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1. By the method used in our previous paper [I1], we construct a countably additive
path space measure for the 2-D Euclidean Dirac equation in the polar coordinates to
give a path integral representation to its Green’s function (For a brief survey, see [12]).
This is a report of trying a preliminary approach with use of the result to give an
alternative proof of the FKG inequality for Yukawas quantum field theory obtained by
Battle-Rosen [BR], though not yet incomplete.

G.A.Battle and L.Rosen used Vekua—Bers theory of generalized analytic functions to
show the FKG inequality for Yo QFT. The Y5 measure is formally given by

1
v:= Eew(‘z)) H do(z)

z€R2

W(zx):= %(gb, (—A+m3)p) + Tr K — % - Tr K*K : +Trln(1 — K)K,

with Z is a normalized constant, where

K(z,y): = S(x,y)o(y)xa(y), ¢: Boson field (mass: my),

Y : indicator function of a square A C R?,

and

S(z,y) : = (=B0, + my)~'T, B0y = BoOo + 101,z = (w0, 21),

ﬁO = (Sl) é):ala ﬁl = (é _01):037

with my > 0 the Fermi mass. They considered the two models

a) T := ((1) (1)) = I (scalar Y3), b) T := ((1) _01) = —ioy (pseudo-scalar Y5).
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By some heuristic arguments, this is equivalent to showing

Then FKG enequality (like (fg) > (f)(g)) holds: >0,z #vy.

trS'(z,y)S" (y,x) <0, x#y.

where S' := (1 — K)~ 1S is the Green’s function (vanishing at oo) for 2D- Euclidean
Dirac equation

[T (=B0x +my) — ¢(2)xa(2)]S (2, y) = 6(x — y).

Battle and Rosen proved the above inequality for m; > 0 in the case a) and for my =0
in the case b).

So, the first thing to do is to construct this Green’s function.

In [I1], we constructed a countably additive path space measure to give a path integral
representent for the Green’s function for 3D-Dirac equation in the radial coordinate.

The aim of this talk is to give a preliminary approach to ask whether this method
can apply to get the Green’s function for the above 2D-Euclidean Dirac equation to
show the desired inequality.

Put the 2D-Euclidian operator L?(R?)? = L?(R?) ® C? as:

Tr: =T (=p0; +my) = V(z), V(x):=¢(x)xa(w),
_ 0 0
=T! _018—90()_038—J:1+mf —V(z), x=(xo,21)€R?

B = (50751)7 Bo = o1, B1 = 03.

They considered the two models: a) scalar Y2 model: T' = (é (1)) =15

b) pseudoscalar Y5 model: T' = <(1) _01)

In this note let us consider only a) the scalar Y5 model.

2. Since I' = (1) (1) , we have by the polar coordinates x¢g = rcos, x1 = rsinf (0 <
r<oo, 0<6<2m),
o 1 0
where " 0
., (sin cos
C(0) :==o01cosf+ o3sinf = (cos@ —sin&) ,
. cos  —sinf
D(f) := —(01sinf — o3 cosf = (—sin«9 —cos@) .



We write R, = (0,00) and Ry = [0, 00).
Making the unitary tansformation
/ : cos 6
1 ( 1+ 819n0 V1tsind >
V2 \ - \/% V1 +sinf

Ud) =

we have

U(H)TFUw)_l:[_((l) —01)%+%((1) —01>_%<(1) (1)) §H]+mf_v

in L?(R?)?2 = L?2(R; x [0,27); rdrdfd)?.
We make one more unitary transformation W of the rdr-measure space to the dr-
measure space:

W L2(R)? = LA (Ry x [0,27); rdrdf)* > f — r1/2f € L2(Ry x [0,27) ; drdf)?

to get

e 1 oNa 1/0 1\
WUO)TU6)'W 1:[_(0 —1)E_F<1 0) aehmf_v

Then we multiply r/2 from the left and the right and then multiply the factor i to
put
Hio(rV) = ir' PWUO)TRU (0) ' W' r!/2

I 1 0 1/22 1/2 0 1 0 _
_[ Z(O _1)7“ 87‘T 10 89}+2(mf Vr.

Since the operator —i% is a selfadjoint operator in L2([0,27); df) having as the

spectrum consisting of only the eigenvalues {k}xcz with eigenfunctions {%}kGZa our

L? space L?(R; x [0,27); drdf)? admits the direct sum decomposition:

ik

L*(R x [0,27); drdf) :;Z@<L (R ; dr) ®[\/ﬂ])

Then we have

Hoo(rV) =Y @Hq(k
keZ

(1 0 0 0 1 .
Hsc(k)::[—z(o _1)7’1/257“1/24—]6(1 O)}#—z(mf—V)r.

We want to find a path integral representation for the Green’s function for this operator
having a singularity at r = 0.



For each fixed k € Z, put the free part of Hy.(k) to be equal to

N 1 0 1/22 1/2 0 1
Hy(k) := Z(O _1)7“ 5" th{ e

which is an operator in L?(R ; dr)?. We can show that Hy(k) is essentially selfadjoint
on C§°(R4)?, which is a non-trivial result. Therefore the Cauchy problem for it :

0

e (r,t) = —iHo(k)yY(r,t), teR,

¢(T, 0) = g(?“), t=0,

is L2 well-posed. In other words, we can solve it in the space L?(R; ; dr)?.
Crucial is that this Cauchy problem is even L well-posed. Namely, we have the
following lemma.

Lemma. There exists a unique solution 9 (r,t) = (e~*Ho(¥) g)(r) which satisfies
[ (, ) [loo = [l 0P g[log < lIUEF2 g

By the method in [I1] based on this lemma, we can construct a 2 X 2-matrix-
distribution-valued countably additive path space measure ,u,’;o on the space C([0,t] —

R) of the continuous paths R : [0,t] — R which represents the solution of the above
Cauchy problem: for every pair of f and g in C§°(R,)?,

(b 1)) = / T et B g) (r) dr = / N / T e ) (1, p)g(p) drdp

= / ("FRD)), duf o(R)g(R(0)))elo (ms =V EE R
C(l04—Fy)

Hence, supposing that we can get the inverse of the operator Hy.(k) as Hy.(k)™! =
i fooo e~ Hse(k) gt by the Laplace transform, we have the following path integral repre-
sentation for its Green’s function, which is a little formally expressed, suppressing the
use of test funtions:

Hsc(k)_l(r, p)

— T1/2p1/2ef0t(mf—V(R(s))R(s)dsdufp(R)'

/ dt
0 C([0,6]—~F5), R(0)=p, R(t)=r
3. We have

Tt = ir' PWU(O)Heo(rV) U (0) W e /2,
Here, if we use the polar coordinates for x = (z¢, 1), y = (yo,%1) € R?

xg =rcosf, x;=rsinfh (0<r <oo, 0<6<2m),
yo =1r"cost, y1 =r'sinf (0 <71 <oo, 0<O <2m),



we may write the integral kernel of the operator H,.(rV)~! as

Hy (rV) Y (r,0; 1,0

1 o
= = ST Hao(k) ™ (ry )k O
2
keZ
= LS ik, / P21 2 5 ng =V (RGDRG)s g ) Ry
2m keZ R(0)=r", R(t)=r '

Then
tr [TEI(T,Q; v OV (05, 0)
= —tr [rVRPWUO)Hyo(rV) " (1, 05 7, 0)U(0)) W 1= 112

X VRWU ) Hoo(rV) 7 (00,075 7, 0)U(0) 7 W2

= —tr _rr'Hsc(rV)_l(r,Q; v O Hso(rV) (05 9)}
) o—ik(0—0") e~ (0" —0)

= —rr'tr {(Zﬂsc(k)_l(rv ') o )(ZHSC(E)—l(T',T)Tﬂ

keZ LeEL

/
= —%tr [ Z H (k) (r, 7" Hyo(€) 71 (1, r)e 1 (k=066 )]
(2m) k€T
/

rr ; ’
= ——=tr E appe” F=00-07)
2
@m?* " ez

Here we seem to have

are 3=i/ et By, r')dt(—i)/ et Hac O (3! ) du
0 0

/ dt/ du

0 0

/ B eJi m =V (R DR (0)ds gk ()
C([O,t}—>R+),R1 (O):T/,R]_(t):T'

X
" / B el ms =V (RN Ras g ()
C([0,u]—R4),R2(0)=r',Ra(u)=r

[l I
0 0 C([0,t]—R+),R1(0)=r",R1 (t)=r JC([0,u] =R+ ),R2(0)=7",Ra (u)=r

X efot(mf_V(Rl(5))R1(S)d“’_fou(mf_V(R2(s))R2(s)ddef,o(R1)dtﬂi,o(Rz),

where tuﬁ’o is the transposed of the 2 x 2-matrix-distribution valued-measure /uofiu.
Then the problem is to show in the case a) that

tr Z Ape e ik—0)(6—0") > 0.
k,0EZ



But our the argument is stopped here, and will be discussed elsewhere.
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