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To study dissipative quantum mechanics we adopt the Caldeira-Leggett model where
environmental harmonic oscillators are coupled to the target variable. After integrating out
the environmental degrees of freedom, effective interactions of infinitely long range appear.
As the simplest example we take 2-state model for the target variable, and then we investigate
the 1-dimensional Ising model with long range interactions.

We propose a new practical method to evaluate the critical coupling constant of the
system for the spontaneous magnetization. First, we exactly calculate the system with finite
range interactions by formulating the block decimation renormalization group method. Then,
we assume a finite range scaling and define its exponent for the logarithm of susceptibility.
Using this exponent, we can find the criticality with a high precision through the zeta
function singularity. We obtain the phase diagram on the 2-dimensional plane spanned by
the damping rate exponent and the total coupling constant of the power damping long range
interactions.

§1. Introduction

The aim of this article is to propose a new practical method to evaluate the
criticality of the system where the infinite range interactions are essential.

The system we consider here is the 1-dimensional Ising model. It has no phase
transition at finite coupling constants (at finite temperature) if the interactions are
finite range, that is, the maximum distance of spins which are directly coupled in
the Hamiltonian is finite. However, if the interaction range becomes infinite, it can
have the ferromagnetic phase transition.

Here we take a simple form of power damping long range interactions,

βH = −
∞∑

n=1

η

np
σiσi+n , (1.1)

where η controls the total strength and p controls the damping rate. The existence
condition of the phase transition for p has been known as,9)

1.0 < p ≤ 2.0 , (1.2)
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Fig. 1. Understanding the conditions for p.

that is, for p in the above interval, there exists a finite critical coupling constant ηc.
This condition for p is simply understandable as follows. For p ≤ 1.0, consider

a state of completely ordered spins and flip only one spin (Fig.1(a)). Then such
state has an infinite energy and no way to realize any spin flip. Thus the system is
completely ordered.

For p > 2.0, consider a state where the left half spins are up and the right half
spins are down (Fig.1(b)). This state with one domain wall has a finite energy. Thus
there is no way of developing spin expectation value, and the system is completely
disordered. In between these two boundaries, there may be a finite criticality for the
coupling constant η, which has been proved rigorously.9)

Our purpose here is to numerically calculate the value of ηc as a function of p.
The boundary case of p = 2 is called Ohmic case and it has some subtleties which
will be seen also by our analysis.

Before going ahead, we recapitulate the physical motivation to consider such sys-
tems. Our physical target is the dissipative quantum mechanics, which has drawn
much attention for a long time. Recently experiments observing the quantum de-
coherence have enhanced the interest for such systems. We need deeper theoretical
understanding to describe decoherence phenomena in various environments.

Dissipative systems are not easy to handle in quantum mechanics. Let us re-
member that classical mechanics may deal with dissipative effects, for example, by
just adding a velocity dependent resisting force to the equation of motion,

d2q(t)
dt2

= −∂V (q(t))
∂q

− η
dq(t)
dt

, (1.3)

where η is the friction coefficient. This method is actually dealt in high school physics
and this type of equation of motion are applied to many realistic cases successfully.
However it has been known that there is no simple and general Lagrange function
for such velocity dependent resisting force.

On the other hand quantum mechanics needs Lagrangian or Hamiltonian to
completely define the dynamics and to solve the system effectively. Equation of
motion of operators only are not enough to handle the system. However, just as in
the case of classical mechanics, it is quite non-trivial to set up an appropriate simple
Hamiltonian, if we work only with the target degrees of freedom.

Instead, we should get back to the microscopic origin of dissipative phenomena.2)

Starting with a dynamical system in which a target variable is surrounded by many
environmental degrees of freedom. Then the energy flow from the target system to
the environment might show up as energy dissipation effects. Modeling this concept,
we prepare infinitely many harmonic oscillators which are linearly coupled to the
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target system, and we integrate out these environmental degrees of freedom. Then
we obtain effective interactions for the target system variable, which are in general
infinitely long range and may effectively work as dissipation.

Decoherence phenomena has been argued with the double-well potential by ob-
serving the Rabi oscillation which is driven by the quantum tunneling. Due to the
dissipative effects, decoherence appears to suppress the oscillation. This is seen as
tunneling suppression, or localization phase transition, due to long range interac-
tions.

The quantum double-well system with long range interactions have been studied
by many authors. Typically, canonical method,3) non-perturbative renormalization
group,5) and sophisticated Monte Carlo simulation.6) It is very hard to fully analyze
the system and is frequently approximated by the smallest degrees of freedom, that
is, two state approximation. Then the system is nothing but the 1-dimensional Ising
model with long range interactions.

The long range Ising model has its own long history of research. Here, we only
refer to old initiating works7),8) and a recent paper.9) If the interaction range is finite,
then the system has no phase transition and there is no ordered state. However, when
the interaction range is infinite and strong enough, there can be a phase transition
to give rise to the spontaneous magnetization. Actually it is not easy to evaluate
the value of the critical coupling constant and it needs large size simulation even for
the Ising case to get conclusive results.10)

In the following sections we present a new practical method to evaluate the
critical coupling constant in case of infinitely long range interactions. The method
consists of two parts. First we limit the range of interactions to be a finite n, and solve
the system precisely by using an extended type of the decimation renormalization
group which we call Block Decimation Renormalization Group (BDRG).

Then we assume a scaling relation, the Finite Range Scaling (FRS). We define
an exponent for the range n dependence of physical quantities and evaluate the
exponent. Using the obtained FRS exponent we estimate infinite range property of
the system, where the zeta function appears and its singularity structure determines
the criticality. This FRS method can be seen as an alike of the finite size scaling
method used in the simulation on finite lattice systems in order to guess the infinite
size physics.

The FRS method can be applied to any infinite range interaction system when
finite range interactions are to be effectively and precisely evaluated. Application
of this method to the double-well dissipative quantum mechanics will be reported
elsewhere.11)

§2. The Caldeira-Leggett Model

Caldeira and Leggett formulated dissipative effects from a microscopic action.
The model consists of a target system and the environment of infinitely many degrees
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of freedom. The microscopic action of the model is written as follows,

S[q, {xα}] =
∫

dt

{
1
2
Mq̇2 − V0(q)+

∑
α

[
1
2
mαẋ2

α −
1
2
mαω2

αx2
α − qCαxα

]}
, (2.1)

where q(t) is the variable of the target system in a potential V0(q), xα(t) are the
infinite number of harmonic oscillators. The target variable is coupled linearly to
each oscillator with coupling constant Cα.

Environmental degrees of freedom xα can be path integrated out, and effective
interactions of target system is obtained. The effective interactions are non-local
in the direction of time. Taking the Euclidean time formulation, the quantum me-
chanics is regarded as 1-dimensional statistical system. Then this is a 1-dimensional
statistical system with infinitely long distance interaction, whose strength and de-
pendence on distance are determined by the state density function of environmental
degrees of freedom which is mentioned later. By these long range interactions, quan-
tum mechanical nature is suppressed, and the classical behavior emerges. In terms of
statistical mechanics, it corresponds to the existence of critical dissipation which de-
velops the spontaneous breakdown of original symmetry, for example, the Z2 parity
in case of a double-well potential system.

Before proceeding to the path integral treatment, we solve the model in the
classical mechanics, and show that a dissipation effect may effectively appear in the
dynamics of q(t). Equations of motion of q(t), xα(t) given by (2.1) are written as

Mq̈ = −∂V0

∂q
−

∑
α

Cαxα , (2.2)

mαẍα = −mαω2
αxα − qCα . (2.3)

We solve the second equation (2.3) first where q(t) is regarded as an external force.
Using the standard technique, the general solution of xα(t) is obtained as

xα(t) = C+eiωαt + C−e−iωαt +
∫ ∞

−∞

dω

2π
e−iωt Cαq̃(ω)

mα [(ω + iε)2 − ω2
α]

. (2.4)

The first two terms including complex constants C+, C− represent a general solution
of the homogeneous equation and the third term is a special solution using the
retarded Green function where q̃(ω) is the Fourier component of q(t) defined by

q(t) =
∫ ∞

−∞

dω

2π
e−iωtq̃(ω) . (2.5)

Now we set the initial boundary condition for xα(t) by

xα(t = −∞) = 0 . (2.6)

Because we also assume that the target variable should vanish at the infinite past,
the special solution part vanishes, and the coefficients of a general homogeneous
solution are determined as

C+ = 0 , C− = 0 . (2.7)
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Fig. 2. Environmental back reaction works as dissipation.

Therefore xα(x) has no component of the homogeneous solution.
Next we substitute the solution xα(x) into the equation of motion of q(t) (2.3),

Mq̈ = −∂V0

∂q
−

∫ ∞

−∞

dω

2π
e−iωtq̃(ω)

∑
α

C2
α

mα

1
(ω + iε)2 − ω2

α

. (2.8)

The second term gives a non-trivial feed back effects to the target motion.
Here we introduce the spectral density function J(ω) which characterizes the

environmental degrees of freedom,

J(ω) =
∑
α

C2
α

4mαωα
(2π)δ(ω − ωα) . (2.9)

Using this function, the equation of motion of q(t) (2.8) is rewritten as fellows,

Mq̈ = −∂V0

∂q
−

∫ ∞

−∞

dω

2π
e−iωtq̃(ω)

∫ ∞

0

dω′

2π
J(ω′)

4ω′

(ω + iε)2 − ω′2
. (2.10)

For example, we take a linear spectral function J(ω) = ηω, and the back reaction
part of equation (2.10) becomes,

∫ ∞

0

dω′

2π
J(ω′)

4ω′

(ω + iε)2 − ω′2
= −4η

∫ ∞

0

dω′

2π

[
1 +

ω2

ω′2 − (ω + iε)2

]
. (2.11)

We apply an ultraviolet cutoff ωc of the environmental oscillator frequencies to the
first divergent integral, and integrate the second term exactly. Finally the effective
equation of motion takes the following form,

Mq̈ = − ∂

∂q
(V0 − ηωc

π
q2)− ηq̇ . (2.12)

The divergent term gives a correction to the original potential which should be
called the “mass renormalization”, and the additional term appears as the Ohmic
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type dissipation, a resisting force proportional to the velocity. This is why the linear
J(ω) function case is called Ohmic.

Note that the dissipative effects breaking the time reversal symmetry of the
original Lagrangian finally emerges, and its origin is the special boundary condition
we set in Eq.(2.6). The effect comes from the back reaction of the environmental
degrees of freedom (see Fig.2). To make the effects dissipative, we need infinite
number of degrees of freedom, since if it is finite, the system must come back to the
original configuration as nearly as desired in a finite period, that is, the energy is
returned to the target variable.

Next, we analyze the system quantum mechanically. We can proceed with the
Heisenberg operator equation of motion which is parallel to the classical mechan-
ics. However, in such method, we do not know a good approximation to solve the
system with a non-trivial potential of the target variable. Here we take another
way of formulating quantum mechanics which is appropriate for non-perturbative
approximation, the (Euclidean) path integral formalism.

From the Caldeira-Leggett microscopic action (2.1), we first path integrate out
all environmental variables and obtain an effective action for the target variable,

∆S[q] = −
∫

dτ

∫
dsq(τ)α(τ − s)q(s) , (2.13)

where τ, s are Euclidean time arguments, and the coupling function is given by

α(τ − s) ≡
∫

dE

2π

∑
α

C2
α

2mα

1
E2 + ω2

α

eiE(τ−s) =
∑
α

C2
α

2mα

1
2ωα

e−ωα|τ−s| . (2.14)

Its Fourier transform takes the following form

α̃(E) =
∑
α

C2
α

2mα

1
E2 + ω2

α

. (2.15)

This representation is familiar for particle physicists since this is nothing but the
Feynman rule making the effective interactions, the propagator of harmonic envi-
ronmental variables with coupling constants at both ends where external legs of the
target variable are attached.

The effective action ∆S can be decomposed into the local component in time
∆SL and the genuine non-local component ∆SNL,

∆S[q] = ∆SL + ∆SNL , (2.16)

∆SL[q] = −α̃(E = 0)
∫

dτq2(τ) , (2.17)

∆SNL[q] =
1
2

∫
dτ

∫
ds(q(τ)− q(s))2α(τ − s) , (2.18)

where we have used the following trick,

q(τ)q(s) =
1
2
(q2(τ) + q2(s))− 1

2
(q(τ)− q(s))2 . (2.19)
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Fig. 3. Quantum-classical transition due to dissipation.

If we set ohmic dissipation J(ω) = ηω, these effective interactions take the
following expressions,

∆SL[q] =
∫

dτ
[
−η

π
ωc

]
q2(τ) , (2.20)

∆SNL[q] =
1
2

∫
dτ

∫
ds

(q(τ)− q(s))2

|τ − s|2 , (2.21)

where ωc is the ultraviolet cutoff of ω defined before. The non-local term ∆SNL

corresponds to the dissipation term in the classical treatment. Now it is long range
interactions inversely proportional to the square of distance. Hereafter we consider
cases with a general inverse damping power p, and we define the non-local effective
action as

∆SNL[q] =
η

4π

∫
dτ

∫
ds

(q(τ)− q(s))2

|τ − s|p . (2.22)

Thus we analyze such long range interactions parameterized by the coupling constant
η and the inverse damping power p.

Quantum dissipation has been usually analyzed in the case that the target vari-
able potential V0(q) is a double well potential. If the coupling constant η is small it
does not affect the basic quantum nature that the vacuum state is symmetric due
to the tunneling and the Rabi oscillation occurs for a localized initial state, as seen
in Fig.3 left. However when the dissipative interactions become strong enough, it is
expected that the tunneling is suppressed and the classical nature appears through
the localizing state as Fig.3 right. This transition controlled by the coupling con-
stant η may be called as Quantum-Classical phase transition and there is a critical
dissipation ηc.

In the Euclidian path integral formalism, the system is treated as a 1-dimensional
statistical system. There is absolutely no spontaneous symmetry breakdown, assum-
ing that the interactions are not long range. Long range interactions break the base
of the general no-go theorem and it is expected that enough strong long range inter-
actions can develop spontaneous symmetry breakdown.

To analyze the double well quantum mechanics is difficult, we approximate the
model by a simplest one, that is, just two states at each site, the Ising model, whose
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statistical weight is given by

βH =
η

2

∑

i<j

(σi − σj)
2

(i− j)p
. (2.23)

The Ising variable σ takes 1 or -1. These interactions are equivalent to the following
form which will be used in this article,

βH = −η
∑

i<j

σiσj

(i− j)p
= −

∑

i

∞∑

j=1

Kjσiσi+j , Kj =
η

np
. (2.24)

For these 1-dimensional Ising model with power damping long range interactions,
there have been various rigorous arguments and results especially for the existence of
the finite critical coupling constant and behaviors of magnetization and susceptibility
(see an excellent paper9) and references therein).

§3. Block Decimation Renormalization Group

We will work with the 1-dimensional Ising model whose action is defined by

S = −
∑

i

∞∑

j=1

Kjσiσi+j − h
∑

i

σi , (3.1)

where each spin variable σi takes 1 or −1, and h is an external field to calculate mag-
netization susceptibility. The coupling constants Kj , assumed to be non-negative,
determine the interactions between spins of distance j.

As a first step we take the nearest neighbor model where only K1 is non-
vanishing. Interactions are represented by 2×2 matrix (sometimes called the transfer
matrix) of the following form,

T (0) =
(

exp(K1 + h) exp(−K1)
exp(−K1) exp(K1 − h)

)
. (3.2)

We define the Decimation Renormalization Group (DRG) transformation by inte-
grating out all the even site spins and define effective interactions among odd site
spins.1), 4) The effective interactions still takes the nearest neighbor form. Thus this
renormalization procedure can be iterated and we define k-th renormalized interac-
tions T (k) by induction,

T (k) ≡ T (k−1) T (k−1) , (3.3)

which are interactions for spins on sites of spacing 2k.
We can calculate the partition function for the finite size system with peri-

odic boundary condition (corresponding to a finite temperature case for the original
quantum mechanical model) by

Z(k) = Tr T (k) . (3.4)
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Fig. 4. Example of spin blocks. Take n = 3 as maximum range and organize blocks made of 3-spins

each. Inter-block interactions are limited to those between nearest neighbor blocks.

2n2n2n

2n 2n

T
(k)

T
(k)

T
(k+1)

T
(k)
T
(k)=

Fig. 5. Block decimation renormalization group transformation.

The system size here is 2k and we have the free energy per site,

F (k) =
1
2k

log Tr T (k) . (3.5)

Differentiating the above free energy density with respect to the external field h, we
have the susceptibility χ of the finite system,

χ(k) =
1
2k

∂2

∂h2
log Tr T (k)

∣∣∣∣
h=0

. (3.6)

Finally the large k limit gives us the susceptibility of the infinite size (zero temper-
ature in the original quantum mechanics) system. In this simplest case, the zero
temperature susceptibility is exactly calculated as,

χ(∞) = lim
k→∞

1
2k

∂2

∂h2
log Tr T (k)

∣∣∣∣
h=0

= exp(2K1) . (3.7)

Then we proceed to include non-nearest neighbor interactions, but we still limit
the interaction range to be n, that is, Kj = 0 for j > n. This is the first stage of our
new method, the Finite Range Scaling (FRS). The standard DRG does not work well
any more. To solve this system we divide spins into blocks of size n as shown in Fig.4.
Then the interactions are all limited to “nearest neighbor” inter-block interactions.
Thus the system is a one dimensional nearest neighbor block-spin system.

One block contains n spins and it accommodates totally 2n states. The inter-
block interactions are represented by 2n × 2n matrix. The renormalization group
transformation is defined for this block-spin matrix (see Fig.5), which we call Block
Decimation Renormalization Group (BDRG).11) Numerical calculation of BDRG
gives us a precise value of the susceptibility of the system with range n interactions,
which we denote χ(n).
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§4. Approximation of Block Decimation Renormalization Group

We investigate approximation of BDRG to take a subspace of the total interac-
tion space. This is a standard systematic approximation scheme in the analysis of
non-perturbative renormalization group.4) Its validity is evaluated by comparing it
with numerical calculations by BDRG.

In the case that nearest neighbor interaction is strong enough, the correlation
between neighboring spins should be very high. Taking account of this situation,
we keep only 2 states, among 2n states, in which all spins in a block take the same
direction,

⇑ ≡ ↑↑ · · · ↑↑ , ⇓ ≡ ↓↓ · · · ↓↓ , (4.1)

and we expect this approximation would be good for strong coupling region. Then
the dimension of reduced T matrix is 2 × 2. This approximation here is defined by
reducing the independent states of each block and it seems different from the usual
way of projecting the renormalization group flow onto a subspace of interactions.
However the elements of T matrix represents a point in the total interaction space
of dimension 22n except for reduction due to its mirror image symmetry, and if we
set all other elements than those including the above two states to be vanishing,
then such subspace becomes an invariant subspace of the renormalization group
flow. Any subset of block states defines a subspace of renormalization group flow.
From this viewpoint, this approximation here can be regarded as one of the standard
approximation methods of the non-perturbative renormalization group.

We name this approximation as Aligned BDRG (ABDRG). We take notice of
microscopic (bare) T matrix. Because the effects of interactions within a block are
same for all 4 configurations, those in-block effects are factored out without changing
the structure of the 2 × 2 matrix form. Then it turned out that the bare T matrix
in ABDRG depends only on the following effective coupling constant defined by a
special linear combination of all coupling constants,

K
[S]
eff ≡

n∑

m=1

mKm , (4.2)

where the suffix [S] in K
[S]
eff indicates the strong interaction regime. Using this effec-

tive coupling constant, the bare T matrix is given by the following two elements,

T
(0)
⇑⇑ = T

(0)
⇓⇓ = exp(K [S]

eff ) , T
(0)
⇑⇓ = T

(0)
⇓⇑ = exp(−K

[S]
eff ) . (4.3)

Adding the external field h we have the bare T matrix in ABDRG as follows,

T (0) =

(
exp(K [S]

eff + nh) exp(−K
[S]
eff )

exp(−K
[S]
eff ) exp(K [S]

eff − nh)

)
. (4.4)

This form is quite similar to the nearest neighbor model, so the solutions of the
renormalization group equation is given analytically.
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Fig. 6. BDRG exact calculation of the logarithm of the susceptibility.

To evaluate the susceptibility, we first calculate the magnetization under external
field,

M (k)(h) =
T

(k)
11 − T

(k)
22

T
(k)
11 + T

(k)
22

. (4.5)

We differentiate it with respect to the external field so as to obtain the susceptibility.
After taking the zero temperature limit, we have

χ(∞) =
∂M (∞)(h)

∂h

∣∣∣∣∣
h=0

= n exp(2K [S]
eff ) . (4.6)

As a result, the logarithm of the susceptibility is linear in K
[S]
eff ,

log(χ(∞)) = 2K
[S]
eff + log(n) . (4.7)

The important feature is that only one effective coupling constant defined by a special
linear combination of original coupling constants controls the system completely.

We compare the above result with the numerical analysis of BDRG. We set
the maximum interaction distance to be 6, and take many cases of random coupling
constants for each distance. We numerically solve the exact BDRG, and estimate the
logarithm of the susceptibility. The dependence on the effective coupling constant
is plotted in Fig.6. Because it is necessary that the nearest neighbor interaction is
strong for ABDRG, the nearest neighbor coupling constant is limited to be larger
than 2. We see the exact linear dependence only on the effective coupling constant.
Thus the prediction by ABDRG is exact for this linear term. However the constant
term, log n in Eq.(4.7), seems incorrect, and it should be fixed since we are finally
interested in the limit n →∞.

In ABDRG, we do not allow spin flip in a block while spin may flip at the bound-
ary between blocks. We guess that the overestimate of susceptibility in ABDRG
comes from the shortage of the instanton entropy because of the above limitation.

– 11 –



Fig. 7. N-ABDRG allows spin flip once in a block.
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Fig. 8. Interaction space of BDRG and its approximation subspace.
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Fig. 9. N-ABDRG results of the logarithm of the susceptibility.

We try enlargement of the renormalization group flow subspace in order to compen-
sate this shortage. We add spin flip degrees of freedom within a block. Actually, we
allow spin flip just once within a block as Fig.7. Then the number of states in a block
increases to be 2n. We call this approximation as Next-to-ABDRG (N-ABDRG).

This enlargement of subspace for the renormalization group flows also belongs to
the usual scheme of improving approximations in non-perturbative renormalization
group method.4) As drawn in Fig.8, BDRG interaction space has 2n× 2n dimension,
which is the full theory space. In ABDRG, we restrict the space to be 2×2 dimension
A-subspace, which is drawn by a line. In N-ABDRG, we improve the interaction
space and increase its dimension to be 2n× 2n, the NA-subspace drawn by a plane.
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Numerical results of N-ABDRG is shown in Fig.9. We calculated over 2000
cases of random coupling constants. As for the linear dependence of logarithm of
the susceptibility of the effective coupling constant, N-ABDRG is perfectly correct
including the constant term, that is, log n term in ABDRG vanishes.

§5. Inequalities for the Logarithm of Susceptibility

Here we propose two inequalities for the logarithm of susceptibility,

2K
[W]
eff ≤ log χ ≤ 2K

[S]
eff . (5.1)

Two effective coupling constants, good for weak and strong regions respectively, are
defined by

K
[W]
eff ≡

∑

j

Kj , K
[S]
eff ≡

∑

j

jKj . (5.2)

They have been called 0th and 1st moments of coupling constants in references and
have played crucial roles to determine phase structures. We propose these inequalities
should hold for any set of non-negative coupling constants Kj . Though we have
not yet succeeded in rigorously proving these inequalities, we did find no exception
against them in our calculation by BDRG.

We show numerical confirmation for these inequalities in Fig.10 and Fig.11.
Figure.10 is a lower bound check for random coupling constants and Fig.11 is an
upper bound check. As far as we see the results, these inequalities are valid for any
set of coupling constants.
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Fig. 10. Random coupling constant check of the

susceptibility lower bound.
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Fig. 11. Random coupling constant check of the

susceptibility upper bound.

Physical pictures for these two bounds are the followings. The weak bound
2K

[W]
eff comes from the 1st order perturbation expansion of the logarithm of the

susceptibility. Probably some convexity in the weak region assures the bound. The
strong bound comes from the case of almost ordered situation, where an approximate
of BDRG equation, NABDRG, describes the system well and it gives the boundary
value 2K [S]

eff . In case of the nearest neighbor model, both equalities hold exactly and
simultaneously.
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Now we get back to the case with the power damping series of coupling constants
Kj parameterized as

Kj =
η

jp
. (5.3)

For this power damping series of coupling constants, the inequalities read

2ηζ(p) ≤ log χ ≤ 2ηζ(p− 1) , (5.4)

where ζ is the standard zeta function. For example, BDRG calculation of the sus-
ceptibility for n = 11, p = 1.8, η = [0, 1] is plotted in Fig.12 with the above lower and
upper boundary lines. It clearly shows that the logarithm of the susceptibility is well
described by these boundary lines for weak and strong coupling regions respectively,
and it moves from the lower bound to the upper bound rather quickly.

§6. Finite Range Scaling

Taking account of the inequalities presented in the previous section, now we set
up the Finite Range Scaling (FRS). We take the difference of the logarithm of the
susceptibility of range n system by increasing n by 1,

∆(n, p, η) ≡ 1
2η

[log χ(n)− log χ(n− 1)] . (6.1)

For the weak and strong boundary cases, this difference should behave as

∆[W] =
(

1
n

)p

, ∆[S] =
(

1
n

)p−1

. (6.2)
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Referring to these boundary form, we define an FRS exponent for ∆ by

β(p, η) ≡ lim
n→∞

log ∆(n, p, η)
− log n

. (6.3)

We do not have a proof for the existence of this limit. It is plausible, however, to
expect the existence of the asymptotic power.

We show some example of the numerical evaluation of β in case of p = 2. Figure
13 shows the strong coupling region of η = 1.0 and the difference ∆ is well fitted
by 1/n linear. On the other hand, Fig.14 shows a fit in the weak coupling region
of η = 0.1 and the difference ∆ behaves as (1/n)2. Thus in this case the FRS
exponent is 1.0 for the strong coupling region and 2.0 for the weak coupling region,
which are perfectly consistent with the boundary values expected by the inequalities
in Eq.(6.2). Furthermore for the medium coupling region, the difference ∆ is well
fitted by an appropriate power in 1/n and the power (the FRS exponent) smoothly
changes for all regions of the coupling constant η. In fact, this feature holds for all
p. Details of numerical results will be presented in the next section.

Then the infinite range property of the logarithm of the susceptibility (remain
finite or divergent) is given by the zeta function as follows,

lim
n→∞ log χ = 2η

∞∑

n=1

(
1
n

)β(p,η)

+ [finite] = 2η ζ[β(p, η)] + [finite] , (6.4)

and therefore it is determined solely by the zeta function argument β(p, η). As a real
function, the zeta function ζ(z) is finite for z > 1 and diverges when z → 1+. Thus
the condition

β(p, ηc) = 1 , (6.5)

determines the critical coupling constant ηc.
On the other hand, according to the inequalities (5.4) we have the inequalities

for the FRS exponent,
p ≥ β(p, η) ≥ p− 1 . (6.6)
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Fig. 16. Finite range scaling exponent for

p = 1.8.

Due to the monotone property12) of χ and therefore that of β(p, η) with respect to
η, β(p, η) moves from p to p− 1 monotonically when η is changed from 0 to ∞.

Taking account of these properties about the FRS exponent, we can draw some
conclusions about the phase transition property. As for p < 1, the susceptibility
cannot be finite when n → ∞ for any η 6= 0, thus the system is always ordered for
any η 6= 0. To the contrary, as for p > 2, the susceptibility is always finite when
n →∞ for any finite η, thus no ordered phase exhibits at all. As for the intermediate
region of 1 < p ≤ 2, there can be a phase transition point where β(p, η) crosses 1.
These basic properties have already known from the very old days by other reasoning
or more rigorous arguments.7),8) Our aim here is to evaluate the value of the critical
coupling constant ηc as a function of p.

§7. Numerical Analysis

Now we numerically calculate the FRS exponent to find the critical point ηc. In
actual evaluation of the exponent, we adopt the following formula,

β(n, p, η) ≡ − log ∆(n, p, η)− log ∆(n− 1, p, η)
log n− log(n− 1)

, (7.1)

to define β(n).
For example, we show β(n, p, η) at p = 1.6, 1.8, 2.0 in Figs.15, 16 and 17. As for

n we take from n = 3 to n = 11. With computing resource of a desktop system,
size n = 11 is a practical limit for overnight calculation, and in this article we work
with data up to n = 11. First of all we confirm that the FRS exponent β changes
from the weak coupling limit value p to the strong coupling limit value p − 1, as is
predicted. The critical point ηc is located at the point β = 1. Near the critical point,
β is almost independent of n. Although we do not see any reason of this stability,
it is a good feature to identify the critical point. The Ohmic case p = 2.0 has some
subtlety since its strong coupling limit value of β is 1.0 and it seems hard to evaluate
the critical coupling constant with a high precision.

The FRS exponent depends on n in the region of our calculation and we expect
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that the infinite n value will be obtained by some extrapolation. To check this, in
Fig.18, we plot β as a function of 1/n for p = 1.9, η = 0.5, n = 8 ∼ 11. This plot
shows that the linear extrapolation is a good choice of estimating the asymptotic
value of β.

Now we show the results of the above extrapolated FRS exponent at p = 2.0
(the Ohmic case) in Fig.19. Extrapolation is done by using a linear function in 1/n
with n = 10 and n = 11 data points. We notice that the phase transition becomes
sharper when we adopt the extrapolated value, the right-most plot. To look at the
details of the near-critical region, we plot two cases of p = 1.99 and p = 2.01 in
Fig.20 where only the extrapolated values are plotted. We see that p = 2.0 points
should exist between these two plots and the critical coupling constant would be
around 0.7. We have no definite way of estimate the criticality ηc for p = 2 with
high precision, and we just give the result for near-Ohmic case of p = 1.99 in the
final table of results.

In Fig.21, we show an example of the detailed numerical analysis for β(n, p =
1.8, η), n = 3, 5, 7, 9, 11,∞ (extrapolated value using n = 10, 11) to estimate ηc. As
is mentioned previously, according to the FRS exponent inequalities, it does change
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Fig. 21. FRS exponent β for p = 1.8, η = [0, 1]and n = 3, 5, 7, 9, 11,∞

from the weak limit 1.8 to the strong limit 0.8 when η changes from 0 to ∞ (actually
1.0). In the midst of this monotone decrease, there is a point of β = 1 indicating the
critical coupling constant ηc, which is read out to be about 0.41. Strictly speaking,
the monotone property and the lower bound is broken, especially by the extrapolated
values. We understand that they are fake breakings due to smallness of n.

Also we should note that around the most important region β ' 1, β(n) is
extremely stable against n, which is rather surprising since the critical point ηc is
correctly caught even by n = 3 data. This stability near the criticality is common
to all values of p. On the other hand, the linear extrapolation is necessary for the
weak and strong regions and will make the transition shape sharper.

We have to comment on the magnetization gap which has been known to exist
in this model.9) The magnetization gap indicates that the transition is the first order
and one may claim that the susceptibility does not diverge at the critical point and
our method of analysis does not work. However, such claim does not matter. What
we are evaluating is the susceptibility calculated on the disorder vacuum, and such
quantity diverges when the spontaneous magnetization occurs. Thus we can rely on
the susceptibility divergence property to discriminate the spontaneous breakdown
phase boundary. Taking account of this magnetization gap feature of the transition,
we guess, at the critical point, the function β(η) will be singular at the criticality
and jump from some value larger than 1 (the susceptibility is finite at the weak
side of the criticality) to the strong limit value (there is some arguments that the
susceptibility should become the upper bound value over the criticality).

Calculating the FRS exponent β for n = 9, p = [0.9, 2.1], η = [0, 1], we have
the contour plot shown in Fig.22. The thick line shows the contour of β = 1, and
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adjacent lines are contours with spacing 0.2. The β = 1 line is nothing but the phase
boundary on the p-η plane. The lower side is the symmetric phase and the upper
side is the symmetry broken phase. We see the boundary values of the β inequalities
well approximate the weak and the strong region behavior for all p. We also see
non-monotone structure appears more strongly for lower p, but it does not seem to
affect the critical region.

Table I. The critical coupling constant ηc(p)

p ηc p ηc p ηc p ηc

1.10 0.0474(1) 1.60 0.281(1) 1.91 0.512(1) 1.96 0.582(1)

1.20 0.091(1) 1.70 0.340(1) 1.92 0.524(1) 1.97 0.602(1)

1.30 0.135(1) 1.80 0.410(1) 1.93 0.537(1) 1.98 0.626(1)

1.40 0.180(1) 1.90 0.501(1) 1.94 0.550(1) 1.99 0.657(2)

1.50 0.228(1) 1.95 0.565(1)

The critical value ηc(p) is listed in Table 1. These values are evaluated by
using the linearly extrapolated values of β(n = ∞) from n = 10, 11. We use linear
interpolation to determine the value of ηc from β(η) plot.

For p = 2, it is not easy to evaluate ηc with high precision and here we list
results for p ≤ 1.99. Figure 23 shows our results compared with the rigorous lower
bound given by Dyson and Griffiths8), 13)(DG),

ηc(p) > 1/(2ζ(p)) , (7.2)

and with the recent high precision Monte Carlo simulation results (MC) for p = 2,
ηc = 0.6551(6).10) Our results do not break the DG bound and actually they are very
near to each other in the lower p region. The MC result and ours look consistent
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but near p = 2 region should be examined in more details.
In this article we do not argue the critical exponents of the phase transition. The

ζ(z) function has a simple pole at z = 1, and we may deduce the susceptibility critical
exponent and its transition type (standard or Kosterlitz-Thouless) from detailed
β(p, η) behavior near ηc. It is postponed to more sophisticated analysis.
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