Random Point Fields for Para-Particles of order 3
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Random point fields which describe gases consist of para-particles of order
three are given by means of the canonical ensemble approach. The analysis for
the case of the para-fermion gases is discussed in full detail.

1 Introduction

The purpose of this note is to apply the method which we have developed in [TIa]
to statistical mechanics of gases which consist of para-particles of order 3. We begin
with quantum mechanical thermal system of finite fixed number of para-bosons and/or
para-fermions in the bounded box in RY. Taking the thermodynamic limit, random
point fields on R? are obtained. We will see that the point processes thus obtained are
those of & = £1/3 given in [ShTa03].

We use the representation theory of the symmetric group. ( cf. e.g. [JK81, S91, Si96))
Its basic facts are reviewed briefly, in section 2, along the line on which the quantum
theory of para-particles are formulated. We state the results in section 3. Section 4
devoted to the full detail of the discussion on thermodynamic limit for para-fermion’s
case.
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2 Brief review on Representation of the symmetric

group
We say that (A, Ay, -+, A,) € N" is a Young frame of length n for the symmetric
group Sy if
DN=N N> A, >0
j=1
We associate the Young frame (Aq, A9, -+, A,) with the diagram of A\;-boxes in the first

row, Ao-boxes in the second row,..., and A,-boxes in the n-th row. A Young tableau on
a Young frame is a bijection from the numbers 1,2,--- , N to the N boxes of the frame.

Let MIfV be the set of all the Young frames for Sy which have lengths less than or
equal to p . For each frame in M[],V , let us choose one tableau from those on the frame.
The choices are arbitrary but fixed. ’Z;N denotes the set of all the tableaux thus chosen.
The row stabilizer of a tableau T is denote by R(T) , i.e., the subgroup of Sy consists of
those elements that keep all rows of T" invariant, and C(7T") the column stabilizer whose
elements preserve all columns of 7.

Let us introduce the three elements

1 1
a(T) = R Ue;m o, b(T) = Z sgn(o)o

and

e(T) = % Z Z)sgn(T)aT = cra(T)b(T)

" 6eR(T) TeC(T

of the group algebra C[Sy] for each T' € T, where dy is the dimension of the irreducible
representation of Sy corresponding to T and ¢y = dr#R(T)#C(T)/N!. As is known,

a(Ty)ob(Ty) = b(13)oa(T)) =0 (2.1)
hold for any o € Sy if Ty, — T;. The relations
a(T)? =a(T), bT)>=bT), e(T)?=eT), eT)e(ly)=0 (T1#T) (2.2)
also hold for T, 17,715 € ’];DN . For later use, let us introduce
d(T) =e(T)a(T) = cra(T)b(T)a(T) (2.3)

for T € T,N. They satisfy



as is shown readily from (2.2) and (2.1). The inner product < -,- > of C[Sy] is defined
by

<o,17>=90, for o,7€S8y
and the sesqui-linearity.

The left representation L and the right representation R of Sy on C[Sy] are defined
by

and

R(o)g=R(o) Y _ gr)r=> g(r)ro™' =Y g(ro)r,

TESN TESN TESN
respectively. Here and hereafter we identify g : Sy — C and ) s g(7)7 € C[Sy].
They are extended to the representation of C[Sy] on C[Sy]| as

L(flg=fg=)Y_flo)g(r)or = (> flom ")g(r))o

and

R(f)g = gf = ZQ(U)f<T>UT_1 = Z (29(0'7-)]6(7—))0-’
where f = 2 f(r)r = ¥ f(r)r = 3, f()r

The character of the irreducible representation of Sy corresponding to the tableau
T e ’Z;N is obtained by

—

xr(0) =Y (rL@)R(e(D)r) = ) (r.ome(T)).

TGSN TESN
We introduce a tentative notation

Xo(0)= D (T LOR(g)T) = Y (r,om7 )g(n) = Y g(r7'or)  (25)

TESN TYESN TESN
for g =73%"_g(7)7 € C[Sn]. Then x7 = xe(r) holds.
Now let us consider representations of Sy on Hilbert spaces. Let H be a certain L?
space which will be specified in the next section and ®@VH  its N-fold Hilbert space
tensor product. Let U be the representation of Sy on ®VH}, defined by

U0)p1 ® - @ ON = Po-1(1) @ - ® Qo-1(N) for @1, ,on € Hy,
or equivalently by
(U@)f) (@1, 2n) = f(To0), s To(n)) for fe @ VH,.

Obviously, U is unitary: U(o)* = U(c™!) = U(o)™!. We extend U for C[Sy] by
linearity. Then U(a(T")) is an orthogonal projection because of U(a(T))* = U(@) =
U(a(T)) and (2.2). So are U(b(T'))’s, U(d(T'))’s and P,g = Y reqn U(d(T)). Note that
Ran U (d(T)) =RanU(e(T')) because of d(T)e(T') = e(T), e(T)d(Yg) =d(T).
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3 Para-statistics and Random point fields

3.1 Para-bosons of order 3

Let us consider the quantum system of N para-bosons of order p in the box A, =
[—L/2,L/2]* C R? We refer the literatures [MeG64, HaT69, StT70] for quantum me-
chanics of para-particles. (See also [OK69].) The arguments of these literatures indicate
that the state space of our system is given by HZ{SN = P,p @NHp, where Hy = L?(Ar)
with Lebesgue measure is the state space of one particle system in A;. We need the heat
operator G = e’?t in Ay, where Ay is the Laplacian in A; with periodic boundary
conditions.

It is obvious that there is a CONS of HI,-:{%N which consists of the vectors of the form

U (d(T))gpg) ® gpfjv), which are the eigenfunctions of ®VGp. Then, we define a
point field of N free para-bosons of order p as in section 2 of [TIa] and its generating

functional is given by

Tr o, [(®V G 1) Py

EPB [o=<f&>] =
R R N (AR

where f is nonnegative continuous function on A; and G = GlL/ 2=t GlL/ 2,

Lemma 3.1

ZTGTN ZJES xr(o)Tr ®NHL[(®NGL)U(O—>]
pB [ —<fE>] _ p N .
L Bl S v oy =178 177 T
Yrery Jay et {G (i, z;) by - - dzy

ZTG’];N ng detT{GL(,ri7 xj)}dgjl cdry

Remark 1 : H’Z]?N = P, @ H;, is determined by the choice of the tableaux T’s. The
spaces corresponding to different choices of tableaux are different subspaces of @VH.
However, they are unitarily equivalent and the generating functional given above is not
affected by the choice. In fact, yr(o) depends only on the frame on which the tableau
T is defined.

Remark 2 : detrA =3 s xr(0) Y, Aios) in (3.2) is called immanant.

Proof :  Since @G commutes with U(c) and a(T)e(T) = e(T), we have
Tt oo, (@VGL)U(A(T))) = Tr gy, (@7 GL)U(e(T))U(a(T)))

= Tr g, (U(a(T))(@"GL)U(e(T))) = Trgwa, (R GL)U(e(T))).  (3.3)



On the other hand, we get from (2.5) that

D Xe(0)Trangy, (@NGLU(0) = Y g(r o) Tr gvey, (8VGL)U(0))

oESN T,0€SN
Zg o)Tr gny, (ONGL)U(ror™ Zg o)Tr gy, (@NGL)U(T)U(0)U(T7))
— N|Zg o)Tr gvgy, (RN GL)U(0)) :N!Tr®NHL((® G1)U(g)), (3.4)

where we have used the cyclicity of the trace and the commutativity of U(7) with @V G.
Putting ¢ = e(7) and using (3.3) and P, = Y ;crnv U(d(T)), the first equation is
derived. The second one is obvious. g

Now, let us consider the thermodynamic limit
L, N —oco, N/L*— p>0. (3.5)

We need the heat operator G = €% on L?(RY). In the following, f is a nonnega-
tive continuous function having a compact support. It is supposed to be fixed in the
thermodynamic limit. Its support will be contained in Ay, for large enough L.

We get the limiting random point field on R? for the low density region.

Theorem 3.2 The finite random point field for para-bosons of order 3 defined above
converge weakly to the random point field whose Laplace transform is given by

EiB [€_<f’£>} Det[l +vV1—-efr.G(1-r.G 1— e—f} -3

in the thermodynamic limit, where r, € (0,1) is determined by

P dp f]”*e_ﬂlp'Q -
3 / 2m)d 1 — re Bl — (r.G(1 —r.G) ) (x, ),

- < pPec= 5.
3 /Rd (2m)d 1 — e~Alpl

Remark : The high density region p > 3p. is related to the Bose-Einstein condensation.
We need a different analysis for the region. See [TIb] for the case of p = 1 and 2.

3.2 Para-fermions of order 3

For a Young tableau T', we denote by T” the tableau obtained by exchanging the rows
and the columns of T, i.e., T" is the transpose of T. The transpose X of the frame \
can be defined similarly. Then, 7" lives on X if T lives on \. It is obvious that

R(T') =C(T),  C(T') = R(T).



The generating functional of the point process for N para-fermions of order p in the box
Ay is given by

B [em<fe] = Yrezy Trons, (97 GU(T))
LN L T Crery Tovr, (EYGUA(T))

as in the case of para-bosons of order p. And the following expression also holds.

Lemma 3.3

A
g oeeto) _ Tre oes x0T o (760
’ Srers Socsy N1 ()T o (@G0
ZT@;N fAJL\’ detr {G (24, 2;)}dry - - day

. T
> Ty ng detr{Gp(z;, z;)}dzy - - - day

Theorem 3.4 The finite random point fields for para-fermions of order 3 defined above
converge weakly to the point field whose Laplace transform is given by

EiF [e’<f’5>] = Det [1 —V1—edr,G1+r.G)'V1— e—f}g

in the thermodynamic limit (3.5), where v, € (0,00) is determined by

P dp  r.e PP’ )
3 / (2m)d 1+ roe PP (r.G(1+7.G)") (). (3.8)

4 Proof of Theorem 3.4

In the rest of this paper, we use results in [Tla] frequently. We refer them e.g., Lemma
1.3.2 for Lemma 3.2 of [TIa]. Let ¢r be the character of the induced representation

Ind‘%‘(’T)[l], where 1 is the one dimensional representation R(7) 3 ¢ — 1, i.e.,

vr(o) = ) <7 L(@)R@(D)r >= Xaw)(0).

Since the characters xyr and ¥ depend only on the frame on which the tableau 7'
lives, not on T itself, we use the notation y, and ¥, ( A € Mév ) instead of xr and 7,
respectively.



Let 6 be the frame (p—1,---,2,1,0) € Mév. Generalize 1, to those p = (p1,- -+, itp) €
ZP which satisfies 3 ¥_, u; = N by

Y, =0 for pez? —7%

and
Uy =1tr, for peZi and w€S, suchthat mpe M),

where Z, = {0} UN. Then the determinantal form [JK81] can be written as

Xa = Z SENT Yyt 5_ns- (4.1)

TES)
Let us recall the relations
xr(0) =sgnoxr(o),  ¢r(o)=sgnor(o),

where

(o) =) <7, L()RB(T))T >= xpr(0)

denotes the character of the induced representation Indgév ,)[sgn], where sgn is the
representation C(1") = R(T') 5 o + sgno. Then we have a variant of (4.1)

X = Z SEIT O 16/~ (ns) - (4.2)
TES)
Now let us consider the denominator of (3.6). Let T' € '];N lives on po = (p1, -+ , pp) €

M. Thanks to (3.4) for g = b(T"), we have

Y () Trang, (®VG)U(0)) = NITr gaay, (@Y G)U(B(T')))

cESN

P
= N! H Tr guipg, (R G)A,,),

j=1
where A, =) s
last step, we have used

sgn(7)U(7)/n! is the anti-symmetrization operator on ®"Hy,. In the

) =11 %a,

7j=1 O'ER]‘
where R; is the symmetric group of ; numbers which lie on the j-th row of the tableau
T. Now (4.2) yields

Y (@) Travs (OVGU(0)] = D senm Y ooy (0)Tr gnge, (97 GL)U(0))

geSN 7T€Sp geSN



= N! Z sgnﬂHTr® ARV ((®/\j_j+7r(j)GL)A/\j—j+7r(j)>’

TES)

Here we understand that Tr ®7LHL((®"G)AH) =1ifn=0and =0 if n < 0 in the last
expression. Let us recall the defining formula of Fredholm determinant

Det(1 + J) ZTr onn[(@"T) A,
for a trace class operator J. We use it in the form

dz
Tr gn " A, = ——Det(1 4.
Fonl(@CA) = § S Det(1 456, (4.3

where » > 0 can be set arbitrary. Note that the right hand side equals to 1 for n =1
and to 0 for n < 0. Then we have the following expression of the denominator of (3.6)

Do D xw(@)Te vy, [(@VGLU(0)]

AeMNoeSN
Det(1 + 2; GL)dz
_ | J J
S DI ITE B S E s
AeME TESp Pj=1

:N'Z]{ ]{ ILcicjcp(zi — )][ ’_ Det(1+ 2,Gp)] dz - - dz,

Aj+p—j+1 ( '4)

AEMY 27mz

The similar formula for the numerator also holds.

Now let us concentrate on the case of p = 3.

To make the thermodynamic limit procedure explicit, let us take a sequence { Ly} yen
which satisfies N/LY — p as N — oo. In the followings, 7 = r;, € [0,00) denotes the
unique solution of

TrrGr,(1+7Gr,) ' =k (4.5)

for 0 < k < N. We suppress the N dependence of r,. The existence and the uniqueness
of the solution follow from the fact that the left-hand side of (4.5) is a continuous and
monotone function of r. See Lemma 1.3.2, for details. We put

Vi =Tr [TkGLN(l—f-TkGLN)_Z]. (46)

Now let us introduce

3
. Det(1+ 2,G 21— 29)(29 — 2
Dijom = ]{]{7{ [H]_l ( ’ LN)}( - 2)( : 3)d21d22d2’3,
r(0)3

(2mi)3 281 Lyt




for k,l,m € Z. Note that Dy, = 0 if at least one of k, [, m is negative. Summing over
A1 and Az in (4.4) for p = 3, we get

[N/3]+1 [N/2]+1

> xwlo o) Tr gvgg, (@ Gry)U( ( Z Dyys—a110- 1+ > Dunia- 21)

AeMY o€SN =[N/3]+2

Since 7 > 0 of the contour S,.(0) is arbitrary, we may change the complex integral
variables z; = r;n; with n; € S1(0) for j = 1,2,3. Thanks to the property of Fredholm
determinant, we have

Det[l + ZjGLN] = Det[l + TjGLN] Det[l + (nj — 1)TjGLN(1 + TjGLN>_1]

Now, we can put

rofovy? 5/2
F = D = Riim LIiim,
k,lm Det[l + roGr ] k,lm klmUy  Lklm
where
2 rkoDet[1 + r;GL, ]
_ jY LN
Ruvsor = ] 15 ' Det[1 + roGp, ]
j=1"; 0Ly
and
[k17k2,k3 - %%‘f HDet )TJGLN(l +TJGLN) ])
S1(0
drdnzdns
X (7“1771 - 7’2772)(7”2772 - 7’3773) (27ri)317k1+177k2+177k3+1'
1 2 3

Here kg = (N + 2)/3 and ky, ko, ks € Z, satisfy ky > ko > k3 and ky + ko + k3 = 3ko.
We use the abbreviation r, and v, for ry, and vy, (v = 0, 1,2, 3), respectively. Here, let
us recall that ry — r, in the thermodynamic limit because of ko/L? — p/3, (3.8) and
Lemma 1.3.5.

Define a sequence {fx}nen of nonnegative functions on R by

(

Frinto o for VN +2z€[l—1—(N+2)/3,1—(N+2)/3)
and [ =[N/3]+2,---[N/2]+1

n(e) =< Fyis oy for VN +2z€[l—1—(N+2)/3,1— (N +2)/3)

and [=1,2--- [N/3]+1

0 otherwise.
\

Then the denominator of (3.6) becomes

Det[1
NIV T3 et +7"0GLN / fula

5/2




Let us introduce Dy, m, Fr1m and fx using G, instead of G, in Dy, Frim and fny
and so on, we have the expression

B3, [em</>] = Det[L + foGiuy ' rig® 05 J 72 (@)
LN Det[1 + 70Gry? 3’“0 o oo In fc‘)

From Lemma I.3.6, we have

Vo
NN | 4.7
o (4.7)

in the thermodynamic limit. Similarly, we get

80 Det[1 + 7G|
750 Det[1 4 roGLy |

— Det[l —V1—efr,G1+r.G) V1 - e—f}

from the proof of Theorem 1.3.1 (see Eq. (a—c), where we should read N as ko, zy as 1o

and a = —1). Thus Theorem 3.4 is proved, if we get the following lemma

Lemma 4.1 Under the thermodynamic limit,

0o oo oo ) dr
_ —2pz* /K
/_mfN<$)dx’\/_mfN(x)d$ \/_ooe (277')3/2
dp e Bpl?
" / (27m)% (1 + roe—Blpl*)2”

Proof: Let k,r, v satisfy the relations

holds, where

k=Tr[rGp,(1+7rGry), v=Tr[rGr,(1+rGp,)" (4.8)

and k € [0, 00).
1° There exist positive constants c¢; and co which depend only on the density p such
that

rp<ce, T—rn<a coky < vy < Ky,
hold for kj, k; > 0 satistying k; > k;.

We have v < k and r < ry for £ < N. Recall ry converge to the constant r* which

dp  rreBbP
/ (2m)d 1 4 rre=BlpP P
Then {ry} is bounded from above. Hence we have r < ry < ¢; and v > k/(l +ry) =

k/(1+ ¢;) since 0 < G, < 1. Thanks to dk/dr = v/r > k/ci, we get ¢; sz dk/k >
f;: dr, which yields the second inequality. O

determined by

10



2° There exist positive constants ¢, ¢; and ¢, which depend only on p such that

(n—1)"dn

2mrink+ (71:0,1,2, k=0,1,--- ,N)

A — 74 Det[1+(n—1)rGpy (147G~
S1(0)

satisfy
Apo = (1+0(1))/V2rv, Aps=(=1+0(1))/V2rv3 for large k < N
and
[Arol < b/VIHE,  |Ai| < /VTFE
Aps| < &/VI+E forallk=0,1,--,N.

As in the proof of Proposition 1.A.2; let us put
hk(l’) = X[—w 0,7/ (x)e_ik’”/\/aDet[l -+ (6290/\/6 — 1)7‘GLN(1 + TGLN)_I].

Then, we have
()] < e727°/™ € LY(R) (4.9)

and

hi(T) = X{—nvomva] (z)e "%’ — e/ as N>k — o0 (4.10)

where |6 < 4]z*|/9v/3v.
Setting n = exp(iz/\/v), we have

Ak :/ (e 1) () dz.
’ ~ 2m\/v

Then, |Ako] < /v < c”/\/E for k = 1,2,--- ,N. On the other hand, Cauchy’s
integral formula yields Ago = 1, readily. So we get the bound |Ago| < ¢;/V1+ k.
Now the asymptotic behavior of A can be derived by the use of dominated conver-

gence theorem and (4.10).
For n = 1, we have ‘
Apr = o xhg(x)dx + R,

2mv J_ o

where

IR| < / s hela) dr = (1),

The integrand of first term can be written as

—z2 _ 22
zhi(z) = X[—m/v/3,m/v/3) (f)xe 2 4 X[=ny/v/3,m/0/3] (90)17(65 —1)e /2

11



FX /o, — /53U /53,5 (2) TV Vg ().
The integral of the first term of the right hand side is 0. While the second term is
bounded by |z6|h(z), since |e — 1| < |§]e°¥0. For the third term, we use (4.9). Then
we get the bound | [ zhy(z)dz| < ¢”/y/v for k > 1. Together with Ag; = 0, we get the
bound for Ay ;. Similarly, the formulae for Ay are obtained. O

3° Let (ky, ko, k3) € Z, satisfies
ki 2 ky 2 k3, ki+ky+ks=3kog=N +2

and
klzkg or kzzkg—l—l

The estimate

2

5/2 ko g 1 _(ko—k3)?/4ko

|U0 ]k17k2,k3| S 1+ k <ce
3

holds for all such (ky, ko, k3) and
v * (14 o(1))

(27)3/2?1;/203/22);/2

v3/21k1,k2,k3 =
holds for large enough N and (ky, ko, k3), where ¢, are positive constants depending
only on p.
In fact, expanding
(rim —rame)(rane—rsns) = (ri(m—1)—ra(me—1)+ri—r2)(r2(n2—1) —r3(ns —1)+r2—r3),

in the integrand of Iy, k,x,, We get the first inequality from 1° and 2°. The second
inequality is obvious. Similarly, the asymptotic behavior follows. O

4°
3 2 /
=38 (ko—kj)? /20!
Ry ok = € 2 =1 (ko—k;)*/2v]

holds where v = Tr [riG\ (14 1}G,)~?] for a certain middle point 7 between ro and
r;. Especially, we have the bound

Rkl ka,k3 < 6_(k0_k3)2/2k0-
Recall that G, is a non-negative trace class self-adjoint operator. If we put
Y(t) = log Det[1 + 'Gp, | = Tr[log(1 + €'Gyp, )],
we have

V() =Tr[e'Gr, (1 +e'Gry) ], ¥"(t) =Tr[e'Gr,(1+e'Gr,) 2]

12



In the equality
U(t) =t (t) — Y(to) + tod'(to) = /tto(s — 1)y (s) ds + to(¢'(to) — ¢'(1)),

apply

[(&4 P %_/(@/dwlzxg_JW@&&$W>

where u, is a middle point of ¢ and t,.
Then we get

etow/(to) Det[]. + etGLN] _ e’l/)(t)*td/(t)*w(to)‘f’to’lb/(tO)
et?’() Det[l + et G, ]

— pto(¥'(to)=¥' ()= (¥ (1) =¥’ (t0))? /24" (ue)

Set ' = r; and €' = 1o, then ¢/ (t) = k;, 9/ (to) = ko, " (t) = v; and ¥"(ty) = vy. Taking
the product of those equalites for j = 1,2 and 3, we get the desired expression, since
3k0:k1+k2+k’3. <>

5°  Recall that the functions go( )( ) = L™ exp(i2nk - x/L) (k € Z%) constitute
a C.ON.S. of L2(AL), where Gpl") = e‘ﬂ‘%k/L‘ng,gL) holds for all k € Z?. Thus, we

obtain
_ 27r 7"06_5‘27”“@|2
Ii = (2m)? & 1+ roeARek/LE 1
kEeZ

in the thermodynamic limit, since ko/L? — p/3 and ry — 7, hold.

From 3° and 4°, we have a bound
| Py g | < /€7 (Roha)*/ ko (4.11)
and

5/2
L) s
(277)3/21’1 Uy U3

Fk17k27k3 -

for large N, K1, ko, k3, where v} is a mean value which we have written 9" (u.) in 4°.
For | =1,2,--- [N/3]+1, VN+2zx € [l-1—-(N+2)/3,l — (N + 2)/3) implies
l—1—(N+2)/3| > VN +2|z|, hence we get the bound

2 2
fn(x) = Fyyg—oii-1 < Ce ~(NH2)/Ako L e,

We also get fn(z) <  exp(—32z%/4) for the other cases, similarly.

13



For fixed z € R, we choose [ € Z such that VN + 2z € [[—1—(N+2)/3,1—(N+2)/3),
then we have v;/vg — 1 (j = 1,2, 3) and

= —a2 +0(1).

3
_ Vo

(ko — kj)? 4N
vj

7=1

Hence, we get fy(z) — (27)73/2 exp(—2p2?/k) in the thermodynamic limit. Thus the
dominated convergence theorem yields the desired result for fy. Because of (4.7), the
one for fy can be proved similarly. O
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