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000000000000 o000 (Itaru Sasaki)
Department of Mathematics, Princeton University !
000000000000 OO0O00O (Akito Suzuki)
Department of Mathematics, Hokkaido University 2

1 Introduction

In this paer, we illustrate that the renormalization group method, which is originally proposed in [1, 2]
and largely improved in [3], is also useful to analyze the spectrum of the Hamiltonian for the fermion
system.
We consider a system which a fermion field coupled to a quantum system S. The Hilbert space of the
total system is given by
H=Hs®F, (1.1)

where Hg denotes the Hilbert space for the quantum system S which is a separable Hilbert space, and F

denotes the fermion Fock space:
F=@DAL .

n=0
where A" L?(M) denotes the n-fold antisymmetric tensor product of L?(M) with A°L?(M) = C, M :=
R¢ x L is the momentum-spin arguments of a single fermion with L := {—s,—s+ 1,...,s — 1, s} and

s denotes a non-negative half-integer. The Hamiltonian of the system S is denoted by Hg which is a
given self-adjoint operator on Hg and bounded from below. Let b*(k),b(k), k € M be the kernels of the
fermion creation and annihilation operators, which obey the canonical anticommutation relations:

{b(k), b" (k)} = 6,76k = k), {b(k),b(k)} = {b"(k),b"(k)} = 0, (1.2)
k= (k1), k= (k1) € M.
Let Q =(1,0,0,...) € F be the vacuum vector. The vacuum vector is specified by the condition
b(k)Q=0, keM. (1.3)
The free Hamiltonian of the fermion field Hy is defined by
Hy = / > w(k, Db* (k, Db(k, 1)dK,
R? el

with the single free fermion energy w(k) = clk|”, k = (k,l) € M.
The operator for the coupled system is defined by

Hy(0) = Hs ® 1+ €1 ® Hy + W,(0). (1.4)

Here, the operator W, () is the interaction Hamiltonian between the system S and the fermion field, and
6 € C is a complex scaling parameter. We suppose that the interaction Wy () has the form

Wy0) = Y ¢ N W n(0), (1.5)
M+N=1

Wrn (0) = / ARG (KON b (k) b (kar)b(Ra) - b, (1.6)
MM+N

I This work was supported by JSPS Fellowship (DC2)
2This work was supported by JSPS Fellowship (DC2)



where g € R is the coupling constant and

K(M,N) = (k17"' 7kM7]’%17"' 7I%N) 6MM+N7

/ dKMN) . / Z dk; - - dkpsdk; - - - dky, (1.7)
MM+N RA(M+N)

(I1seslar)ELM

(I,...,In)elN

and GS\Z) n are functions with values in operators on Hs. The precise conditions for Gg\? N are written
in the next section. Suppose that Hg has a non-degenerate discrete eigenvalue E € Jd(ffs). Since the
vacuum vector {2 is an eigenvector of Hy with eigenvalue 0, Hy() has an eigenvalue E. We are interested
in the fate of the eigenvalue E under influence of the perturbation Wy(9).

The fermionic renormalization group is constructed for the operator (1.4), and under suitable condi-
tions, it is proved that H, () has an eigenvalue E,(6) closed to E for small g € R. The eigenvalue E4(6)
and the corresponding eigenvector ¥y(#) is constructed by the same process as in [3].

The (bosonic) operator theoretic renormalization group was invented by V. Bach, J. Frohlich, and
I. M. Sigal [2, 1]. In [1], the operator of the similar form (1.4)-(1.6) is considered, but boson is treated
instead of fermion and M + N < 2 is assumed. They proved the existence of an eigenvalue of the (complex
scaled) Hamiltonian, and constructed the eigenvalue and the corresponding eigenvector. Moreover, they
gave the range of the continuous spectrum which extended from the eigenvalue. In the paper [3], V.
Bach, T. Chen, J. Frohlich, and I. M. Sigal introduced the smooth Feshbach map and largely improved
the proof of the convergence of the renormalization group.

Our paper is based on the smooth Feshbach map and the improved renormalization group method [3].
Our construction for the fermionic operator theoretic renormalization group is similar as in [3] without
the Wick ordering and its related estimate. The feature of this paper is that we can treat a large class
of interactions. In particular, the interaction Hamiltonian W, (6) includes arbitrary order of the creation
and annihilation operators.

The paper is organized as follows. The precise definitions of H, () is given in the Section 2, where we
explain the problem in detail. We review the smooth Feshbach map in Section 3 for reader convenience.
The main originality of this paper is to obtain the Wick ordering formula for fermion. The Wick ordering
formula for fermion and related formulas are given in the Section 4. In the last section we sketch the
proof of our main result.

2 Hypotheses and Main Results

Through this paper, we denote the inner product and the norm of a Hilbert space X’ by (-,-)x and || - ||
respectively, where we use the convention that the inner product is antilinear (respectively linear) in the
first (respectively second) variable. If there is no danger of confusion, then we omit the subscript X’ in
(-,Yx and ||-||. For a linear operator T on a Hilbert space, we denote its domain, spectrum and resolvent
by dom(T), o(T) and Res(T), respectively. If T is densely defined, then the adjoint of T is denoted by
T*.

One can identify a vector ¥ € F with a sequence (¥(™)° | of n-fermion state ¥ € A"L2(M) C
L?(M"™). We observe that, for all ¢» € A"L?*(M) and 7 € S,

7/)(/%(1)7 e 7k7r(n)) = Sgl’l(’]'(')'l/)(kl, Ty kn)? a.e. (21)

where §,, is the group of permutations of n elements and sgn(7) the sign of the permutation 7. The inner
product of F is defined by

oo

n=0
for U, ® € F, where
<\I/(n)’q)(n)>/\nL2(M) :/ Hdkj‘ll(”)(kh'“ 7k?n)*<1>(")(k?1,"' k). (2.3)
Mn
Jj=1
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We define the free Hamiltonian of the fermion field Hy by

dom(Hy) := {qf eF i | (Hew) ™ |12 < oo} : (2.4)
n=0

(He Q)™ (ky, - k) = (Xn:w(kj) T (ky, - k), neN (2.5)

(Hy 1) =0, (2.6)

where
w(k) :=ckl”, k=(k) eM,

with a positive constant ¢, > 0. For a nonrelativistic fermion, the choice of the constants c,v are
¢ =1/2m and v = 2, where m denotes the mass of the fermion. In this paper, for any ¥ € F, b(k)¥ is
regarded as a x°; A" L?(M)-valued function:

b(k) : M3 k—s b(k)T € x A"LA(M), ae., (2.7)
n=0
(BE)D)Y Y (k- k) =V + 10O (K ko k), (2.8)

where the symbol “x” denotes the Cartesian product. We set
dom(b(k)) := {¥ € F|b(k')V € F a.e.k’ € M}.
Note that dom(b(k)) is independent of k € M. We observe that, for all ¥ € F and ® € dom(Hy),

[e%e] n+1
(U, Hy®) :Z/M( . H dkj\ll<"+1)(k1,--- K1)
n=0 " j=1

n+1
[ ST wlty) | T (R, E)

j=1

=3 [k [Tk e - k)
n=0 Y MxM™ 5y

X w(k) (b(k)W) ™ (ky, -+, k) (2.9)

where we have used the antisymmetry (2.1). Hence we have

(U, H®) = /M dkw (k) (b(k) T, b(k)D) (2.10)

and, in this sense, write symbolically
Hy = /M dkeo (k)b (k)b (k). (2.11)
In the same way as (2.11), the number operator, N, is defined by
Ny = /M dkb (k)b(k). (2.12)

We remark that
dom(H}'?), dom(N}'?) c dom(b(k)), (2.13)



since, for all U € dom(Hfl/z) and ¢ € dom(Nfl/z)7
22 = [ dkot) o0 < oc,
M
N0 = [ dklb)e]? < .
M
The (smeared) annihilation operator b(f) (f € L?(M)) defined by
WH = [ 10 uky. (214)
and the adjoint b*(f), called the (smeared) creation operator, obey the canonical anti-commutation

relations (CAR):
{6(),0(9)} = (f:9), {0(f);b(9)} = {07(f),b"(9)} = O (2.15)

for all f,g € L?(M), where {X,Y} = XY +YX.
The Hamiltonian of the total system is defined by

Hg:ZHs®1+1®Hf+Wg,

where the symmetric operator Wy is of the form:

W= Y ¢" "Wy, (2.16)
M+N=1

Warn = / ARSIy (KON @b (k) b (b)), (2.17)
MM+N

and

KMN) — (k) oo kg k- k) € MMAN

/ JF VN ;:/ S dki---dkydk - dky. (2.18)
MM+N RA(M+N)

(Ir,...,In)elY

Here, for almost every KM:N) ¢ MM+N| GM,N(K(M’N)) is a densely defined closable operator on Hg.
Hy := Hy®1+1® H; is regarded to the unperturbed Hamiltonian, and W, is regarded to the perturbation
Hamiltonian.

In what follows we formulate hypotheses of main theorem and introduce some objects.

Hypothesis 1. (spectrum) Assume that Hg has a non-degenerate isolate eigenvalue E € o4q(Hg) such
that

dist(E, o(Hs))\{E}) > 1. (2.19)

In general, if the operator Hg has a discrete eigenvalue E, it holds that ¢; := dist(E, o(Hs)\{E}) > 0
and dist(c; ' E, o(c; ' Hs))\{c{ *E} > 1. We can assume (2.19) without loss of generality.

Since o(Hs) = [0, 00), the spectrum of the unperturbed Hamiltonian is o(Hy) = [Ey, 00) with Ep :=
inf o(Hg). The vector € is an eigenvector of Hy with eigenvalue 0. Hence, Hy has an embedded eigenvalue
E. In this paper, we study the fate of E under the perturbation Wy(#). To analyze the perturbed
Hamiltonian Hy, for § € R, we introduce the family of operators Hy(6) of the form

Hy(0) = (1@ T)Hy(1®15) = Ho(0) + Wy (0), (2.20)
where I', is the dilation operator, i.e.,

T,b(k, )T = p~2b(p "'k, 1), (2.21)
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and

Ho(0) = Hs ® 1 + "1 ® Hy (2.22)

W,(0) = (10T )W,1eTh) = S ¢ W), (2.23)
M+N=1

WM,N<9) = Fee W]\/I,NFZG

0 * * ~ ~
= /MM+N dK(M’N)GS\/[),N(K(M’N)) @b* (k1) - b* (kar)b(k1) - - - b(kn), (2.24)
L9 MR ORI (D .
eoK(M,N) = (eekh l1;...; eekl\/[7 Lo 691;151; o 601~(N7 ZN) (226)

Hypothesis 2. Assume that, for every 0 in some complex neighborhood of 0, the following hold:

(i) The operator Gpr.n(e? KM N)) is defined on dom(G s n) that contains dom(Ho(6)) and the map
0 — Gun(e®KMN)(Hg + i)' is extended to a bounded operator-valued analytic function on
some complex neighborhood of 6 = 0.

(11) For all M + N > 1, Wy n(0) is relatively bounded with respect to Ho(6) and
Yo GMMIWar N (0) W] < ag(8)] Ho(0) || + by ()11, (2.27)
M+N=1
for all ¥ € dom(H(0)), with some constants aq(6),by(0) > 0,
(tii) limg_.0 ag(f) = 0 and limg_.g by(0) = 0.
(iv) There exists a constant v > 1/2 such that
/ dK(M’N)
W T w(ky) TT), w(ky)

0 N —
o G (KOOI (Hg + )72, < oo,

holds for all M + N > 1.

By the hypothesis above, one can show that, H, () is closed operator with the domain dom(Hy(0)) =
dom(Hy). In particular, H is a self-adjoint operator on dom(Hy).

By Hypothesis 2, we can consider the case § = —id/v (0 < 9 < 7/2). In what follows, we set § =
—i¥/v and fix the parameter ¥ € (0,7/2) so that Hypothesis 2 holds. Then, the spectrum o(Hq(—i9/v))
contains separate rays of continuous spectrum and the eigenvalue E of Hy(—i¥/v) are located at tip of
a branch of a continuous spectrum. Indeed, we observe

O'(Ho(—i’l?/y)) = {)\1 + e_w)\2|)\1 S O'(Hs),)\g € U(Hf)}
S{E+e X[ A€[0,00)}.

In order to study the fate of I/ under the perturbation of Wy, we introduce a spectral parameter z € C,
and define a family of operators H|[z] by

H[z| = Hy(—i0/v) — FE — z, (2.28)

where 0 < ¥ < 7/2. By using the fermionic renormalization group method, we will construct a constant
ey and a vector U, € dom(Hy(—id/v)) \ {0} such that

Hley|W, =0,

which implies that E, := E + e, is an eigenvalue of Hy(—i9/v) and ¥, is the corresponding eigenvector.
The following theorem is our main result:



Theorem 2.1. Fiz 6 = —i/v as above. There exists a constant go > 0 such that, for all g with |g| < go,
H,(0) has an eigenvalue E,; and the corresponding eignevector ¥, with the property

lim B, = B, lim ¥, = ps &9, (2.29)

where g is the normalized eigenvector of Hg.

3 Smooth Feshbach map

In this section we review the smooth Feshbach map [3]. The smooth Feshbach map is the main ingredient
to construct the operator theoretic renormalization group. Let x be a bounded self-adjoint operator on
a separable Hilbert space H such that 0 < xy < 1. We set

Y:i=+1-—x2
Suppose that y and y are non-zero operators. Let T be a closed operator on H. We assume that
XT C Ty,

and hence YT C Ty, which mean that x and x leave dom(7T") invariant and commute with 7. Let H be
a closed operator on H such that dom(H) = dom(T") and we set

H, =T+ xWy, Hy =T+ xWy,

where W := H —T. We observe that, by the assumptions, the operators W, H, and Hg are defined on
dom(T') and H, (resp. Hy) is reduced by Ranx (resp. Rany). We denote the projection onto Ran x

(resp. Ran x) by P (resp. P) and have

H, C PH, P+ P+TP+, Hy C PHP + P+TP+,

where P+ :=1— P (resp. P+ := 1 — P) is the projection on ker (resp. ker ).
We now introduce the Feshbach triple (x,T,H) as follows:

Definition 3.1. Let x,T and H as above. Then, we call (x,H,T) a Feshbach triple if Hy is bounded
invertible on Rany and the following conditions hold: the operators XW)_(Hi_l)_( and XW)_(Hgl)ZWX
extend to bounded operators from H to Rany and )ZH{IXWX to bounded operators from H to Ran,
where H;l denotes the inverse operator of PH;(P.

We remark that, if Hy is bounded invertible on Ran ¥, then the operators XW)’(H;Zl)Z, XH;l)ZWX
and XW)’(Hgl)ZWX are defined on dom(T").

For a Feshbach triple (x, H,T), we denote the closures of the operators xW)ZHX_l)Z, XW)‘(H;1>_<WX
and XH>Z_1)ZWX by the same symbols.

The definition of the Feshbach triple as above implies

XWxXHZ 'Y, xWXH'XWx € B(H;Rany), YHy'xWx € B(H;Rany). (3.1)
For a Feshbach triple (x, H,T), we define the operator
Fy(H,T) := Hy — xWH; ' XWy, (3.2

acting on H. We observe, by the definition of the Feshbach triple, that F, (H,T) is defined on dom(7).
The map from Feshbach pairs to operators on H

(6 H,T) +— F(H,T) (3.3)
is called the smooth Feshbach map (SFM). We remark that F, (H,T) is reduced by Ran x and
F\(H,T) C PF(H,T)P + P*TP*.
The SFM is an isospectral map in the sense of the following theorem.
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Theorem 3.2. (SFM [3]) Let (x, H,T) be a Feshbach triple. Then the following (i)-(v) hold:

(i) If T is bounded invertible on Ranx and H is bounded invertible on H then F\(H,T) is bounded
invertible on 'H. In this case,

F(H,T)™' = xH 'x + T 'x. (3.4)
If F\,(H,T) is bounded invertible on Ran x, then H is bounded invertible on H. In this case,
H™' = Qy(H,T)F\(H,T)"'\Q¥ (H,T) + xH'x, (3.5)

where we set
Qx(H,T) := x — XH'xWx € B(Ran x, H),
QF (H,T) := x — xWxHy 'x € B(H,Ran). (3.7)
(11) If ¢ € ker H \ {0}, then x¢ € ker F\ (H,T) \ {0}:
F\(H,T)xy = 0. (3.8)
(111) If ¢ € ker F\ (H,T) \ {0}, then Qy(H,T)¢ € ker H:
HQ,(H,T)p =0. (3.9)
Assume, in addition that, T is bounded invertible on Rany. Then, ¢ € Ranx \ {0} and
Qx(H,T)p # 0.

4 Wick ordering

In this section, we give the Wick’s theorem for fermion. Let b1 (k), b~ (k), k € M be the kernels of the
fermion creation and annihilation operators, respectively.
For N:={1,...,N} and (01,09,...,0n) € {—1,+1}", we denote

I b7 (kj) := b7 (k1)b72 () - - 07N (k). (4.1)
JEN
For any subset Z C N, we denote
1167 (k) == ] xG € Db (ky),
JET JEN
where x(j € Z) is the characteristic function of Z. For Z C N, we set 7y := {j € Z|o; = £1}. The
Wick-ordered product of [,z b7 (k;) is defined by

:Hb"j(kj) : = H b* (ky) H b~ (k;)

JET JET4 JET_

For (01,...,0n5) € {—1,1}" and any subset Z € N/, we define

SN\ LT T ) = <N1\z T, g)

::sgn(.l 2 o KORAL e Kl KLl ].V),
Ju J2 -+ JK  JK+1 ' JK+L JK+L+1 0 JN
where
{j1,d2, -, Jx} =N\ Z, with  j1 < jo < -+ < Jjn,
ks, dran} =1y, with  jrxi1 <Jr+2 - < Jk+L,
{Jrsr41,-- - in} =1, with  jxir41 <jrirte < <Jn.

The Wick-ordering of the Fermion product (4.1) is given by the following Theorem:
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Theorem 4.1. For any (01,...,0n) € {+1, =1}, the formula

ITv k) = sgn(N\I;I+;I_><Q, 1T b“j(kj)ﬂ> 3 LECHE (4.2)

JEN ICN JEN\T JET
holds.

Proof. We prove the theorem by induction with respect to N € N. For N = 1, (4.2) is trivial. Assume
that (4.2) is true for all products with up to N factors, for some N > 1, and consider the product of
N + 1-factors. We set N'+ 1 := N'U{N + 1}. For simplicity we write b7’ := b7 (k;). In the case
onN+1 = —1, we have

H by’ = H b3 by

JEN+1 JEN

=Y sen(M\T;Zy; 7 < 1T b"JQ> I : bna
ICN JEN\T JET

= Z sgn(NM\Z;Z.;7-) <Q, H b?jﬂ> : Hb?jb;,+1 :
ICN JEN\T JET

On the other hand, for Z C N + 1,
sen((NV + D\Z'; 7, 7") <Q 11 b‘;f‘Q> IT 27 bns s (4.3)
FENHINT JET!

vanishes if N +1 € (M 4+ 1)\Z’. In the case N + 1 € Z’, we have

(4.3)—sgn(J\/\I;I+;I)<Q, H bjﬂn> Hb by b

JENN\T jeT

with 7 = Z'\{N + 1}, where we use the fact that sgn((N + 1)\Z";Z/,;Z" ) = sgn(N\Z;Z4;Z_). Hence,
we obtain

II 07 = > sen(W+INT; 745 7-) <Q I v > ITv %
JEN+1 ICN+1 JEWH\T JET
Next we consider the case oy+1 = +1. By the CAR, we have
{67,077} = <Q, b;’"b}”ﬂ>.

(]

By using this relation and the induction hypothesis, we have

N
H b;_fj — Z(_l)N—k <vagkbﬁ+19> H b;fg Nb++1 H poi
JEN+1 k=1 FJEN\{k} JEN
N
=> (-1 Qb Q) D sen((MED\T T T0)
k=1 TZCNM\{k}

_|_

<Q, b"jQ> T o7
JEN\FD\Z jeT
(=

ISR |
JEN



We note that

oY Fkz)=> Y FkI),

k=1TCN\{k} ICN keN\T

for any function F'(k,Z). By using (4.4), we observe

IT o7 =>" > (0N * Qb7 bk, Q) sen(MEI\T; T45 70

JEN+1 ICN keN\T
X <Q 11 b}’jQ> A
JEWN\{EI\Z JeT
Nb++1 H bUJ

JEN

For Z C N\{k}, we set
K —1:=[(NM\{F\T],
{lr, .. b1} =  W\{EPD\Z, with{y <.+ <lg_;.
Let {jk+1,---,7in} be indexes such that

Jr+1 <+ <Jn,
and
: H b?j : H b,

JET s=K+1

namely,
K—1 N
oj . CF A I . Ois .
<Q, I ¢ Q>.Hbj ._<Q,Hb2j Q> IT o5 .
JEWNNMEINT J€T j=1 s=K+1
The sign in Eq. (4.6) can be written as
sgn((M\{EIN\T; T4 Z0)

(L k=1 k k41 o E—-1 K K+1 - N
i N 2 A Y YOS (SSE 1 TR

For each fixed k € M\Z, we set
n:=max{s € {1,..., K — 1}|{, < k}
Then we have
(—1)* "sgn((M{ED\L; 7457 )

. l--n—-1n n+tl -+ k k+1--- K K+1--- N
- P A S S M MU SN TR S

Note that
< o<y ga<k<l,<-<lg_q.

By changing the names

(61,...,@”71,]{,(“7...,Ek,l,...7£K,1) - (j17~-'7jn717jn;jn+17- --7jk7-~-ajK71)7



we obtain that

Sgn((N\{k})\I;I+;I—)=(—1)k_"sgn<j11 . J]YV)
=(—=1)""sgn(N\T; Z,;Z_). (4.10)

y (4.7),(4.8), and (4.10), we have

N
45)= 5 3 (VR T ek, (2 T T o

ICN keN\T = I=K+1
K N
= sgn(M\T; T 7 Z N7 b, Q) <Q Hb"“Q>: IT v
ICN n=1 o I=K+1
N
= sen(MZ; L 7o) (- <Q [1o5 0k ,.0 > N I BOKE
ICN I=K+1
= sgn(NV + 1\L; 2y 70) <Q 11 b;.’-fQ> B (4.11)
I JEWH+I\T J€T

where we use the equation

K
) C IR IN1) <“ Hb””Q>

n=1 2
_ <QleIi1 by bﬁ+19> K is odd,
0 K is even.

Similarly, we have

— Z sgn((NV +1\Z', 7/, 7") <Q, H b;jQ> : H b’ s, (4.12)

ICN JEWAHI\T JET

where 7' :=Z U {N + 1}. By (4.11), (4.12), we obtain the desired result:

I = > sgn(N\I;I+;I_)<Q, 11 b;.’jQ>:Hb;’f:
je(

JEN+1 ICN+1 EWN+I\T JET

Lemma 4.2. Let f;[r] : M — Ry, j=1,...,N be Borel measurable functions. Then

N

1T 07 (k) £1H 1}

j=1

= Z sgn(M\Z,: 7 2) H bt(k
ICN S

7 N
He+r+ Y wk)+ > wik)

i=1 i=j+1
i€T_ i€Ty

N
x <Q 11 {[b%‘ (k) PU#3
X H b~ (kj)

jez_

)

r=Hp

where [b73 XTI = 473 (k;) for § ¢ T and [b% (k;)XVEH =1 for j € T.
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Proof. Similar to the proof of [1, Lemma A.3]. O

Let
Wi (Ry) x M™ x M™ - C, m,n € Ny, (4.13)

be measurable functions. In the following, we use the notations
K = (kp, . k) €M™, B = (ky, .. k) € M

We assume that each function wy, ,[r; E(m), l;;(”)] is antisymmetric with respect to k(™) € M™, k™ e M,
respectively, i.e.,

wm,n[r;k(m);fc(”)] ={wmn[r;k (m). I ")] asym

m,n

71 7.(n
=— > > sen(m)sgn(R)wmalri ki ky N, (4.14)
m:m.:
TES, TESH

where

k7('rm) = (kﬂ'(l)a ey kﬂ(m))a k7('rn) = (kﬂ'(l)a ey kﬂ'(n))
For L € Ny, we consider the operator

FolHIWasy Ny Fi[Hi Wty Ny - - o1 [Hf Wy~ fL[Hy], (4.15)

where the operators Wy, ,, is given by

Wm,n = m,n[wm,n}
- / AR B (™) Y [His KO b(R) (4.16)
M?n«i»n
We set
K:=M+N,
L L
M:=Y M, N:=Y N. (4.17)
(=1 =1

Corresponding to (4.17), we set

D =(k (M“))@ L € MM MM
=(k1,1s- - kg ko, ke ko, - ko),
N =k (N[))g L EMM X x MME
=(k1,1, .- ki Nk, kongi o sks. .o ko)
‘We define
K:={1,...,K},

-1 1

ICM’[:Z Z(Mj+Nj)+1,...,Z(Mj+Nj)+Me ,
j=1 =1
-1 ¢

Ky := (Mj+Nj)+M;+1,...,3 (Nj+M;) s, £=1,.. L.
j=1 j=1

11



Clearly,

L
K= U U Kue={Km1, Kn1, Kar2, K2y s Ko Ko b
=1 pu=M,N

For m,n,p,q € Ng with m +n + p+ q > 1, we define
W k) k()] = dzP dz Dot (P w1 i g[r; K™, 2@ B0 201~ (39).
Mp+a
The Wick ordering formula for the operator (4.15) is given by the following result:

Theorem 4.3. Let L € N be a number. Suppose that My € Ng, Ny € Ny are numbers such that
M+ Ny > 1. Let {wn, n,}r | be functions defined in (4.13). Then,

JolH e IWar, Ny [rlH Wty N, -+ - fr—1[Hf Wy, Ny, fL[H ]

L
K
= E E sgn(K\Z,: T :) H sgn < ’ )
P Irme Kae\Ine

In,eCM e IN,eCKN e

0=1,....L.  ¢=1,..,L
K e ) T (me)
N, ¢ me) 37.(ne + mye
x : dkS™) dke bt (k
e (Lv,e ’CN,Z\IN,€> /Mm+n E{ ¢ ‘ }E (k™)
L
me,n m 7.(n asym —/7.(n
< A DLHp Wi, ot WSRO U] ) T 07 (), (4.18)
=1
where
Dl AW T, ik R Vs U]
L—1 ~
= folr + 7] <Q { LT W3kt [Hy 7 ras k3R] ol Hy 47+ m}
=1
WS o [ s 1%2"“1“>f e
and
sgn(KC\Z,: Z :) :=sgn ( K > (4.19)
: PR U T Ul T '
-1 B L
rei= Y SkM™+ Y0 SE™), =23, L-1, (4.20)
=1 1=¢+1
L L L—1 _
ro =Y Bl =Y Sk = Yo Sk, (4.21)
=1 =2 =1
4 B L
o=y Sk Y Sk, e=1,...L-1. (4.22)
=1 1=¢+1
L L ~
fo = S[E™], =Y SR, (4.23)
=1 =1
L L
my ‘= |IM,4|, Ny ‘= |IN’5 s m = ng, n .= Z?M. (4.24)
=1 =1

(4.25)
Here, S[M] := 3" w(ky), (k= ki, ky).
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Proof. By the definition of Wy, n,, we have

(L.H.S. of (4.18)) /M H Hdkhndkh folHy]

Kol =1
MWWhWMMW%W%kW%WHWMWH

x bt (kS Ywagy v, [Hyps kS5 kY107 (RSY) fol Hy ]
X...

Xb+(k’g\i{§71))wML N I[Hf’k,(j\/[L 1), k(NL 1)]b (k‘ (NL— 1))fL 1[Hf}
X 0t (k" Ywng, v [Hips k™ R ™) £ Hy ).
By using Lemma (4.2), we have

(L.H.S. of (4.18))

L
/MKH HdkMHdk“ > > sen(\L T ([ [ 07 (key)

j=1 Imy M e IN,CKN,e {=1j€Tn e
0=1,..L ¢=1,..,L

L—-1
x fo[r+A0]<Q,{ 1T < 1T b+(kg,j)>waN[ [Hf+r+Ae;k§Mf>;/;§Nﬂ

JEKM, e\ e

><< I1 b(k[,])>fg[Hf—|—7’+Ag+Z kg])}}

JEK M, e\, e JEIN

X < H b+(k'L,j)>wML,NL {Hf +r+Ap; k‘(ML) ]C(NL):| ( H b_(]%L’j)>Q>

JERM,L\Tm, L JER M, L\T M, L

r=Hy;

L
< fo|r+An+ > wlhey)| ([ TI b (kes) (4.26)

JEIN,L {=1j€EIN:

where

-1
A@::ZZ w(ky ;) + Z Z w(kij), €=2,3,...,L—1,

I=1j€In, =041 j€Tn,
L

Ao:: E E wkl,j, A1 = E E klj AL = E E kl]
=1 j€In, 1=2j€In, I=1 jE€In,

Next, we move the integral in the variables Kas ¢\Zar,e, Kn¢\Zn ¢ to the inside of the inner product
@, Q)

(L.H.S. of (4.18))

= Z Z sgn(C\Z,: T ) /

Iy CRMe IN,CN,e Mmtn
¢=1,....[ ¢=1,...,.L

. L
X H IT " (ke G{TQ{{ki,j}jEIM,tz’{kévj}jeIN’[}z_l]

f 1j€Tne

H dky; H dky;

=1 \J€Tm e J€IN,

r=Hpy

X H 1T v ke (4.27)

@ 1j€In,

13



where

G {T; {{km‘ Yiezu o thegYiety. };1 ]
f[r+Ao< {ﬁ/l I ks ]I dife,j]

JER M, e\T e JEKN e \IN,¢

X ( H b+(k€,j)>wMe Ne {Hf + 7+ Ay k‘ (M) k(N[ } < H b_(];&j)>

JEK M, e\ e JEKN\INe

sz{Herr—kAH- Z klj:|}

JEIN

YRS

JEKM, L\TM, L JEKN,L\IN,L

x ( II b+(k‘L,j)> WL, N [Hf +r+ Ap ks ]%ENL)] ( II b_(/;L,j)> Q>

JEKM, L\TM, L JERNM, L\TMm,L

X fr |r+Ap + Z w(kyr )

JEIN,L

Here we used the fact that Ay, £ =1,...,Land > .7, ,
ko j(j € Kn.o\Zns). We rename the variables in (4.26) as follows

w(ky ;) are independent of ke j(j € Kar.e\Znse),

kej — 2ej, J € Kame\Ime,
kej— Toj, §€KNN\INy-

Then we have

wagy v 15 kM RG]

ke, =z, 5€EKM, e\, e
ke j=%¢,j,J€EXN e \IN,e

I
Irme Kare\Tare INne Kno\Ine

X WM,,N, [T; {k&j}jEIM,w {‘Tgyj}jEKM,K\IM,Z

{kejtien s {‘%f,j}jEKw,z\IN,z} .

and
/ [ I ke ]I dl%g,j] < 11 b*(km)>
JEK M, e\Tn e JEKN,\IN,¢ JEK M, e\Tn e
X WM, ,N, {Hf +r—+ Ag, M[ k(Ne):| ( H b_(/%g,j)>
JEKN e \IN e
—sen Kare Kne
Irme Kae\Iae IN,Z Kn.e\Ine
X Wl\?/fm'rfw Ng—ny [Hf +r+ Ay {kf,j}jEIM,tz; {]z"@,j}jefw,z} ’
where

me = Dael,  |nel = [Inel, €=1,..., L.

14



Hence we have

- L
G [7“; {{k‘e,j Yieza oo 1k }iezn . }z=1 }

L
_ ] K, ) Kn.e
N lH e (IM,e ’CM,Z\IM,€> e (IN,Z ]CN,Z\IN,£>

ol

X fe [Hf +r+he+ Y wike ])”Wﬂﬁ’"iu Ni—ny [7‘ +Api{krj}jeta s {@L,j}jezN,L}Q>

fo[?" + Ao]

Wt e No—ns [Hf +r+ Ao {kejtjetu s {kz,j}jeIN,e]

JEIN e
X fr r+Ap + Z kL,] . (428)
JEIN,L

By changing the names of the variables {k¢ ;} ez, {iﬂg,j}jGIN)[ in (4.27) with (4.28):
{kestsenn, = k™ Akegbiez, — k™,

we have

L
(LES. of (418)) = > > (AL T )| [ sen (IW IICCAAJ}?@\IM,z)

e i\ T (k)
/MMMH{dk ) df Z}H ‘

KN
xoset <IN,Z Kn,\Zn, z)

L
% Dy [Hf {Wm/,nrl;w,Ne . k(mz) k(m)}g 17{f£} ]H k(")

Finally, by using this fact and the anticommutativity of b=, b%, we obtain the formula (4.18). O
We set
S W
N+M>1

Theorem 4.4. Let W be a operator defined above. We write as

foW AW - W fr, = H[w], (4.29)
where W= (Wynn)m+n>0- Then
W (ry Ky = Y > sgn({me}ii; {ne}icy)
mi+-t+mp=m Dpe,qe>0

ni+--F+np=n m[+p[+ng+qg>1

.....

L
/ | H {dkémi)déénﬁ)} H b+(k§m£))
Mt =1

~

< D[ W ks E e ol | T )
/=1
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where Dr[---] is the function defined in Theorem 4.3,

wmdis i) = Y Y s\ T
Im oS INeCKN e
me=|Zrre|l ne=|Inel
t=1,...1, 0=1,.,L

L
Q ,CM’E ]CN’e
X ezl_[1 sgn (IM,E ICM,Z\IM’£> sgn <IN,E /CN,e\IN,e) ; (4.30)

and sgn(K\Z,: 7 :) is a constant defined in Theorem 4.3.
Proof. Note that

(L.H.S.of (429)) = > -+ > (418). (4.31)

M;+N1>1 Np+Mp>1

It is easy to see that, for all { =1,... L,

My Ny

PID DED DD N DD DD DR DI (432)

Me+Ne21 I e CKMe INeCKN . Me+Ne21me=0n¢=0Zpn e CKre INeCKNe
[Zarel=me  |Inel=ne

Furthermore, for any function X[ -], we have
M, Ny
Z Z ZX(M@,N@,mg,ng) = Z X (Mg, Ng, g, mp)
M¢+N¢>1m=0n=0 (Me¢,Ng,mg,ne)ENG
Me>m;>0; Ne>ng>0
My+Ny>1
= > X(me+pene+ qeme, ng). (4.33)

(pesaesme,ne) ENG
petqetmetng>1

By connecting (4.31)-(4.33) with Theorem 4.3, one can obtain the desired result. O

5 Sketch of proof

We hereafter assume Hypotheses 1-2. By using the smooth Feshbach map, we eliminate the degree of
high energy fermion, and restrict the degree of the system S to the normalized eigenvector pg. Let

X = P ®sin [gE(Hf)y (5.1)
where P is the orthogonal projection onto the eigenspace ker(Hg — F) and the function = : R — [0, 1] is
smooth in (0,1) and obeys

1 (0<r<3),
sy =t 0=7r<i) (5.2)
0 (r<0,7<7r),

where 3/4 < 7 < 1. Then we have

X = \/1—72: P ® cos {gE(Hf)} +Pte1. (5.3)

Let
T(z] := Ho(—i¥/v) — E — z (5.4)

and
W= H[z] — T[z] = Wy(—id/v). (5.5)

It is evident that T'[z] is closed, commuting with x. Furthermore, we have the following lemma.
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Lemma 5.1. T'[z] is bounded invertible on Ranx for all z with

|z| < min{3/4,sin(d/v)}.

Proof. Let us first note that the orthogonal projection Py onto Ran x is of the following form

Py=P@ 1.+ Pt ol, (5.6)
and hence
PiT[z]Py = L1 + Lo, (5.7)
where the function 14 is the indicator of a set A and
Li=P®1ly.s (""" Hy — 2) Lig, >3, (5.8)
Ly=P+(Hs—E)P*@1+P-® (e Hy - z). (5.9)

We need only to prove Ly and Lo are bounded invertible, i.e., z € Res(L1) NRes(Ly), since, by (5.7), (5.8
and (5.9), PyT'[z] Py is reduced by Ran P ® 14, 37 and Ran P+ ®1. Indeed, we observe z € Res(L;) an

.

z € Res(Lg) provided |z| < 3/4 and |z| < sin(J/v), respectively. O
Let T71[2] be the inverse of P;T[z]P5 for all z with |z| < po:
T~z = (PyT[2)Pg) ", (5.10)
where we set 3
po = min {4,Sin(19/1/)} . (5.11)
Then, we have, for all z with |z| < po/2,
RGS(PXT[Z]Px) D) Dpo/Z? (512)
where
D.:={zeC||z|] <€} (5.13)
for all € > 0. Let
Hylz] == T[z] + xWx. (5.14)
We have the following lemma.
Lemma 5.2. For all z € D, /2, (H[2],T[z], x) is a Feshbach triple and
= - N .
Fy(H[2),T[e]) = Tl] + Y (=)W (XTH10W) ™ x (5.15)
L=1
Proof. By Hypothesis 2, we have
[WXT ™ [E]x ]| < ag(=id/v) || Ho(=id/v) XT~ A% | + by(=id/v) [|XT 2] x ¥
< {ag(=0/v) + (ag (=0 /V)|E + 2| + by(—id /) [| T [<][| } @], (5.16)
where a4(—i9/v) and by(—iY/v) are defined by (2.27). Since, for g € R with |g| sufficiently small,
2
2a4(—i0/v) + o (|Elag(—id/v) + by(—id/v)) < 1, (5.17)
0
we observe that
sup HW)ZT_l[z]HB(RanX;}_) <1, (5.18)

ZEDPO/Q
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which implies that Hy[z] is bounded invertible on Ran x and that the Neumann series expansion of the

inverse
oo

_ _ Crr L
H'[2] = > (D)7 2] (xWxT ' [2]) (5.19)
L=0
is norm convergent. It is easy to see, from (5.19) and Hypothesis 2, that (H[z],T[z], x) is a Feshbach
triple. By the definition of the Feshbach map (3.2) and the equation (5.19), we obtain

F\(H[2],T[z]) = T[2] + xWx — xWXH ' [z]xWx

= T[]+ XxWx + Y (~D)FXWRT ] (YWXT =) xWx

L=0
= Tle]+xW+ Y (=)W (R 1)
L=0
which is equivalent to (5.15). O

Let P, be the orthogonal projection onto Ran x:
P,=P® L <q) (5.20)

where the constant 3/4 < 7 < 1 is defined in (5.2). According to Theorem 3.2 (iii), we need only to
consider the spectrum of P\ F\ (H|[z], T[z]) Py since T~!|z] is bounded invertible on Ran x with z € D, /.
We note that the operator Hg)[z] on Ran 1jz, ., can be defined by

P ® Hlz] = Py Fy(H[z], T[2]) Py (5.21)
since, by Hypothesis 1, the eigenvalue E is simple.

Let us next derive H(g) from (5.21) and arrange the annihilation and creation operators in order. We
observe, from Lemma 5.2 and (5.1), that

P F(H[EL TP = PP+ > (= D)P T P (R W) xPy

= P& Uycr) (7" He = 2) Lpptear + (-1 Yo gEm
L=1 My+N>1l=1,-- L
xP® l[Hf<T]K(_7;19/V; {M, Nl}lel)P ® g <] (5.22)

where
K (=i /v3 {My, NIV, ) = P @ sin |2 (He) | War, x, (<0 /v) RWag, v (=0 /)R
% RWas,_, ni_, (=i /) RWa, v, (=it /v) P @ sin [2 = (Hf)} (5.23)

and

R:=xT"'[2]x. (5.24)
Lemma 5.3. (Wick ordering) Let ¢ be the normalized eigenvector of P. Let sgu(---), Kyre, Ko, 7o,
E(icén”) be symbols defined in Theorem 4.3. Then

K (—=i9/v; {Mg, N}y )
B ICM’K ’CN,Z
- ¥ > sen(K\Z,:T:) HSgn (ZM . lCM,e\IM,) e <IN,Z ’CN,e\IN)

I oS INeCKN e
0=1,...L 0=1,...L

L L
% P®/ dk(mZ)di;:(nZ) b*(k(ml))
M+ ZE[ { 4 4 }H 4

(D s OV K5V B
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where

Dyfrs (Wi, k" R s B

Me—myg,Ng—nyg’

-1
. ™ - - 2 me,n me) 7 (n ~ T (m
= sin | 530+ 7o) <80 3, { LT W3 e, [R5 ROV R[H 477+ 53R ”>]}
=1
frmL.n (mr). 7.(nL) [T e
x WMffﬂLlL,NL*nL [kLmL 7kLnL }90 ® Q> o {5_4(7' + TL)} ’
and
W (k5™ kM = / de™Mdz ™t ()G, Kty (50,
an+n
GS\??N[K(M,N)] — e—iw Grn (e—iﬂ/QuK(M,N)) 7
R[] == x[r](Hs + e ™/"r — E — 2)7'x[r] ® 1.
Proof. Similar to the proof of Theorem 4.3. O

Let H,eq be the closed subspace of F given by
Hred = Ran 1[Hf<1] = 1[Hf<1]]:- (525)

Similar to the proof of Theorem 4.4, we observe that the operator Hg)[z] is a bounded operator on Hreq
of the form

Hiyl2l = Tyl Hi) = B[]+ D LmpeyWinn w1l <1), 2 € Dy 2,
m+Nn>1

where Eg)[z] € C, T(o)[z;-] € C'([0,1]) with T(g)[2;0] = 0 and the operator T{o)[z; Hy] is defined by
functional calculus. Here the operators Wm,n[wﬁg,)n [2]] is defined by (4.16) and functions wfﬁ)n [2] : [0,1] x
R4 m+n) , C are antisymmetric in the sense (4.14). By Hypothesis 2, we observe that the functions

w,(,??n [2] obey the following norm bound:

sup [lwiDu 2y + sup (10,0, 2] < oo,
2€D,q /2 2€D,q /2

where
1/2

0 mn
Supre[oﬁl] |w7(n,)n[2][7",K( , )]|2

~ 142y
(17wl Ty w(ky)
Here we note that the above constant v > 0, which is given in Hypothesis 2, makes our renormalization
group contractive. With a little modefication of the (bosonic) renormalization group method [3] one can
prove that there exists a complex number e, € C such that Hg[e,] has the eigenvalue 0. Moreover, one
can construct the corresponding eigenvector 1g4:

H(0) [egW)g =0.

By Theorem 3.2 and the simplicity of the eigenvalue E, we observe that H|[z] has the eigenvalue 0 if
H g)[2] has the eigenvalue 0. Hence, the eigenvalue E, of the Hamiltonian H,(6) is given by E; = E +eg,
and, thanks to Theorem 3.2, the eigenvector by

\I/g = QX (QOS ®¢g)7

[wuell o= | [ arctn
(Bl XL)77L+7L

where

Qx =X XHgl[eg]j(WX~
It is easy to see, from the constructions of e, and v, (see [3] for details), that E; and ¥, have the desired
property (2.29).
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