = r sin θ (0 ≤
r <∞, 0 ≤ θ < 2π),

TΓ = −C(θ)
∂

∂r
− 1

r
D(θ)

∂

∂θ
+mf − V,

where

C(θ) := σ1 cos θ + σ3 sin θ =

(

sin θ cos θ
cos θ − sin θ

)

,

D(θ) := −(σ1 sin θ − σ3 cos θ =

(

cos θ − sin θ
− sin θ − cos θ

)

.



We write R+ = (0,∞) and R+ = [0,∞).
Making the unitary tansformation

U(θ) :=
1√
2

(√
1 + sin θ cos θ√

1+sin θ

− cos θ√
1+sin θ

√
1 + sin θ

)

,

we have

U(θ)TΓU(θ)−1 =
[

−
(

1 0
0 −1

)

∂

∂r
+

1

2r

(

1 0
0 −1

)

− 1

r

(

0 1
1 0

)

∂

∂θ

]

+mf − V

in L2(R2)2 = L2(R+ × [0, 2π) ; rdrdθ)2.
We make one more unitary transformation W of the rdr-measure space to the dr-

measure space:

W : L2(R)2 ≡ L2(R+ × [0, 2π) ; rdrdθ)2 3 f 7→ r1/2f ∈ L2(R+ × [0, 2π) ; drdθ)2

to get

WU(θ)TΓU(θ)−1W−1 =
[

−
(

1 0
0 −1

)

∂

∂r
− 1

r

(

0 1
1 0

)

∂

∂θ

]

+mf − V.

Then we multiply r1/2 from the left and the right and then multiply the factor i to
put

Hsc(rV ) := ir1/2WU(θ)TΓU(θ)−1W−1r1/2

=
[

− i

(

1 0
0 −1

)

r1/2 ∂

∂r
r1/2 − i

(

0 1
1 0

)

∂

∂θ

]

+ i(mf − V )r.

Since the operator −i ∂
∂θ

is a selfadjoint operator in L2([0, 2π) ; dθ) having as the

spectrum consisting of only the eigenvalues {k}k∈Z with eigenfunctions { eikθ

√
2π

}k∈Z, our

L2 space L2(R+ × [0, 2π) ; drdθ)2 admits the direct sum decomposition:

L2(R+ × [0, 2π) ; drdθ)2 =
∑

k∈Z

⊕
(

L2(R+ ; dr)2 ⊗
[ eikθ

√
2π

])

.

Then we have

Hsc(rV ) =
∑

k∈Z

⊕Hsc(k),

Hsc(k) :=
[

− i

(

1 0
0 −1

)

r1/2 ∂

∂r
r1/2 + k

(

0 1
1 0

)

]

+ i(mf − V )r.

We want to find a path integral representation for the Green’s function for this operator
having a singularity at r = 0.



For each fixed k ∈ Z, put the free part of Hsc(k) to be equal to

H0(k) := −i
(

1 0
0 −1

)

r1/2 ∂

∂r
r1/2 + k

(

0 1
1 0

)

,

which is an operator in L2(R+ ; dr)2. We can show that H0(k) is essentially selfadjoint
on C∞

0 (R+)2, which is a non-trivial result. Therefore the Cauchy problem for it :

∂

∂t
ψ(r, t) = −iH0(k)ψ(r, t), t ∈ R,

ψ(r, 0) = g(r), t = 0,

is L2 well-posed. In other words, we can solve it in the space L2(R+ ; dr)2.
Crucial is that this Cauchy problem is even L∞ well-posed. Namely, we have the

following lemma.

Lemma. There exists a unique solution ψ(r, t) = (e−itH0(k)g)(r) which satisfies

‖ψ(·, t)‖∞ = ‖e−itH0(k)g‖∞ ≤ e|t|(|k|+1/2)‖g‖∞.

By the method in [I1] based on this lemma, we can construct a 2 × 2-matrix-
distribution-valued countably additive path space measure µk

t,0 on the space C([0, t] →
R+) of the continuous paths R : [0, t] → R+ which represents the solution of the above
Cauchy problem: for every pair of f and g in C∞

0 (R+)2,

(f, ψ(·, t)) =

∫ ∞

0

tf(r)(e−itHsc(k)g)(r) dr =

∫ ∞

0

∫ ∞

0

tf(r)e−itHsc(k)(r, ρ)g(ρ) drdρ

=

∫

C([0,t]→R+)

〈tf(R(t)), dµk
t,0(R)g(R(0))〉e

R

t

0
(mf−V (R(s))R(s)ds .

Hence, supposing that we can get the inverse of the operator Hsc(k) as Hsc(k)
−1 =

i
∫∞
0
e−itHsc(k) dt by the Laplace transform, we have the following path integral repre-

sentation for its Green’s function, which is a little formally expressed, suppressing the
use of test funtions:

Hsc(k)
−1(r, ρ)

= i

∫ ∞

0

dt

∫

C([0,t]→R+),R(0)=ρ,R(t)=r

r1/2ρ1/2e
R

t

0
(mf−V (R(s))R(s)dsdµk

t,0(R).

3. We have
T−1

Γ = ir1/2WU(θ)Hsc(rV )−1U(θ)−1W−1r−1/2.

Here, if we use the polar coordinates for x = (x0, x1), y = (y0, y1) ∈ R2

x0 = r cos θ, x1 = r sin θ (0 ≤ r <∞, 0 ≤ θ < 2π),

y0 = r′ cos θ′, y1 = r′ sin θ′ (0 ≤ r′ <∞, 0 ≤ θ′ < 2π),



we may write the integral kernel of the operator Hsc(rV )−1 as

Hsc(rV )−1(r, θ ; r′, θ′)

=
1

2π

∑

k∈Z

Hsc(k)
−1(r, r′)e−ik(θ−θ′)

=
1

2π

∑

k∈Z

e−ik(θ−θ′)i

∫

R(0)=r′, R(t)=r

r1/2r′
1/2
e

R

∞

0
(mf−V (R(s)))R(s)dsdµ

(k)
t,0 (R).

Then

tr
[

T−1
Γ (r, θ ; r′, θ′)T−1

Γ (r′, θ′ ; r, θ)

= −tr
[

r−1/2WU(θ)Hsc(rV )−1(r, θ ; r′, θ′)U(θ′)−1W−1r−1/2

× r−1/2WU(θ′)Hsc(rV )−1(r′, θ′ ; r, θ)U(θ)−1W−1r−1/2
]

= −tr
[

rr′Hsc(rV )−1(r, θ ; r′, θ′)Hsc(rV )−1(r′, θ′ ; r, θ)
]

= −rr′ tr
[

(

∑

k∈Z

Hsc(k)
−1(r, r′)

e−ik(θ−θ′)

2π

)(

∑

`∈Z

Hsc(`)
−1(r′, r)

e−i`(θ′−θ)

2π

)

]

= − rr′

(2π)2
tr

[

∑

k,`∈Z

Hsc(k)
−1(r, r′)Hsc(`)

−1(r′, r)e−i(k−`)(θ−θ′)

]

= − rr′

(2π)2
tr
∑

k,`∈Z

ak`e
−i(k−`)(θ−θ′).

Here we seem to have

ak` := i

∫ ∞

0

e−itHsc(k)(r, r′)dt (−i)
∫ ∞

0

eiuHsc(`)(r′, r)du

=

∫ ∞

0

dt

∫ ∞

0

du

×
∫

C([0,t]→R+),R1(0)=r′,R1(t)=r

e
R

t

0
(mf−V (R1(s))R1(s)dsdµk

t,0(R1)

×
∫

C([0,u]→R+),R2(0)=r′,R2(u)=r

e
R

0

u
(mf−V (R2(s))R2(s)dsdµ`

0,u(R2)

=

∫ ∞

0

dt

∫ ∞

0

du

∫

C([0,t]→R+),R1(0)=r′,R1(t)=r

∫

C([0,u]→R+),R2(0)=r′,R2(u)=r

× e
R

t

0
(mf−V (R1(s))R1(s)ds−

R

u

0
(mf−V (R2(s))R2(s)dsdµk

t,0(R1)d
tµ`

u,0(R2),

where tµ`
u,0 is the transposed of the 2 × 2-matrix-distribution valued-measure µ`

0,u.
Then the problem is to show in the case a) that

tr
∑

k,`∈Z

ak` e
−i(k−`)(θ−θ′) ≥ 0.



But our the argument is stopped here, and will be discussed elsewhere.
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