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概 要

We study a mean field model of boson gases trapped in a harmonic potential.
The behaviors of the position distribution in the weak potential limit are classified
into two types. In the high temperature region and in the weak potential limit,
the position distributions converge to that of the free boson gas. In the low
temperature region, the position distributions is not uniform (diverge) because of
the Bose condensation.

1 Introduction and the Result

The mean field models are the simplified models of quantum statistical mechanics of

boson gases, where constituent particles are supposed to interact each other by homo-

geneous repulsive force with a coupling constant λ > 0.
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We start with the one particle Hamiltonian

Hκ =
1

2

d∑
j=1

(
− ∂2

∂x2
j

+
x2

j

κ2
− 1

κ

)
,

which is self-adjoint operator in L2(Rd) for κ > 0. We assume d > 2. It is well known

that

Spec Hκ = { |n|1/κ |n = (n1, · · · , nd) ∈ Zd
+ }

holds, where |n|1 =
∑d

j=1 nj and Z+ is the set of all non-negative integers. The wave

function of the ground state is

Ωκ
0(x) =

1

(πκ)d/4
e−|x|

2/2κ, (1.1)

where x = (x1, · · · , xd) ∈ Rd and |x|2 =
∑d

j=1 x2
j . The Boltzmann factor Gκ = e−βHκ

has the integral kernel

Gκ(x, y) =
exp

(
− (2κ)−1tanh(β/2κ)(|x|2 + |y|2)− |x− y|2/(2κ sinh(β/κ))

)

(
πκ(1− e−2β/κ)

)d/2
(1.2)

( Mehler’s formula), the trace Tr Gκ = 1/(1−e−β/κ)d = O(κd) and the largest eigenvalue

||Gκ|| = 1. Here, β > 0 is the inverse temperature.

The partition function of our mean field model is given by

Ξκ =
∞∑

n=0

eβµn−βλn2/2κd

Tr ⊗n
s L2(Rd)[⊗nGκ]

=
∞∑

n=0

eβµn−βλn2/2κd

n!

∫

(Rd)n

per
{
Gκ(xi, xj)

}
16i,j6n

dx1 · · · dxn,

where ⊗n
s L

2(Rd) is the n-fold symmetric Hilbert space tensor product of L2(Rd), “per”

represents the permanent for matrices, and the zeroth term of Ξκ is 1 by definition.

We are interesting in the limit κ → ∞. This can be considered as a procedure of

thermodynamic limit(TDL). Consider the general Hamiltonian

H̃κ =
1

2

d∑
j=1

(
− ∂2

∂x2
j

+ V

(
x

κ

))
.

In the usual TDL procedure, we take V as a infinitely deep well potential. By general-

izing the potential V , we expect that we can obtain various theories in the limit κ →∞
and we may regard them as those for free boson gases. As the first case of the possibility,

we take the harmonic potential for V in this note. We can also regard that the model
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will yield the description of the behavior of the boson gases in macroscopic vessels. This

is experimentally more realistic than that of boson gases in the unbounded space Rd.

In this note, we announce the result concerning the behavior of the position distribu-

tions of the mean field boson gas models in the weak potential limit κ → ∞. We also

illustrate some ideas which was used in the proof of the result. The detailed proof will

be published elsewhere. [TZ]

We study the system in terms of random point fields which describe the position

distribution of the constituent particles of the gases. Here, let us try to make an brief

introduction of the theory of random point fields adapted to our system.

Let Q(Rd) be the set of all the locally finite subsets of Rd, i.e., the space of all the

sets of sparsely distributed points in Rd. A probability measure on Q(Rd) is called a

random point field (RPF) on Rd. We make the identification between the set of points

{x1, x2, · · · xn, · · · } and the point measure
∑

j

δxj
= ξ. Then, Q(Rd) is considered as the

space of all the integer valued Radon measures on Rd. In this scheme, we may introduce

the natural functionals on Q(Rd):

〈f, ξ〉 =
∑

j

f(xj)

for f : Rd → R. By using this functional, various quantities are described. For examples,

〈χA, ξ〉 =
∑

j

χA(xj) = #{ xj ∈ A }

represents the number of points in the intersection of A and the set identified by ξ, and

lim
A↑Rd

〈χA, ξ〉
vol(A)

represents the average density of ξ, and so on. Especially, the generating functionals or

Laplace functional of a RPF plays an important role in the theory of RPFs. A RPF µ

on Rd is characterize by its generating (or Laplace) functional

∫

Q(Rd)

e−〈f,ξ〉 dν,

for f ∈ C0(Rd), f > 0. Moreover the weak convergence of any sequence of RPF is estab-

lished if the point-wise convergence of corresponding sequence of generating functionals

is shown. For details description of the theory of RPFs, see e.g., [DV].

Now let us see how to represent RPFs on Rd which describe the position distribution

of our mean field model and to calculate their generating functionals.
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A RPF is determined if the exclusion measures are given. That is to say,

Prob





The total number of points is equal to n

and one point is contained in each

d-dimensional rectangle (xj, xj + dxj]

=
∏d

k=1(x
(k)
j , x

(k)
j + dx

(k)
j ]), (j = 1, · · · , n)




≡ Jn(x1, · · · , xn)dx1 · · · dxn,

where xj = (x
(k)
j )d

k=1. The partition function Ξκ suggests that the position distribution

of constituent particles of our system is given by

Jn(x1, · · · , xn) = eβµn−βλn2/2κd

per
{
Gκ(xi, xj)

}
16i,j6n

/Ξκ.

Then the resulting RPF νκ has the generating functional
∫

Q(Rd)

dνκ(ξ)e
−〈f,ξ〉 =

∞∑
n=0

∫

(Rd)n

e−
P

j f(xj)
Jn(x1, · · · , xn)

n!
dx1 · · · dxn

=
1

Ξκ

∞∑
n=0

eβµn−βλn2/2κd

Tr ⊗n
s L2(Rd)[(⊗nGκ)(⊗ne−f )] =

Ξ̃κ

Ξκ

, (1.3)

where

Ξ̃κ =
∞∑

n=0

eβ(µn−λn2/2κd)Tr ⊗n
s L2(Rd)[⊗nG̃κ]

and G̃κ = G
1/2
κ e−fG

1/2
κ . See the arguments in [TIa, TIb, TIc] for detail.

Put

m =

∫

[0,∞)d

dp

e|p|1 − 1
,

where |p|1 =
∑d

j=1 |pj| for p = (p1, · · · , pd). Note that m is finite, since d > 2. Our main

result is

Theorem 1.1 (i) If βdµ < mλ holds, the random point fields νκ defined above converge

weakly to the random point field ν∞ having the generating functional
∫

Q(Rd)

e−〈f,ξ〉dν∞(ξ) = Det
[
1 +

√
1− e−fr∗G(1− r∗G)−1

√
1− e−f

]−1
(1.4)

with κ →∞, where G = eβ4/2 is the heat operator on L2(Rd) and r∗ ∈ (0, 1) is uniquely

determined by

βµ = λ log r∗ +
λ

βd−1

∫

[0,∞)d

r∗ dp

e|p|1 − r∗
.

Here Det stands for the Fredholm determinant.

(ii) If βdµ > mλ holds, the generating functional (1.3) has the behavior

lim
κ→∞

1

κd/2
log

∫

Q(Rd)

e−〈f,ξ〉dνκ(ξ) = −βdµ−mλ

πd/2βdλ
(
√

1− e−f , (1+Kf )
−1

√
1− e−f ), (1.5)

where Kf = (G1/2(1−G)−1/2
√

1− e−f )∗(G1/2(1−G)−1/2
√

1− e−f ).
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Remark 1. Kf is a positive trace class operator on L2(Rd), ( see [TIb]).

Remark 2. There is a sharp contrast in the particle density distribution between two

regimes (i) and (ii). Heuristic understanding of this difference is the following:

In the case (i) (normal phase), let us suppose that each constituent particle may be

considered independently distributed according to the Gibbs factor Gκ = e−βHκ . Then

the particles are located in the region of radius κ around the origin almost uniformly as

the kernel of Gκ (1.2) indicates. While in the case (ii) (condensed phase), let us suppose

that a substantial part of particles are in the ground state and the other part of particles

behave as in (i). Then the former part distributes in the region of radius κ1/2 around

the origin according to the profile of the square of the ground state wave function of the

harmonic oscillator (1.1). Since we focus our attention to the distribution of particles

near the origin in the limit κ →∞, the density is dominated by the particles condensed

in the ground state.

Corollary 1.2 (i) If βdµ < mλ holds, the mean and the covariance of the (random)

point measure { ξ(x) }x∈Rd are given by

E[ξ(x)] =

∫

Rd

dp

(2π)d

r∗
eβ|p|2 − r∗

,

Cov[ξ(x), ξ(y)] = δ(x− y)

∫

Rd

dp

(2π)d

r∗
eβ|p|2 − r∗

+

∣∣∣∣
∫

Rd

dp

(2π)d

r∗eip·(x−y)

eβ|p|2 − r∗

∣∣∣∣
2

in the limiting distribution.

(ii) If βdµ > mλ holds, the leading term of the mean and the covariance

of the point measure ξ(x) are given by

E[ξ(x)] =
βdµ−mλ

πd/2βdλ
κd/2 + o(κd/2),

Cov[ξ(x), ξ(y)] =
βdµ−mλ

πd/2βdλ
κd/2

(
δ(x− y) + 2

∫

Rd

dp

(2π)d

eip·(x−y)

eβ|p|2 − 1

)
+ o(κd/2).

2 Strategy of the Proof

In this section, we give an sketch of the proof of the main theorem. First we use the

following formula to handle the integrations of permanents

1

n!

∫
per {J(xi, xj)}16i,j6n dx1 · · · dxn =

∮

Sr(0)

dz

2πizn+1Det(1− zJ)
,

where r > 0 satisfies ||rJ || < 1. This comes form the generalized Vere-Jones’ formula

[V, ST]

Det(1− zJ)−1 =
∞∑

n=0

zn

n!

∫
per {J(xi, xj)}16i,j6n dx1 · · · dxn.
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To calculate the sum of n, we use

e−βλn2/2κd

=

√
βλ

2πκd

∫

R
dx e−

βλ

2κd ((x+is)2−2in(x+is)).

If

eβµ−βλs/κd

< r

holds, we get

Ξκ =

√
κd

2πβλ

eβλs2/2κd

Det[1− rGκ]

∫

R
dx

e−isx−κdx2/2βλ

Det[1− (eix − 1)rGκ(1− rGκ)−1]
.

It is convenient to choose (r, s) = (rκ, sκ) which is the solution of

{
r = exp

(
βµ− βλs/κd)

s = Tr [rGκ(1− rGκ)
−1].

Similarly, we have

Ξ̃κ =

√
κd

2πβλ

eβλs̃2
κ/2κd

Det[1− r̃κG̃κ]

∫

R
dx

e−is̃κx−κdx2/2βλ

Det[1− (eix − 1)r̃κG̃κ(1− r̃κG̃κ)−1]
,

where (r̃κ, s̃κ) satisfies {
r̃ = exp

(
βµ− βλs̃/κd)

s̃ = Tr [r̃G̃κ(1− r̃G̃κ)
−1].

The conditions for rκ, r̃κ can be written as

1

κd
Tr [rκGκ(1− rκGκ)

−1] =
βµ− log rκ

βλ
, (2.1)

1

κd
Tr [r̃κG̃κ(1− r̃κG̃κ)

−1] =
βµ− log r̃κ

βλ
. (2.2)

The behavior of rκ for large κ can be deduced from (2.1):

Proposition 2.1 (a) {rκ} converges to r∗ ∈ (0, 1) as κ →∞, if and only if βdµ < mλ

(high temperature region).

(b) κd(1− rκ) −→ βdλ/(βdµ−mλ), and hence limκ→∞ rκ = 1, if and only if βdµ > mλ

(low temperature region).

(c) limκ→∞ rκ = 1 and κd(1− rκ) −→ +∞ , if and only if βdµ = mλ (critical point).

The proposition gives the phase structure.
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For this type of work, we must need some estimates of the spirit of

Hκ =
1

2

(
−4+

x2

κ2
− d

κ

)
→ −1

2
4

or

Gκ = e−βHκ → G = eβ4/2

in some sense. The following lemma gives such estimates suitable to the work.

Lemma 2.2 For any r ∈ (0, 1),

||
√

1− e−f
[
rGκ(1− rGκ)

−1 − rG(1− rG)−1
]√

1− e−f ||1 → 0,

||
√

1− e−fQκGκQκ(1−QκGκQκ)
−1

√
1− e−f −Kf ||1 → 0

hold in the limit κ → ∞, where || · ||1 denotes the trace norm and Qκ the projection

onto the orthogonal subspace to the ground state.

We use the lemma to calculate the following ratio appeared in Ξ̃κ/Ξκ. For the high

temperature phase, we get

Det[1− r̃κG̃κ]

Det[1− r̃κGκ]
= Det[1 + r̃κ(Gκ − G̃κ)(1− r̃κGκ)

−1]

= Det[1 +
√

1− e−f
r̃κGκ

1− r̃κGκ

√
1− e−f ] → Det[1 +

√
1− e−f

r∗G
1− r∗G

√
1− e−f ].

For low temperature phase, the lemma is used in the second factor of the right-hand

side of
Det[1− rκGκ]

Det[1− r̃κG̃κ]
=

Det[1− r̃κQκG̃κQκ]

Det[1− r̃κG̃κ]

×Det[1− r̃κQκGκQκ]

Det[1− r̃κQκG̃κQκ]

Det[1− rκQκGκQκ]

Det[1− r̃κQκGκQκ]

Det[1− rκGκ]

Det[1− rκQκGκQκ]
(2.3)

to get

Det[1− r̃κQκGκQκ]

Det[1− r̃κQκG̃κQκ]
=

1

Det[1 + r̃κQκ(Gκ − G̃κ)Qκ(1− r̃κQκGκQκ)−1]

= Det[1 + r̃κ

√
1− e−fQκGκQκ(1− r̃κQκGκQκ)

−1
√

1− e−f ]−1 → Det[1 + Kf ]
−1.

However this factor yields a contribution of O(1). A part of the leading contributions

comes from the third factors. The first factor is calculated by means of the Feshbach

formula. For these factors, we need estimates about the difference between the largest

eigenvalues of Gκ and G̃κ. Put the eigenvalues of Gκ in decreasing order:

g
(κ)
0 = 1 > g

(κ)
1 = e−β/κ > g

(κ)
2 > · · · .
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and those of G̃κ in the decreasing order:

g̃
(κ)
0 = ||G̃κ|| > g̃

(κ)
1 > · · · .

Then the following lemma holds.

Lemma 2.3 (i) g
(κ)
j > g̃

(κ)
j (j = 0, 1, 2, · · · )

(ii) g
(κ)
0 = 1 > g̃

(κ)
0 = 1− Ô(κ−d/2) > g

(κ)
1 = 1− Ô(κ−1) > g̃

(κ)
1 .

The first part is immediate from the min-max principle. However, the second needs

some analysis for the perturbation.

The above properties about G̃κ and Gκ and (2.2) give the following behavior of r̃κ−rκ.

Lemma 2.4 (a) If βdµ < mλ (high temperature),

0 < r̃κ − rκ = O(κ−d).

(b) If βdµ > mλ (low temperature),

0 < r̃κ − rκ = O(κ−d/2).

Finally we must calculate the integration

∫

R
dx

e−isκx−κdx2/2βλ

Det[1− (eix − 1)rκGκ(1− rκGκ)−1]
(2.4)

and the corresponding one for G̃. Note that the poles of the integrand are contained in

the lower half plane. In the high temperature region (βdµ < mλ), the poles are bounded

away from the real line. In this case, expanding log Det(1 − X), we get the Gaussian

integral in the limit κ →∞ (the saddle point method). In the low temperature region

(βdµ > mλ), some part of those poles come infinitesimally close to the real axis. And it

turn out that the residue of the pole nearest to the origin is dominant for the integral.

These calculations are straightforward for (2.4). For the corresponding integrals for

G̃, we obtain the same leading terms using above Lemmas 2.3 and 2.4. Thus the

contributions of those complex integrals are reduced in the calculation of leading term

of Ξ̃κ/Ξκ.

For the critical case (βdµ = mλ), we have not ever obtained a corresponding result. In

this case, the poles also come infinitesimally close to the real axis. However, the residues

of infinitely many poles contribute to the integral comparably. So we need other idea to

study the case.
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