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Abstract

Given a two-loop beta function for multiple marginal coupling constants, we derive an

asymptotic formula for the running coupling constants driven to an infrared fixed point.

It can play an important role in universal loglog corrections to physical quantities.

1. Introduction

Log and loglog corrections to physical quantities in critical phenomena generally appear

in a statistical system at the critical dimension. In the language of renormalization

group (RG) [1], those corrections arise from marginally irrelevant coupling constants in

the system. As the length scale we are looking at becomes larger, the coupling constants

effectively change, obeying a renormalization-group equation (RGE), and approach an

infrared fixed point if initial values of the trajectories are on the critical surface.

Universality (i.e., property independent of initial data) of the logarithmic

corrections is closely related to the long-distance behavior of the running coupling

constants. For example, consider the S = 1/2 Heisenberg antiferromagnetic chain [2].

Low energy properties of this model are described by k = 1 SU(2) Wess-Zumino-Witten

model with a perturbation whose running coupling constant g is obeyed the following

RGE:
dg

dt
= −g2 − 1

2
g3, (1)

where t is related to a length scale L of renormalization-group transformation (RGT)

by t = log L. Vanishing linear term and the negative sign in front of g2 indicate that g

is marginally irrelevant.

Finite-size effect in the ground state energy E0 with L sites is given by the formula

[3, 4]

−6L

πv
(E0 − Le∞) = 1 +

3

8
g3 + O

(
g4

)
, (2)

‡ Talk given at seminar on “Applications of Renormalization Group Methods in Mathematical
Sciences”, RIMS, Kyoto University, Sept. 2005
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where e∞ is the ground-state energy per site in the infinite-volume limit. We can easily

integrate the RGE and find the asymptotic form as

g(t) =
1

t
− log t

2t2
+ O

(
1

t2

)
=

1

log L
− log log L

2 log L2
+ O

(
1

log L2

)
(3)

Note that the first and the second terms are universal in the sense that they are

independent of an initial condition, while higher order terms depend on it. Inserting

this asymptotic form into (2), one finds

−6L

πv
[E0 − Le∞] = 1 +

3

8 log3 L

{
1 − 3

2

log log L

log L

}
+ O

(
1

log L4

)
, (4)

where the first term in the curly brace comes from the leading term in (3), while the

second term from the subleading term. Thus universality of the finite-size effect (4) is

closely related to universality of the asymptotic form of g, which is general feature in

the case when coupling constants are all marginal.

Although we can integrate RGE explicitly in the case of a single coupling constant,

as in the case of (1), we cannot generally perform the same procedure in the case of

multiple coupling constants. Difficulty stems from vanishing linear terms, which makes

linearization impossible. Therefore, it is worthwhile to determine an asymptotic form

analogous to (3) in the case of multiple marginal coupling constants, which is the main

purpose of this report.

An algebraic method for finding asymptotic form was proposed in Refs [7, 8], where

the beta function is restricted to the lowest order. Since the lowest-order beta function

for marginal coupling constants is homogeneous, the RGE is invariant under scaling

transformation [7]. One can define another RG transformation to the RGE, thanks to

the scale invariance §. The new RGE generally has a linear term, which allows us to

obtain the asymptotic form without explicit integration.

However, we cannot apply the above method to the present case, because there are

no such scale invariances in the beta function obtained up to the next-to-leading order.

Hence we need to find an alternative method to remedy the problem for linear terms to

vanish.

In the next section, we present a change of variables in the RGE that allows us to

apply the linearization. In section 3, we switch from the resultant RGE to an equivalent

integral equation. In section 4, we show a sufficient condition for loglog corrections be

universal. A universal asymptotic formula for the solution in the long-distance limit is

also derived under the sufficient condition. In section 5, applying our result, we rederive

the universal asymptotic formula for the running coupling constants in the classical XY

§ A general idea of RG, applied as a tool for asymptotic analysis of non-linear differential equations,
is developed in Refs. [10, 11].
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model, as an example. The result is consistent with the original article by Amit et al.

[6]. The final section is devoted to summary of our procedure.

2. Changing variables of RGE

We consider an RGE for marginal coupling constants denoted by g(t) = (g1(t), ..., gn(t)).

We regard the space of the coupling constants as the n dimensional Euclidean space Rn.

Suppose that we have obtained the RGE up to the next-to-leading order, which is to

say we start with the following RGE

dg(t)

dt
= V (g(t)) + F (g(t)). (5)

The leading and the subleading terms of the beta function are described by V and F

respectively. It is assumed that they possess the following scaling property:

V (kg) = k2V (g), F (kg) = k3F (g). (6)

Suppose that they are defined in an open subset E of Rn and belong to C2 (E) i.e.,

their second derivative exist and continuous on E. We also assume that the origin O

belongs to the closure Ē of E.

It is a general feature of an RGE of marginal coupling constants that there are no

linear terms, which causes difficulty in deriving an asymptotic formula. We introduce

new variables to bypass this problem. First we replace t by

u ≡ 1

ϵ
log (ϵt + 1) , (7)

where ϵ is a parameter with

0 < ϵ < 1. (8)

As we will see later, ϵ is introduced in order to control an effect of the subleading term

F . Next we change g by c, where

g(t) = e−ϵuc(u). (9)

Using the scaling property (6), the RGE (5) is written as

dc(u)

du
= ϵc(u) + V (c(u)) + e−ϵuF (c(u)). (10)

Now we can extract the linear part from the first two terms. We assume that a

non-trivial solution c∗ ∈ E for

ϵc∗ + V (c∗) = 0 (11)

exists. This means that V (c∗) points to the origin. Therefore, V has an incoming

straight line through c∗ as an integral curve, according to the scaling property (6). See

Figure 1. Note that c∗ is linear in ϵ. In fact, a∗ defined by

c∗ ≡ ϵa∗ (12)
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solves

a∗ + V (a∗) = 0. (13)

Equation (12) indicates that c∗ approaches the origin as ϵ becomes smaller.

Therefore, an effect of the subleading term F in a neighborhood of c∗ is suppressed

if we take ϵ sufficiently small.

O

V c*

c*ε

Figure 1. When c∗ satisfies (11), V (c∗) points to the origin. Since V satisfies (6),
there is incoming straight line through c∗ as an integral curve of V .

We analyze (10) in a neighborhood of c∗. Define

b(u) ≡ c(u) − c∗ (14)

and write

V (c(u)) = V (c∗) + DV (c∗)b(u) + v(b(u)), (15)

where DV (c∗) is the derivative of V at c∗, which is represented by the n× n matrix as

DV (c∗)ij =
∂Vi

∂cj

(c∗). (16)

The RGE (10) is written as

db(u)

du
= Mb(u) + H(u, b(u)), (17)

where

M ≡ ϵIn + DV (c∗) = ϵ (In + DV (a∗)) (18)

H(u, b(u)) ≡ v(b(u)) + e−ϵuF (c∗ + b(u)) (19)

with In being the n × n unit matrix. Namely, M is linear in ϵ.

To sum up, if we know a solution b(u) for (17), we get a solution for (5) by

g(t) = e−ϵu (c∗ + b (u)) , u =
1

ϵ
log (ϵt + 1) . (20)
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3. Integral equation

In this section, following reference [5] (Section 2.7), we derive an integral equation

satisfied by a solution b(u) for (17) driven to 0.

We assume that there are no eigenvalues with zero real part in M . Suppose that

M has k eigenvalues having a negative real part, and n − k eigenvalues with positive

real part. If the positive eigenmodes are fine-tuned to vanish, |b(u)| becomes smaller as

u → ∞. We find from (20) that the corresponding g(t) approaches the origin from the

c∗-direction. In order to show the existence of such solutions, we decompose M into a

block diagonal form. Namely,

R−1MR =

(
ϵP 0

0 ϵQ

)
≡ ϵΛ, (21)

where ϵP is k × k matrix whose eigenvalues have a negative real part. Similarly, ϵQ is

an (n − k) × (n − k) matrix, where its eigenvalues have a positive real part. Note that

P , Q and Λ are independent of ϵ because M is linear in ϵ. Define the tilde operation

x̃ = R−1x, X̃ = R−1 ◦ X ◦ R (22)

for a point x ∈ E and a map X : E → Rn, e.g., F̃ (c̃) = R−1F (Rc̃) = R−1F (c). The

RGE (17) can be written as

db̃(u)

du
= ϵΛb̃(u) + H̃(u, b̃(u)). (23)

Let

U(u) ≡
(

ePϵu 0

0 0

)
, T (u) ≡

(
0 0

0 eQϵu

)
. (24)

Then

dU

du
= ϵΛU(u),

dT

du
= ϵΛT (u) (25)

and

eϵΛu = U(u) + T (u). (26)

We focus on a solution that behaves as b̃(u) → 0 as u → ∞. The integral equation

corresponding to it is

b̃(u) = U(u)p +
∫ u

0
du′U(u − u′)H̃(u′, b̃(u′)) −

∫ ∞

u
du′T (u − u′)H̃(u′, b̃(u′)), (27)

where p = (p1, ..., pk, 0, ..., 0) specifies an initial condition in the following way:

b̃(0)i = pi for i = 1, ..., k.

b̃(0)i = −
(∫ ∞

0
du′T (−u′)H̃(u′, b̃(u′))

)
i

for i = k + 1, ..., n. (28)
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We can show that (27) has a unique solution if ϵ and p are sufficiently small.

Moreover, we find that the solution satisfies∣∣∣b̃(u)
∣∣∣ ≤ Je−αϵu (29)

for some J > 0 [9]. Here α is a positive number, such that −α is strictly greater than

the real part of every eigenvalue of P .

4. Universal asymptotic form of b̃(u)

In this section, we derive a universal asymptotic form of b̃(u) by applying (29) to

the right-hand side in (27). (Here, “universal” means that the asymptotic form is

independent of p. )

For this purpose, we give a more concrete form of P . Let λl (l = 1, ..., n−) be the

distinct eigenvalues of P with the multiplicity dl. We denote by Wl the generalized

eigenspace associated with λl. Clearly, dim Wl = dl. Taking an appropriate basis for

Rn, P is represented as a block diagonal form. Here the l th block Pl is a dl × dl upper

triangle matrix whose diagonal components take a common value λl. Furthermore, the

basis allows us to assume that Nl ≡ Pl − λlIdl
is a nilpotent matrix, namely Nνl−1 ̸= 0,

Nνl = 0 for some 1 ≤ νl ≤ dl. An arbitrary element x ∈ Rn can be decomposed as

x =
n−∑
l=1

x(l) + x(+), x(l) ∈ Wl, (30)

where x(+) is an element of the subspace spanned by the positive eigenmodes of M .

Applying U(u) to the both sides, we have

U(u)x =
n−∑
l=1

eϵλlu
νl−1∑
k=0

(ϵu)k Nk
l

k!
x(l), (31)

with the convention N0
l = Idl

even if Nl is the zero matrix.

We can show that [8]

Mc∗ = −ϵc∗, (32)

which is equivalent to

Pc∗ = −c∗. (33)

Then we set

λ1 = −1. (34)

Using (31) and (34), we can estimate the right-hand side of (27). The first term is

written as

U(u)p =
n−∑
l=1

G
(l)
1 (u)eλlϵu, (35)
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where G
(l)
1 (u) is a polynomial of degree at most νl − 1. Since (35) explicitly depends on

p, it is non-universal.

In order to obtain a universal asymptotic form, universal terms should dominate

over (35) when u → ∞. Let us find a condition that such terms appear from the

remaining part. The integral containing U in (27) is divided as∫ u

0
U(u − u′)e−ϵu′

F̃ (c̃∗) du′ +
∫ u

0
U(u − u′)

(
H̃(u′, b̃(u′)) − e−ϵu′

F̃ (c̃∗)
)

du′. (36)

Using (31) to F̃ (c̃∗), the first integral is easily calculated. It is important to notice

that the case of l = 1 is treated separately, because the factor exp(−ϵλ1u
′) in U(u− u′)

cancels exp(−ϵu′) in the integrand. When l = 1 and k = ν1 − 1 in (31), the cancellation

brings a term proportional to uν1 exp (−ϵu), which is not contained in G
(l)
1 (u). Writing

this explicitly, the integral is expressed as∫ u

0
U(u − u′)e−ϵuF̃ (c̃∗) du′ =

(ϵu)ν1 e−ϵu

ϵν1!
Nν1−1

1 F̃
(1)

(c̃∗) +
n−∑
l=1

eλlϵuG
(l)
2 (u). (37)

Here, it is straightforward to check that G
(l)
2 (u) is a polynomial whose degree is at most

νl − 1. The second term in the right-hand side of (37) contributes to the same order as

(35), so that its universal behavior is obscured by non-universal feature of U(u)p. On

the other hand, the first term can dominate over (35) in the case when

ℜλl < −1 (l = 2, ..., n−) . (38)

We can similarly estimate the second term of (36) by employing (29). Since the

cancellation of the exponential factor does not occur in this term, we get∣∣∣∣∫ u

0
U(u − u′)

(
H(u′, b̃(u′)) − e−ϵuF̃ (c̃∗)

)
du′

∣∣∣∣ <
n−∑
l=0

G
(l)
3 (u)eλlϵu (39)

for all u ≥ 0. Again, G
(l)
3 (u) is a polynomial of degree at most νl − 1.

As for the last integral in (27), there is a number B > 0 such that∣∣∣∣∫ ∞

u
T (u − u′)H(u′, b̃(u′))du′

∣∣∣∣ < Be−ϵu, (40)

for all u ≥ 0. Collecting (35), (37), (39) and (40) we conclude that: for all u ≥ 0, there

is some polynomial G(l)(u) of degree at most νl − 1 (l = 1, ..., ν−), such that∣∣∣∣∣b̃(u) − (ϵu)ν1 e−ϵu

ϵν1!
Nν1−1

1 F̃
(1)

(c̃∗)

∣∣∣∣∣ <
n−∑
l=0

G(l)(u)eλlϵu. (41)

If the condition (38) holds, the most dominant term in the right-hand side of (41) when

u → ∞ is uν1−1e−ϵu. Thus, we obtain

b̃(u) =
(ϵu)ν1 e−ϵu

ϵν1!
N ν1−1

1 F̃
(1)

(c̃∗) + O
(
uν1−1e−ϵu

)
. (42)
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Let us turn back to the original variables by (20). We get, under the condition (38),

g̃(t) =
1

ϵt + 1

(
ϵã∗ +

ϵ3 (log (ϵt + 1))ν1

ϵ (ϵt + 1) ν1!
N ν1−1

1 F̃
(1)

(ã∗)

)
+ O

(
(log (ϵt + 1))ν1−1

(ϵt + 1)2

)
(43)

Removing the tildes, we get

g(t) =
a∗

t
+

(log t)ν1

t2ν1!
RN̄ν1−1

1 R−1F (a∗) + O

(
(log t)ν1−1

t2

)
, (44)

as t → ∞. Here N̄1 is n × n matrix defined as

N̄1 =


N1 0 · · · 0
0
... 0
0

 . (45)

It is worthwhile to note that the (log t)ν1 term appears, which can bring about a

(log log L)ν1 correction in general. This is a generalization of (3) to the case of multiple

coupling constants.

5. Application to the two-dimensional XY model

In this section, we illustrate our method using the two-dimensional classical XY model

[12]. The beta function up to subleading order of this model and the two-point

correlation function containing loglog correction are originally derived by Amit et al . [6].

They obtained the asymptotic form of the coupling constants by explicitly integrating

the RGE. Here we rederive the asymptotic form within our formulation.

The 2D classical XY model has the following RGE [6, 13]:

dg1

dt
= −g2

2 − B1g
2
2g1

dg2

dt
= −g1g2 − A1g

3
2, (46)

where g2 > 0 and 2A1 + B1 = 3/2. It indicates that

V (g) =

(
−g2

2

−g1g2

)
, F (g) =

(
−B1g

2
2g1

−A1g
3
2

)
. (47)

Solving (13), we get a non-trivial solution

a∗ = (1, 1). (48)

Inserting this into (18), one finds

M = ϵ

(
1 −2

−1 0

)
. (49)
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The eigenvalues and corresponding eigenvectors of M are

−1 ↔
(

1

1

)
and 2 ↔

(
−2

1

)
. (50)

Namely, the space of negative eigenmodes of M is one dimension, i.e., ν1 = 1. It

indicates that the critical surface along a∗ is in fact a line. The transformation matrix

R and the diagonalized matrix Λ are obtained from the eigenvectors and the eigenvalues

respectively. The result is

R =

(
1 −2

1 1

)
, Λ =

(
−1 0

0 2

)
. (51)

Furthermore, we have

N̄1 =

(
1 0

0 0

)
. (52)

Therefore, from (44), we conclude that

g(t) =
a∗

t
− 1

3
(2A1 + B1)

log t

t2
a∗ + O

(
1

t2

)
=

a∗

t
− 1

2

log t

t2
a∗ + O

(
1

t2

)
(53)

for the critical line. This is consistent with the original result.

6. Summary

Here we summarize the procedure reaching final result (44). Suppose that we obtain an

RGE
dg(t)

dt
= V (g(t)) + F (g(t)).

i) Find a solution a∗ for

a∗ + V (a∗) = 0.

ii) Compute the matrix M

Mij = δij +
∂Vi

∂aj

(a∗)

iii) Compute the regular matrix R such that

R−1MR =

(
P 0

0 Q

)
,

where P (resp. Q) is define by negative (positive) eigenvalues, with

P =


P1 · · · · · ·
· · · P2 · · ·
· · · · · · · · ·

 , Pl = λlIdl
+ Nl.
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iv) Let P1 be the matrix for the eigenvalue −1. If the real part of the other negative

eigenvalues are less than −1, the asymptotic form is

g(t) =
a∗

t
+

(log t)ν1

t2ν1!
RN̄ ν1−1

1 R−1F (a∗) + O

(
(log t)ν1−1

t2

)
,

where N̄1 is

N̄1 =


N1 0 · · · 0
0
... 0
0

 .
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