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1 Introduction

Superconductivity is one of the historical landmarks in condensed matter physics. Since
Onnes found out the fact that the electrical resistivity of mercury drops to zero below the
temperature 4.2K in 1911, the zero electrical resistivity is observed in many metals and
alloys. Such a phenomenon is called superconductivity, and the magnetic properties of
superconductors as well as their electric properties are also astonishing. For example, the
magnetic flux is excluded from the interior of a superconductor. This phenomenon was
observed first by Meissner in 1933, and is called the Meissner effect. In 1957 Bardeen,
Cooper and Schrieffer [1] proposed the highly successful quantum theory called the BCS
theory. The superconducting state and the Hamiltonian they dealt with are called the
BCS state and the BCS Hamiltonian, respectively. In 1958 Bogoliubov [2] obtained the
results similar to those in the BCS theory using the canonical transformation called the
Bogoliubov transformation. This theory is called the Bogoliubov theory.

The ground state of the BCS Hamiltonian is discussed by several authors. In 1961
Mattis and Lieb [5] studied the wavefunction of the ground state of the BCS Hamiltonian
under the condition that in the ground state, all the electrons in the neighborhood of the
Fermi surface are paired. See Richardson [7] and von Delft [3] for the ground state of the
BCS Hamiltonian without the condition just above. From the viewpoint of C∗-algebra,
Gerisch and Rieckers [4] studied a class of BCS-models to show that there is a unique
C∗-dynamical system for each BCS-model.

In this paper, first, we reformulate the BCS-Bogoliubov theory of superconductivity
from the viewpoint of linear algebra. We define the BCS Hamiltonian on C22M

, where M
is a positive integer. We discuss selfadjointness and symmetry of the BCS Hamiltonian
as well as spontaneous symmetry breaking. Beginning with the gap equation, we give the
well-known expression for the BCS state and find the existence of an energy gap. We also
show that the BCS state has a lower energy than the normal state. Second, we introduce
a new superconducting state explicitly and show from the viewpoint of linear algebra that
this new state has a lower energy than the BCS state. Third, beginning with our new
gap equation, we show from the viewpoint of linear algebra that we arrive at the results
similar to those in the BCS-Bogoliubov theory. See Watanabe [8] for more details.

Let L, Kmax > 0 be large enough and let us fix them. For n1, n2, n3 ∈ Z, set

Λ =

{
2π

L
(n1, n2, n3) ∈ R

3 :
2π

L

√
n2

1 + n2
2 + n2

3 ≤ Kmax

}
.

Here we do not let Kmax = ∞ for simplicity. Let the number of all the elements of Λ be
M and let wave vector k belong to Λ.
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The number nkσ of electrons with wave vector k and spin σ (σ =↑ (spin up), ↓ (spin
down)) is equal to 0 or 1, and so the number of the states

|nk↑, nk↓, nk′↑, nk′↓, . . . 〉, k, k′, . . . ∈ Λ

is equal to 22M . Here, nk↑, nk↓ = 0, 1, and the elements k and k′ are arranged in a certain
order.

We therefore choose, as our Hilbert space H,

H = C
22M

and denote each standard unit vector in H = C22M
:

ei = (0, . . . , 0,
i

1̂, 0, . . . , 0), i = 1, 2, . . . , 22M

by each state above for simplicity.
For example, we denote

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0)

by |0, 0, 0, . . . 〉, |1, 0, 0, . . . 〉, respectively. Moreover, we denote

e22M = (0, 0, . . . , 0, 1)

by |1, 1, 1, . . . 〉.
Here the symbol |0, 0, 0, . . . 〉 corresponds to the state nk↑ = nk↓ = 0 for all k ∈ Λ,

and |1, 0, 0, . . . 〉 to the state nk↑ = 1 and nk↓ = nk′σ = 0 for all k′ ∈ Λ \ {k} and for all
σ =↑, ↓. Moreover, |1, 1, 1, . . . 〉 corresponds to the state nk↑ = nk↓ = 1 for all k ∈ Λ.

We abbreviate |0, 0, 0, . . . 〉 to |0〉 and call it the vacuum vector in H = C
22M

. We
denote by (· , ·) the inner product of H = C22M

.

2 Creation and annihilation operators

We assume that each creation operator and each annihilation operator depend both on
wave vector k ∈ Λ and on spin σ of an electron. We denote the creation operator
(resp. the annihilation operator) by C∗

kσ (resp. by Ckσ). Note that | . . . , nk↑, nk↓, . . . 〉
(nk↑, nk↓ = 0, 1) stands for the corresponding standard unit vector in H = C22M

, as
mentioned in the preceding section.

Definition 2.1.{
Ck↑| . . . , nk↑, nk↓, . . . 〉 = (−1)�δ1, nk↑| . . . , nk↑ − 1, nk↓, . . . 〉,
C∗

k↑| . . . , nk↑, nk↓, . . . 〉 = (−1)�δ0, nk↑| . . . , nk↑ + 1, nk↓, . . . 〉,
where the symbol � denotes the number of electrons arranged at the left of the symbol
nk↑ above. {

Ck↓| . . . , nk↑, nk↓, . . . 〉 = (−1)��δ1, nk↓| . . . , nk↑, nk↓ − 1, . . . 〉,
C∗

k↓| . . . , nk↑, nk↓, . . . 〉 = (−1)��δ0, nk↓| . . . , nk↑, nk↓ + 1, . . . 〉,
where the symbol �� denotes the number of electrons arranged at the left of the symbol
nk↓ above.
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On the basis of the definition we regard each of the creation and annihilation operators
as a linear operator on H = C22M

. The definition immediately gives the following lemma.

Lemma 2.2. (a) The annihilation operator Ckσ is a bounded linear operator on H =
C22M

, and its adjoint operator coincides with the creation operator C∗
kσ.

(b) The operators Ckσ and C∗
kσ satisfy the canonical anticommutation relations on H =

C22M
:

{Ckσ, C∗
k′σ′} = δkk′δσσ′ , {Ckσ, Ck′σ′} = {C∗

kσ, C∗
k′σ′} = 0,

where {A, B} = AB + BA.

Remark 2.3.

|nk↑, nk↓, nk′↑, nk′↓, . . . 〉 =
(
C∗

k↑
)nk↑ (C∗

k↓
)nk↓ (C∗

k′↑
)nk′↑ (C∗

k′↓
)nk′↓ · · · |0〉.

3 The BCS Hamiltonian

Let m and μ stand for the electron mass and the chemical potential, respectively. Here,
m, μ > 0. Set ξk = �2|k|2/(2m) − μ. The BCS Hamiltonian [1] is given by

H =
∑

k∈Λ, σ=↑, ↓
ξk C∗

k σCk σ +
∑

k, k′∈Λ

Uk, k′C∗
k′↑C

∗
−k′↓C−k↓Ck↑ .

Here, Uk, k′ is a function of k and k′, and satisfies Uk, k′ ≤ 0, Uk′, k = Uk, k′, U−k,−k′ = Uk, k′

and Uk, k = 0.

Proposition 3.1. The BCS Hamiltonian H is a bounded, selfadjoint operator on H =
C22M

.

The bounded, selfadjoint operator

G =
∑

k∈Λ, σ=↑, ↓
C∗

k σCk σ

generates a strongly continuous unitary group
{
ei α G

}
α∈� on H = C22M

. As is shown just

below, the transformation ei α G gives rise to a phase transformation of the creation (the
annihilation) operator.

Proposition 3.2. Let G and H be as above. Then, for α ∈ R,

e−i α GCk σ ei α G = ei αCk σ , e−i α GC∗
k σ ei α G = e−i αC∗

k σ .

Consequently, e−i α GH ei α G = H.

Remark 3.3. The transformation ei α G leaves the BCS Hamiltonian H invariant. In this
case the BCS Hamiltonian H is said to have global U(1) symmetry.
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4 Spontaneous symmetry breaking

Definition 4.1 (Nambu and Jona-Lasinio). Let G be as above. Suppose that there
is the ground state Ψ0 ∈ H = C22M

of the BCS Hamiltonian H . The global U(1) symmetry
is said to be spontaneously broken if there is a bounded linear operator A on H = C

22M

satisfying

(Ψ0, [ G, A] Ψ0) �= 0.

Lemma 4.2. Set A = C−k↓Ck↑ in the definition above. Then

(Ψ0, [G, C−k↓Ck↑] Ψ0) = −2 (Ψ0, C−k↓Ck↑Ψ0) .

Remark 4.3. If (Ψ0, C−k↓Ck↑Ψ0) �= 0, then the global U(1) symmetry is spontaneously
broken.

Remark 4.4. The concept of spontaneous symmetry breaking was introduced first by
Nambu and Jona-Lasinio [6] in 1961. This plays an important role in quantum mechanics
such as the BCS-Bogoliubov theory and quantum gauge field theory.

5 An energy gap for excitation from the BCS state

Let Δk be a function of k ∈ Λ. We assume the existence of the following Δk : Δk satisfies
Δk ≥ 0 and Δ−k = Δk, and is a solution to the “gap equation” ([1], [2])

Δk = − 1

2

∑
k′∈Λ

Uk, k′
Δk′√

ξ2
k′ + Δ2

k′
.

Let θk be a function of k ∈ Λ and let it satisfy ([1], [2])

sin 2θk =
Δk√

ξ2
k + Δ2

k

, cos 2θk =
ξk√

ξ2
k + Δ2

k

with 0 ≤ θk ≤ π/2. Note that θ−k = θk .
We denote by GB the following bounded, selfadjoint operator on H = C22M

:

GB = i
∑
k∈Λ

θk

(
C−k↓Ck↑ − C∗

k↑C
∗
−k↓
)
.

We set ΨBCS = eiGB |0〉 ∈ H = C
22M

and call it the BCS state ([1], [2]).

Lemma 5.1 (BCS).

ΨBCS =

{∏
k∈Λ

(
cos θk + sin θk C∗

k↑C
∗
−k↓
)} |0〉.
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Remark 5.2. In 1957 Bardeen, Cooper and Schrieffer [1] introduced the well-known ex-
pression in this lemma.

Corollary 5.3.

(a) (ΨBCS , C−k↓Ck↑ΨBCS) =
(
ΨBCS , C∗

k↑C
∗
−k↓ΨBCS

)
=

1

2
sin 2θk .

(b) Δk = −
∑
k′∈Λ

Uk, k′ (ΨBCS , C−k′↓Ck′↑ΨBCS).

We replace the ground state Ψ0 of the BCS Hamiltonian by ΨBCS and set (for all
k ∈ Λ) {

C−k↓Ck↑ = (ΨBCS , C−k↓Ck↑ΨBCS) + bk ,

C∗
k↑C

∗
−k↓ =

(
ΨBCS , C∗

k↑C
∗
−k↓ΨBCS

)
+ b∗k .

Lemma 5.4. Set

HM =
∑

k∈Λ, σ=↑, ↓
ξk C∗

k σCk σ −
∑
k∈Λ

Δk

(
C−k↓Ck↑ + C∗

k↑C
∗
−k↓
)

+
∑
k∈Λ

Δk (ΨBCS , C−k↓Ck↑ΨBCS) .

Then the BCS Hamiltonian is rewritten as

H = HM +
∑

k, k′∈Λ

Uk, k′ b∗k′ bk .

Remark 5.5. The Hamiltonian HM is called the mean field approximation for the BCS
Hamiltonian H .

We now introduce the Bogoliubov transformation of Ck σ [2]:

γk σ = eiGBCk σe−iGB .

Note that the operator γk σ and its adjoint operator γ∗
k σ are both bounded linear operators

on H = C22M
.

Proposition 5.6 (Bogoliubov).

HM =
∑

k∈Λ, σ=↑, ↓

√
ξ2
k + Δ2

k γ∗
k σγk σ

+
∑
k∈Λ

{
ξk −

√
ξ2
k + Δ2

k + Δk (ΨBCS , C−k↓Ck↑ΨBCS)

}
.

Corollary 5.7. (a) The BCS state ΨBCS is the ground state of HM , and the ground
state energy EBCS is given by

EBCS =
∑
k∈Λ

{
ξk −

√
ξ2
k + Δ2

k + Δk (ΨBCS , C−k↓Ck↑ΨBCS)

}
.
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(b) Let EBCS be as in (a). Then the spectrum of HM is given by

σ (HM) =

{∑
k∈Λ

√
ξ2
k + Δ2

k ( Nk↑ + Nk↓ ) + EBCS

}
Nk↑, Nk↓=0, 1

.

Remark 5.8. The corollary above implies that it takes a finite energy
√

ξ2
k + Δ2

k (> Δk)
to excite a particle from the BCS state to an upper energy state. So the function Δk of
k ∈ Λ corresponds exactly to the energy gap, and hence Δk is called the gap function (see
Bardeen, Cooper and Schreiffer [1], and Bogoliubov [2]).

We now study some properties of the operators γk σ (see Bogoliubov [2]).

Corollary 5.9. The operators γk σ and γ∗
k σ satisfy the following.

(a) {γkσ, γ∗
k′σ′} = δkk′δσσ′ , {γkσ, γk′σ′} = {γ∗

kσ, γ∗
k′σ′} = 0.

(b) γk σΨBCS = 0 for each k ∈ Λ and for each σ =↑, ↓ .

(c)

{
γk↑ = cos θk Ck↑ − sin θk C∗

−k↓ ,

γ−k↓ = sin θk C∗
k↑ + cos θk C−k↓ .

(d)

{
Ck↑ = cos θk γk↑ + sin θk γ∗

−k↓ ,

C−k↓ = − sin θk γ∗
k↑ + cos θk γ−k↓ .

6 The BCS and normal states

Let Δk = 0 for all k ∈ Λ. Then the BCS state ΨBCS coincides with the “Fermi vacuum”
ΨF ∈ H = C22M

. Here the Fermi vacuum ΨF corresponds to the normal state and is
defined by

ΨF =

⎧⎨⎩ ∏
k (ξk≤0)

C∗
k↑C

∗
−k↓

⎫⎬⎭ |0〉,

where the symbol k (ξk ≤ 0) stands for k ∈ Λ satisfying ξk ≤ 0.

Proposition 6.1. The BCS state ΨBCS has a lower energy than the Fermi vacuum ΨF

(the normal state), i.e.,

(ΨBCS , HΨBCS) − (ΨF , HΨF ) = − 1

2

∑
k∈Λ

(√
ξ2
k + Δ2

k − |ξk|
)2

√
ξ2
k + Δ2

k

< 0 .
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7 A new superconducting state

Set Ek =
√

ξ2
k + Δ2

k , k ∈ Λ and set Bk = C−k↓Ck↑. We abbreviate sin θk (resp. cos θk) to

Sk (resp. to Ck). We consider the following vector in H = C22M
:

Ψ =
ΨBCS + Φ√
1 + (Φ, Φ)

,

where Φ =
1

2

∑
p, p′∈Λ

Up, p′
(
C2

p S2
p′ + C2

p′ S
2
p

)
Ep + Ep′

γ∗
p↑ γ∗

−p↓ γ∗
p′↑ γ∗

−p′↓ ΨBCS .

We prepare some lemmas.

Lemma 7.1. (a) (ΨBCS , Φ) = 0.
(b)

HMΦ = EBCSΦ + 2
∑

p, p′∈Λ

Ep′Up, p′
(
C2

p S2
p′ + C2

p′ S
2
p

)
Ep + Ep′

γ∗
p↑ γ∗

−p↓ γ∗
p′↑ γ∗

−p′↓ ΨBCS .

(c) (Ψ, HMΨ) = EBCS +
1

1 + (Φ, Φ)

∑
p, p′∈Λ

U 2
p, p′
(
C2

p S2
p′ + C2

p′ S
2
p

)2
Ep + Ep′

.

Set H ′ = H − HM . Then

H ′ =
∑

k, k′∈Λ

Uk, k′ {B∗
k′ Bk − Ck′ Sk′ (B∗

k + Bk) + Ck Sk Ck′ Sk′} .

Lemma 7.2. Let H ′ be as above.
(a) H ′ΨBCS = −

∑
k, k′∈Λ

Uk, k′ S2
k C2

k′ γ∗
k↑ γ∗

−k↓ γ∗
k′↑ γ∗

−k′↓ ΨBCS .

(b) (ΨBCS , H ′ΨBCS) = 0.

(c) (Φ, H ′ΨBCS) = − 1

2

∑
p, p′∈Λ

U 2
p, p′
(
C2

p S2
p′ + C2

p′ S
2
p

)2
Ep + Ep′

.

Lemma 7.3. (a)

BkΦ =
(
Ck Sk − S2

k γ∗
k↑γ

∗
−k↓
)
Φ + C2

k

∑
p∈Λ

Uk, p

(
C2

k S2
p + C2

p S2
k

)
Ek + Ep

γ∗
p↑ γ∗

−p↓ΨBCS

−2Ck Sk

∑
p∈Λ

Uk, p

(
C2

k S2
p + C2

p S2
k

)
Ek + Ep

γ∗
k↑ γ∗

−k↓γ
∗
p↑ γ∗

−p↓ΨBCS .

(b) (Φ, BkΦ) = Ck Sk

{
(Φ, Φ) − 2

∑
p∈Λ

U 2
k, p

(
C2

k S2
p + C2

p S2
k

)2
(Ek + Ep)

2

}
.
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(c)

(Φ, B∗
k′BkΦ)

= Ck Sk Ck′ Sk′

[
(Φ, Φ)

− 2
∑
p∈Λ

{
U 2

k, p

(
C2

k S2
p + C2

p S2
k

)2
(Ek + Ep)

2 +
U 2

k′, p
(
C2

k′ S2
p + C2

p S2
k′
)2

(Ek′ + Ep)
2

}]

+4Ck Sk Ck′ Sk′
U 2

k, k′ (C2
k S2

k′ + C2
k′ S2

k)
2

(Ek + Ek′)2

+
(
C2

k C2
k′ + S2

k S2
k′
)∑

p∈Λ

Uk, pUk′, p
(
C2

k S2
p + C2

p S2
k

) (
C2

k′ S2
p + C2

p S2
k′
)

(Ek + Ep) (Ek′ + Ep)
.

Let


E =
∑

k, k′∈Λ

Uk, k′
C2

k C2
k′ + S2

k S2
k′

1 + (Φ, Φ)
×

×
∑
p∈Λ

Uk, pUk′, p
(
C2

k S2
p + C2

p S2
k

) (
C2

k′ S2
p + C2

p S2
k′
)

(Ek + Ep) (Ek′ + Ep)

+4
∑

k, k′∈Λ

Uk, k′
Ck Sk Ck′ Sk′

1 + (Φ, Φ)

U 2
k, k′ (C2

k S2
k′ + C2

k′ S2
k)

2

(Ek + Ek′)2 .

Note that 
E < 0.

Lemma 7.4. Let H ′ and 
E be as above. Then

(Φ, H ′Φ) = { 1 + (Φ, Φ) }
E.

We now show that the state Ψ above has a lower energy than the BCS state ΨBCS .

Theorem 7.5. The state Ψ has a lower energy than the BCS state ΨBCS, and hence
than the Fermi vacuum ΨF ,i.e.,

(Ψ, HΨ) − (ΨBCS , HΨBCS) = 
E < 0.

8 A new gap equation

We use the BCS state ΨBCS to deal with the expectation values of the operators C−k↓Ck↑
and C∗

k↑C
∗
−k↓.

But we originally need to use the ground state of the BCS Hamiltonian to deal with
the expectation values of such operators. The ground state of the BCS Hamiltonian is
studied by several authors. See Mattis and Lieb [5], Richardson [7] and von Delft [3] for
example. They assumed that Uk, k′ is a negative constant if k and k′ both belong to the
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neighborhood of the Fermi surface, and 0 otherwise. So little is known about the ground
state when Uk, k′ does not satisfy the assumption just above.

We therefore try to use our superconducting state Ψ in the preceding section instead.
This is because our state Ψ has a lower energy than the BCS state ΨBCS . To this end we
begin with a new gap equation.

Let Δ̃k be a function of k ∈ Λ. We assume the existence of the following Δ̃k : Δ̃k

satisfies Δ̃k ≥ 0 and Δ̃−k = Δ̃k, and is also a solution to the new gap equation

Δ̃k = − 1

2

∑
k′∈Λ

Uk, k′
Δ̃k′√

ξ2
k′ + Δ̃2

k′

(
1 − 4Dk′

D + 2

)
,

where

Dk′ =
1

4

∑
p∈Λ

U 2
k′, p(√

ξ2
k′ + Δ̃2

k′ +
√

ξ2
p + Δ̃2

p

)2 ×

×

⎛⎜⎝1 − ξk′ ξp√
ξ2
k′ + Δ̃2

k′

√
ξ2
p + Δ̃2

p

⎞⎟⎠
2

,

D =
∑
k′∈Λ

Dk′ .

Remark 8.1. A numerical calculation gives 4Dk′/(D + 2) ≤ O(10−17) in the case of alu-

minum. So it is expected that Δ̃k is nearly equal to Δk and that Δ̃k ≥ 0.

Let θ̃k be a function of k ∈ Λ and let it satisfy

sin 2θ̃k =
Δ̃k√

ξ2
k + Δ̃2

k

, cos 2θ̃k =
ξk√

ξ2
k + Δ̃2

k

with 0 ≤ θ̃k ≤ π/2. Note that θ̃−k = θ̃k .

We denote by G̃B the following bounded, selfadjoint operator on H = C22M
:

G̃B = i
∑
k∈Λ

θ̃k

(
C−k↓Ck↑ − C∗

k↑C
∗
−k↓
)
.

We set Ψ̃BCS = ei �GB |0〉 ∈ H = C
22M

.

Lemma 8.2. Ψ̃BCS =

{∏
k∈Λ

(
cos θ̃k + sin θ̃k C∗

k↑C
∗
−k↓
)}

|0〉.

Corollary 8.3.(
Ψ̃BCS , C−k↓Ck↑Ψ̃BCS

)
=
(
Ψ̃BCS , C∗

k↑C
∗
−k↓Ψ̃BCS

)
=

1

2
sin 2θ̃k .
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We introduce another Bogoliubov transformation of Ck σ:

γ̃k σ = ei �GBCk σe−i �GB .

Note that the operator γ̃k σ and its adjoint operator γ̃∗
k σ are both bounded linear operators

on H = C22M
.

Corollary 8.4. The operators γ̃k σ and γ̃∗
k σ satisfy the following.

(a) {γ̃kσ, γ̃∗
k′σ′} = δkk′δσσ′ , {γ̃kσ, γ̃k′σ′} = {γ̃∗

kσ, γ̃∗
k′σ′} = 0.

(b) γ̃k σΨ̃BCS = 0 for each k ∈ Λ and for each σ =↑, ↓ .

(c)

⎧⎨⎩ γ̃k↑ = cos θ̃k Ck↑ − sin θ̃k C∗
−k↓ ,

γ̃−k↓ = sin θ̃k C∗
k↑ + cos θ̃k C−k↓ .

(d)

⎧⎨⎩ Ck↑ = cos θ̃k γ̃k↑ + sin θ̃k γ̃∗
−k↓ ,

C−k↓ = − sin θ̃k γ̃∗
k↑ + cos θ̃k γ̃−k↓ .

Set Ẽk =

√
ξ2
k + Δ̃2

k , k ∈ Λ and set Bk = C−k↓Ck↑. We abbreviate sin θ̃k (resp. cos θ̃k)

to S̃k (resp. to C̃k). We now consider the following vector in H = C22M
:

Ψ̃ =
Ψ̃BCS + Φ̃√
1 +
(
Φ̃, Φ̃

) ,

where

Φ̃ =
1

2

∑
p, p′∈Λ

Up, p′
(
C̃2

p S̃2
p′ + C̃2

p′ S̃
2
p

)
Ẽp + Ẽp′

γ̃∗
p↑ γ̃∗

−p↓ γ̃∗
p′↑ γ̃∗

−p′↓ Ψ̃BCS .

For all k ∈ Λ, set ⎧⎪⎨⎪⎩
C−k↓Ck↑ =

(
Ψ̃, C−k↓Ck↑Ψ̃

)
+ b̃k ,

C∗
k↑C

∗
−k↓ =

(
Ψ̃, C∗

k↑C
∗
−k↓Ψ̃

)
+ b̃∗k .

Corollary 8.5. Δ̃k = −
∑
k′∈Λ

Uk, k′
(
Ψ̃, C−k′↓Ck′↑Ψ̃

)
.

Lemma 8.6. Set

H̃M =
∑

k∈Λ, σ=↑, ↓
ξk C∗

k σCk σ −
∑
k∈Λ

Δ̃k

(
C−k↓Ck↑ + C∗

k↑C
∗
−k↓
)

+
∑
k∈Λ

Δ̃k

(
Ψ̃, C−k↓Ck↑Ψ̃

)
.

Then the BCS Hamiltonian is rewritten as

H = H̃M +
∑

k, k′∈Λ

Uk, k′ b̃∗k′ b̃k .
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Remark 8.7. The Hamiltonian H̃M as well as HM is also the mean field approximation
for the BCS Hamiltonian H .

Proposition 8.8.

H̃M =
∑

k∈Λ, σ=↑, ↓

√
ξ2
k + Δ̃2

k γ̃∗
k σγ̃k σ

+
∑
k∈Λ

{
ξk −

√
ξ2
k + Δ̃2

k + Δ̃k

(
Ψ̃, C−k↓Ck↑Ψ̃

)}
.

Corollary 8.9. (a) The state Ψ̃BCS is the ground state of H̃M , and the ground state

energy ẼBCS is given by

ẼBCS =
∑
k∈Λ

{
ξk −

√
ξ2
k + Δ̃2

k + Δ̃k

(
Ψ̃, C−k↓Ck↑Ψ̃

)}
.

(b) Let ẼBCS be as in (a). Then the spectrum of H̃M is given by

σ
(
H̃M

)
=

{∑
k∈Λ

√
ξ2
k + Δ̃2

k (Nk↑ + Nk↓ ) + ẼBCS

}
Nk↑, Nk↓=0, 1

.

Remark 8.10. We see from the corollary above that it takes a finite energy

√
ξ2
k + Δ̃2

k

(> Δ̃k) to excite a particle from the state Ψ̃BCS to an upper energy state. So Δ̃k as

well as Δk corresponds exactly to the energy gap, and hence Δ̃k as well as Δk is the gap
function.

Remark 8.11. Beginning with our new gap equation we arrive at the results similar to
those in the BCS-Bogoliubov theory.
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