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Abstract
We present a path measure-based approach to the problem of ground state of the
bipolaron model. We discuss the method and derive a functional measure for the
bipolaron for all compact intervals of the line. We show that this measure is the
mixture of Gaussian measures and a Gibbs measure with respect to two independent
Brownian motions.

1 Introduction

Phonons are quantum particles carrying the vibration energy of an ionic crystal. Elec-
trons interacting with phonons appear then as e®ectively embedded into an energy cloud
(\dressed electrons"); in this state they are called polarons. A bipolaron system consists of
two dressed electrons in which two forces compete. One is the Coulomb repulsion between
the two electrons carrying the same negative charge. The other results from the coupling
to the phonon cloud which tends to hold the two polarons together into a two-lobe system
(acting like a °exible membrane).
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Formally, the bipolaron Hamiltonian is

Hbip = Hp ­ 1 + 1 ­ Hf +Hi: (1.1)

Here
Hp = (¡ 1=2)r2

x1 + (¡ 1=2)r2
x2 +

g
jx1 ¡ x2j (1.2)

is the Hamiltonian of the two indistinguishable particles of unit mass (assumed spinless)
at positions x1; x2 2 R3. The electrons interact via a Coulomb repulsion of strength g > 0.
The operator

Hf =
Z
R3
a¤ (k)a(k)dk (1.3)

is the free ¯eld Hamiltonian featuring the usual Bose annihilation and creation operators
a; a ¤ describing the phonons, and

Hi \ = " ®
2X
j=1

Z
R3

1
jkj
³
eik ¢ xj ­ a(k) + e¡ ik ¢ xj ­ a¤ (k)́ dk (1.4)

gives the interaction between the electrons and the phonon ¯eld. ® < 0 is the electron-
phonon coupling parameter. We are going to make sense of these objects in the following
section.

A basic question is for which values of parameters ® and g does a ground state for
the bipolaron exist. There is substantial literature on the subject in physics (for instance,
[2, 6, 1, 15]), however, no mathematical proof of occurrence of a ground state seems to
exist. The intuition is that though the Coulomb repulsion keeps the two electrons apart, a
su±ciently strong coupling to the phonon ¯eld would balance this e®ect and a ground state
of the system should exist. As in the case of Nelson's model studied in [3, 10, 11], having
a path measure at hand should make possible to express the ground state of the system in
terms of its density with respect to a product measure describing the uncoupled system.
This is useful when the path measure can be constructed by independent probabilistic
means, referring to no underlying ground state. In the present case, however, beside the
competing interactions an extra di±culty is that the Hamiltonian is translation invariant,
in contrast with the so far understood cases where an external potential was used to pin
the ground state down.

In this note we explain how the path measure for any bounded subinterval of the real
line can be constructed. In order to derive the relationship between the density of the two
path measures and the bipolaron's ground state, this construction has to be extended over
the full line. We refer to [7, 8] for more details and proofs.

2 Bipolaron model in Fock space

In Fock space representation the particle space is the joint Hilbert space of the two elec-
trons, L2(R3;dx) £ L2(R3; dx). The underlying space for the Bose ¯eld is the symmetric
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Fock space F := © 1n=0F (n) of functions (f0; f1; :::) for which the direct sum norm

kFk2F =
1X
n=0
kfnk2F(n)

converges. The Fock sectors F (n) := ­ nsymL2(R3; dx), with ­ 0
symL2(R3;dx) = C, are

symmetric tensor products of L2(R3; dx) spaces. F (n) is spanned by linear combinations
of functions of the form f ­ n = f ­ symn, i.e., of L2(R3n;dx) functions f that are symmetric
in the sense that for each k1; : : : ; kn 2 R3 and any permutation ¼ of f1; : : : ; ng it is true
that f(k1; : : : ; kn) = f(k ¼ (1); : : : ; k¼ (n)).

On F linear operators a(f) and a¤ (f), f 2 L2(R3; dx), are de¯ned, called Bose anni-
hilation operator and creation operator, respectively. Since the linear hull of joint Fock
sectors is dense in F , it is su±cient to de¯ne these operators on F (n). For f ­ n 2 F (n) and
g 2 L2(R3; dx) write

a¤ (g)f ­ n ´
µ Z

a ¤ (k)g(k)dk
¶
f ­ n =

p
n+ 1f ­ n ­ sym g 2 F (n+1);

a(g)f ­ n ´
µ Z

a(k)g(k)dk
¶
f ­ n =

p
n h ¹g; fiL2(Rd;dx) f

­ (n ¡ 1) 2 F (n¡ 1); 8n > 0;

while (a(g))(F (0)) = 0. Above we have

(f ­ n ­ sym g)(k1; : : : ; kn+1) =
1

n+ 1

n+1X
i=1

0@n+1Y
j 6=i

f(kj)

1A g(ki):

Both operators have the domain f(f0; f1; : : :) 2 F :
P1

n=0 n kfnk2F(n) <1g. Furthermore,
hF; a(g)GiF = ha ¤ (¹g)F;GiF with F;G in the above domain, and the canonical commuta-
tion relations

[a(f); a ¤ (g)] =
­ ¹f; g

®
L2(R3;dx) ; [a(f); a(g)] = 0; [a ¤ (f); a ¤ (g)] = 0

hold.
The free ¯eld operator Hf =

R
R3 a¤ (k)a(k)dk is the di®erential second quantisation of

the identity with µ Z
R3
a ¤ (k)a(k) dk

¶
f ­ n = nf ­ (n): (2.1)

This operator is self-adjoint and coincides with the boson number operator.
We want now to give a self-adjoint description of the Hamiltonian (1.1). Since the

right hand side of (1.4) is not well de¯ned, we take the ultraviolet cuto® function 1 fjkj< ¤ g
with parameter ¤ > 0 and write

Hi(¤) := ®
2X
l=1

Z
R3

1fjkj< ¤ g
jkj

³
eik ¢ xl ­ a(k) + e¡ ik ¢ xl ­ a¤ (k)́ dk: (2.2)
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This gives rise to the well-de¯ned cuto®-Hamiltonian Hbip(¤) = Hp ­ 1 + 1 ­ Hf +Hi(¤).
Next we take the operator

G ¤ = ¡ 1p
2

2X
l=1

Z
R3
¯ ¤ (k)

³
eik ¢ xl ­ a(k) + e¡ ik ¢ xl ­ a ¤ (k)́ dk; (2.3)

with
¯ ¤ (k) =

1fjkj<¤ g
jkj(1 + jkj2=2)

; (2.4)

and consider Gross transform obtained as a conjugation map with respect to the exponen-
tial of G ¤ [12, 14]. This transform is a unitary map turning Hbip into a Hamiltonian with
minimal coupling. A direct calculation shows that the ¯eld operators resp. the particle
momenta are transformed in the following way:

eG ¤ a(k)e¡ G¤ = a(k) + ¯ ¤ (k)
³
e¡ ik ¢ x1 + e¡ ik ¢ x2

´
and the hermitian conjugate of this expression for a ¤ , respectively

eG ¤ ple¡ G ¤ = pl +A¤ (xl) +A¤¤ (xl);

where we used l = 1; 2 for distinguishing the particles, and have that

A¤ (xl) = ¡ 1p
2

Z
R3
k¯ ¤ (k)eik ¢ xla(k)dk: (2.5)

Thus we obtain

HG(¤) := eG¤ Hbip(¤) e¡ G ¤ =
2X
l=1

f1
2

(p2
l ¡ pl ¢ A(xl) ¡ A¤ (xl) ¢ pl

+2A(xl)2 + 2A¤ (xl)2 +A(xl) ¢ A¤ (xl)g
+

g
jx1 ¡ x2j +Hf

+Ve® (x1; x2; ¤) + E¤ : (2.6)

The extra terms are given by

Ve® (x1; x2; ¤) := ¡ ® 2
Z
R3

¯ ¤ (k)
jkj cos k ¢ (x1 ¡ x2) dk (2.7)

and
E ¤ :=

Z
R3

¯ ¤ (k)
jkj dk: (2.8)

Ve® is an e®ective interaction between the particles, and E¤ is an additive constant term.
Notice that ¯ ¤ 2 L2(R3; dx), for all positive ¤, including in¯nity. Similarly, since

k¯ ¤ 2 L2(R3; dx), 8 0 · ¤ · 1 , A¤ and A¤¤ are well de¯ned symmetric operators also in
the limit ¤ !1. Also, 9E1 = lim¤ !1E ¤ , moreover we have that

lim
¤ !1Ve® (x1; x2; ¤) =

1
jx1 ¡ x2j

³
C1 + C2 e¡j x1 ¡ x2j ´ ; C1 < 0; C2 > 0: (2.9)
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Consider the form

Q¤ (Á; Ã ) := (Á; H i(¤) Ã ); Á; Ã 2 DomHi(¤) : (2.10)

Then whenever j® j is small enough, we ¯nd C1 < 1 and C2 2 R such that for all 0 · ¤ · 1
jQ¤ (Á; Á )j · C1(¤)( Á; H 0 Á ) + C2(¤)( Á; Á ); (2.11)

where we denoted by H0 the sum of terms in the ¯rst three lines of (2.6). The above
considerations and Nelson's Theorem B then imply

Proposition 2.1 For su±ciently small j® j the ¤ !1 limit in strong resolvent sense of
the operator HG(¤) exists and is self-adjoint.

Denote this limit by HG. By taking then inverse Gross transform, we identify the self-
adjoint operator lim¤ !1 e¡ G ¤ HG eG ¤ as the UV cuto®-free bipolaron Hamiltonian. The
argument can be generalized for a system of arbitrary ¯nite N ¸ 2 polarons coupled to
the given phonon ¯eld; then the formulas above extend in a straightforward way.

3 Bipolaron model in function space

As it is well known, the Feynman-Kac formula allows to associate with the exponential
of ¡ (1=2)r2 a Brownian motion on the space of continuous functions. In the bipolaron's
case there are two indistinguishable particles, thusHp generates two independent Brownian
motions Xt and Yt on C(R;R3) each. We denote by w(X;Y ) the product Wiener measure
W(X) ­ W(Y ) on the joint path space, and by wT its restriction to C([¡ T; T ];R3 £ R3).

For the ¯eld, by using the Wiener-Itô isomorphism F can be mapped into an L2 space
of distributions weighted by a Gaussian measure. This is constructed in the following way.
Take the space S 0(R3) of tempered distributions over Schwartz space S = S(R3). Consider
a random process R 3 t 7! Á t 2 S 0(R3), and for f 2 S(R4) write

Á (f) =
Z
R4
f(t; x)Á t(x)dtdx: (3.1)

We de¯ne the process such that f Á (f); f 2 S(R4)g is an Ornstein-Uhlenbeck process with
measure ° . This measure is Gaussian with zero mean and covariance

E° [Á (f1)Á (f2)] =
¡
(¡ @2

t ¡ r 2)¡ 1f1; f2
¢
L2(R4;dtdx)

=
Z
R

Z
R3

bf1(·; k ) bf2(·; k )
1 + k2 dkd·: (3.2)

° is a probability measure on S 0(R4) endowed with its associated Borel ¾ -¯eld. Since (3.2)
can be extended to test functions of the form fht (x0; t0) = h(x0)± (t0 ¡ t) with h 2 S(R3),
the process can be conveniently chosen to be taking values in a suitable Hilbert space. To
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do this, we de¯ne the random process Á t(h) = Á (fht ), with h 2 S(R3), t 2 R. From (3.2)
it then follows that

E° [Á s(h1)Á t(h2)] =
1
2
e¡j s ¡ tj

Z
R3

bh1(k)bh2(k)dk: (3.3)

Clearly, Á t(h) is a stationary Gaussian process. Its stationary measure Â de¯ned on S 0(R3)
is itself Gaussian with mean 0 and covariance given by (3.3) at s = t. Moreover, the process
Á t(h) is time-reversible and Markovian.

Next we construct a Hilbert space such that Á t takes its values from it and t 7!
Á t is norm-continuous with probability 1. Let D be a positive self-adjoint operator in
L2(Rd;dx) given by a jointly continuous symmetric kernel (DbÁ )(k) =

R
Rd D(k; k0)bÁ (k0)dk0,

with kerD = f0g. De¯ne

kÁ k2 =
Z
R3 £ R3

D(k1; k2)bÁ (k1)bÁ (k2)dk1dk2

with bÁ (k) = bÁ (¡ k). We denote by BD the completion of S(R3) with respect to this norm.
Clearly,

E°
£ kÁ tk2 ¤ = EÂ

£ k Á 0k2 ¤ =
1
4

Z
R3

D(k; k)
jkj dk:

Hence, once the right hand side in the above equality is ¯nite, the measure Â is concen-
trated on the space BD and the random process Á t takes its values from this set. Moreover,
since

E° (k Á t ¡ Á sk4BD) =
1
4

µ Z
R3

D(k; k)
jkj (1 ¡ e¡j t¡ sj)dk

¶ 2
+

1
2

Z
R3

Z
R3

D(k1; k2)2

jk1jjk2j (1 ¡ e¡j s ¡ tj)2dk1dk2;

we obtain
E°
£ kÁ t ¡ Á sk4 ¤ · C jt ¡ sj2: (3.4)

By an application of Kolmogorov's criterion we thus conclude that ° -almost all paths of
the process t 7! Á t are norm continuous in BD. We denote the restriction to BD of the
Gaussian path measure again by ° . A convenient choice is D(k1; k2) = jk1j1 ¹D(k1; k2)jk2j1,
where ¹D is the integral kernel of the operator (¡r 2

k + jkj2)¡ 4, and

jkj1 =

( jkj; if jkj < 1,

1; otherwise.

The Wiener-Itô isomorphism is the transform

J := F ! L2(BD; dÂ ); f1 ­ sym : : : ­ sym fn 7! :
nY
i=1

Á ((
p

2fi)_): : (3.5)
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Here Wick polynomials with respect to Â appear de¯ned recursively as

:Á (h)0: = 1;
:Á (h): = Á (h);

:Á (h1) : : : Á (hn): =
1p
n

:Á (h1) : : : Á (hn ¡ 1): Á (hn) ¡

¡ 1p
n(n ¡ 1)

n ¡ 1X
i=1

µ Z
Á (hi)Á (hn) d Â (Á )

¶
:
n ¡ 1Y
j 6=i

Á (hj): :

The free ¯eld operator transforms under the Wiener-Itô isomorphism as J Hf J ¡ 1 := ~Hf .
A simple calculation shows that

~Hf :Á (h1) : : : Á (hn): =
nX
i=1

:Á ((bhi)_)
nY
j 6=i

Á (hj): = n :Á (h1) : : : Á (hn): : (3.6)

Also, it can be shown that ~Hf is the generator of the Ornstein-Uhlenbeck process Á t [12].
For transforming the interaction Hamiltonian we take the conjugation map with respect

to 1 ­ J . Then

~Hi(x; y; Á ; ¤) ( v ­ :Á (h)n: ) = ®
µ Z

R3
Á (q)(¼ ¤

x (q) + ¼ ¤
y (q))dq

¶
(v ­ :Á (h)n: ); (3.7)

is obtained, with v 2 Dom ~Hp and

¼ ¤
x (q) =

Z
R3

1 ¡ cos(¤ jq ¡ xj)
jq ¡ xj2 dq: (3.8)

Extending (3.7) by linearity, we ¯nd that ~Hi(¤) is the multiplication operator

~Hi(x; y; Á ; ¤) : ( x; y; Á ) 7! ® (Á (¼ ¤
x ) + Á (¼ ¤

y )): (3.9)

The full Hamiltonian on function space thus reads

~H = ~Hp ­ 1 + 1 ­ ~Hf + ~Hi; (3.10)

(with ~Hp = Hp) similarly to (1.1). The operator ~Hp ­ 1 + 1 ­ ~Hf on L2(R6 £ B D; w ­ ° )
is the generator of a stationary Markov process.

4 Path measure for the bipolaron

The stochastic processes (Xt; Yt) and Á t describe the free particles and free ¯eld, respec-
tively, on the joint particle-¯eld path space ­ := C(R;R6 £ B D). Denote by ¹ 0

T = wT ­ ° T
the so obtained path measure for the uncoupled system. Here we meant by ° T the restric-
tion of ° to C([¡ T; T ]; BD). Also, denote d! = dxdy ­ dÂ .
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Theorem 4.1 For all T > 0 and F;G 2 L2(­ ;d¹ 0
T ) we have

hF; e¡ 2T ~HGi =
Z

¹F (X ¡ T ; Y¡ T ; Á ¡ T )e¡
R T
¡ T ~Hi(Xs;Ys;Á s)dsG(XT ; YT ; Á T )d¹ 0

T (X;Y; Á ):

(4.1)

Idea of proof : Separate the interaction free part of the Hamiltonian into H0 = ~Hp ­ 1 +
1 ­ ~Hf . Then by Trotter's formulaD

F;
³
e¡ (2T=n)H0e¡ (2T=n) ~Hi

´ n
G
E

= (4.2)Z
¹F (X ¡ T ; Y¡ T ; Á ¡ T ) e¡ (2T=n)

Pn
j=1

~Hi(Xsj ;Ysj ;Á sj ) G(XT ; YT ; Á T )d¹ 0
T (X;Y; Á ):

Further we use a pointwise approximation to ~Hi and monotone convergence. A version for
SchrÄodinger operators of this argument appeared in [13]. ¤

The right hand side (4.1) allows to identify a joint particle-¯eld path measure. Since
the argument above can be repeated for normalized functions F=kFk2, this measure can
be normalized and written as a probability measure on ­:

d¹ T =
1
ZT

exp
µ
¡
Z T

¡ T
~Hi(Xt; Yt; Á t)dt

¶
d¹ 0

T : (4.3)

Here

ZT =
Z

exp
µ
¡
Z T

¡ T
~Hi(Xt; Yt; Á t)dt

¶
d¹ 0

T (4.4)

is the normalizing partition function.
Our next result describes the structure of the path measure.

Theorem 4.2 For any T > 0 and F 2 L2(C([¡ T; T ];R6 £ B D;d¹ T )) we haveZ
F (X;Y; Á )d¹ T (X;Y; Á ) =

Z µ Z
F (X;Y; Á )d¹° X;YT (Á )

¶
dº T (X;Y ): (4.5)

Here ¹° X;YT is a Gaussian probability measure on C([¡ T; T ];BD) to be given below, and º T
is a probability measure on C([¡ T; T ];R3 £ R3) de¯ned by

dº T (X;Y ) =
1
ZT

e¡H T (X;Y )dwT (X;Y ); (4.6)

with ZT =
R
e¡H T (X;Y )dwT (X;Y ),

HT (X;Y ) = ET (X;Y ) + g
Z T

¡ T
dt

jXt ¡ Ytj ; (4.7)

where

ET (X;Y ) = ® 2
Z T

¡ T

Z T

¡ T
EW (Xt; Ys; t ¡ s)dsdt; (4.8)
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EW (Xt; Ys; u) = W (Xs ¡ Xt; u) + 2W (Xs ¡ Yt; u) +W (Ys ¡ Yt; u); (4.9)

and
W (x; t) = ¡ 1

4jxje¡j tj: (4.10)

Furthermore, º T satis¯es the DLR conditions.

Idea of proof : Fix ¹X; ¹Y 2 C(R;R3) and denote by ¹
¹X; ¹Y
T the measure ¹ T conditional on

f(X;Y; Á ) = ( ¹X; ¹Y ; Á )g. With this conditioning ¹
¹X; ¹Y
T is a Gaussian measure on C(R;BD)

with mean Z
Á t(f)d¹

¹X; ¹Y
T (Á ) = ¡

Z T

¡ T
e¡j t ¡ sjds

Z bf(k)eik ¢ ( ¹Xs ¡ ¹Ys)

2jkj dk

and covariance equal to that of ° . This Gaussian measure is ¹° X;YT .
Now, since Á 7! ~Hi(x; y; Á ; ¤) is linear, see (3.9), and ° is a Gaussian measure, the

integration with respect to Á can be explicitly done. By making the Gaussian integral
we are led to (4.8) and (4.10). We prove exponential integrability of (4.7) by factorizing
the exponent using HÄolder's inequality, noticing that ³ t := Xt ¡ Yt is another Brownian
motion, and applying to each factor Itô's formula to get

(d ¡ 1)
Z T

¡ T
dt
j³ tj = j³ T j+

Z T

¡ T
³ t
j³ tjd³ t:

The stochastic integral can be shown to have bounded quadratic variation. Thus the
probability measure (4.6) is obtained and is the marginal over the particles of the full
path measure ¹ T . Finally, we show by direct inspection that for all T > 0 the family
fº S : 0 < S · Tg satis¯es the DLR conditions, i.e. º T is a Gibbs measure on path space
with respect to interaction (4.7). ¤

To conclude, we note that the T ! 1 weak local limit of the Gaussian measures
¹° X;YT is easy to obtain. The same problem for ¹ T is, however, far less trivial (see [8]).
Convergence of these two measures implies then convergence of the path measure ¹ T as
well.
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