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We study a hydrodynamic limit approach to move-to-front rules. Namely, we
consider a stochastic process of particles aligned in a line, each of which jumps
randomly to the top, and study a large particle number limit. A scaling limit of the
joint empirical distribution of jump rate and position satisfies a system of Burgers
type partial differential equations. Results are applied to the search cost probabilities
for the least-recently-used caching in the data theory of computer sciences.

1. Move-to-front rules. Let N be a positive integer, and SN a set of all
permutations of 1, 2, · · · , N , and define a Markov process

X(N)(t) = (X
(N)
1 (t), · · · , X(N)

N (t)), t � 0,

with the state space SN , as follows. For each i = 1, 2, . . . , N , let τ
(N)
i,j , j = 1, 2, · · ·, be

an increasing sequence of random variables (jump times, to be specified shortly), and

we define X(N)(t) to be constant in t for t �∈ {τ (N)
i,j | i = 1, 2, · · · , N, j = 1, 2, · · ·}.

At a jump time t = τi,j , we define X
(N)
i (τi,j) = 1, and for i′ �= i,

X
(N)
i′ (τi,j) = X

(N)
i′ (τi,j − 0) +

{
1, if X

(N)
i′ (τi,j − 0) < X

(N)
i (τi,j − 0),

0, if X
(N)
i′ (τi,j − 0) > X

(N)
i (τi,j − 0).

For convenience, we put τ
(N)
i,0 = 0 (∀i), and we define {τ (N)

i,j+1 − τ
(N)
i,j , j = 0, 1, 2, · · ·}

to be independent in i and j, identical in distribution for all j, whose distribution is
the exponential distribution with parameter w

(N)
i > 0: P[ τ

(N)
i,1 > t ] = exp(−w

(N)
i t).

Note that as in the standard Poisson process, with probability 1 the jump times are
different for different (i, j). This completes the definition of the process X(N).

In the following, we regard X(N) as an N particle system aligned on a single
line, with the suffix i in X

(N)
i (t) standing for the label of the particle and X

(N)
i (t)

denoting the position (rank) of the particle i at time t.

2. Hydrodynamic limit. We embed SN ⊂ R+ and scale by N to consider a

particle system in an interval [0, 1); Y
(N)
i (t) :=

1

N
(X

(N)
i (t)−1)．Note that y

(N)
C (t) =

1

N
�{i | τi,1 � t} ∈ [0, 1) is the boundary of particles which jumped to the top position

and those which has not jumped up to time t. In the following we denote by δa the

unit distribution concentrated on a, and assume λ(N) :=
1

N

N∑
i=1

δ
w

(N)
i

→ λ weakly as

N → ∞, for a probability distribution λ.

Proposition 1([1]). y
(N)
C (t) → yC(t) := 1 −

∫ ∞

0

e−wt λ(dw) (N → ∞, in prob.). �

Consider a joint empirical distribution µ
(N)
t =

1

N

N∑
i=1

δ
(w

(N)
i ,Y

(N)
i (t))

.

Theorem 2([1])．Assume

∫ ∞

0

wλ(dw) < ∞ and λ({0}) = 0, and assume that

the initial distribution µ
(N)
0 determined by the initial configuration Y (N)(0) = y(N)

converges weakly to a distribution µ0 as N → ∞. Then for each t > 0, there exists
a deterministic distribution µt such that µ

(N)
t → µt as N → ∞. µt is given by

U(dw, y, t) := µt(dw, [y, 1)) =

{
λ(dw) e−wt0(y) , y < yC(t),
U(dw, ŷ(y, t), 0) e−wt , y > yC(t),
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where, t = t0(y) is the inverse function of y = yC(t), and ŷ(y, t) is the inverse

function in y of yC(y, t) = 1 −
∫ 1

y

∫ ∞

0

e−wtµ0(dw, dz). �

The assumption

∫ ∞

0

wλ(dw) < ∞ is unnecessary for the convergence at y > 0.

3. Burgers type equation. We succeeded in proving Theorem 2 by guessing
the explicit formula for µt correctly, and then by proving the convergence. The
explicit formula hence is of importance, which we found as a solution to a following
system of PDEs. Consider the case where there are at most countable types of jump

rates; λ =
∑

α

ραδfα, where fα and ρα are positive constants, satisfying
∑

α

ρα = 1.

Proposition 3([2])．Uα(y, t) := U({fα}, y, t) = µt({fα}, [y, 1)) is a unique classical
time global solution to the following initial value problem:
∂ Uα

∂t
(y, t) +

∑
β

fβ Uβ(y, t)
∂ Uα

∂y
(y, t) = −fαUα(y, t), (y, t) ∈ [0, 1) × [0,∞), α =

1, 2, · · ·, with boundary conditions Uα(0, t) = ρα, t � 0，α = 1, 2, · · ·. For each
α, the initial data Uα(y, 0) = Uα(y), 0 � y < 1, are smooth, non-negative, non-

decreasing, satisfying
∑

β

fβUβ(0) < ∞ and
∑

β

Uβ(y) = 1 − y. �

This system is solved by a standard method of characteristic curves, with explicit
formula containing inverse functions such as t0 of the characteristic curve yC . Hence
the idea of hydrodynamic limit is of relevance to the results. (Incidentally, the
method of characteristic curves gives time local solutions, while the assumptions on
initial data satisfies no-shock wave condition, implying time global solution.)

4. Search cost. There is a large number of studies concerning move-to-front
rule in the context of data theory in computer sciences. The LRU (least-recently-
used) caching as a data allocation algorithm in computer memory or web page
browsing is equivalent to move-to-front rule, with a data request corresponding to
a particle jumping to the top position. The search cost CN defined as the position
of the first requested data just before the request is of interest. See [4] for refer-

ences. We have
1

N
CN = Y

(N)

Q(N)(t)
(t), where Q(N)(t) is the label of the particle which

jumped first after time t, to which we can apply Theorem 2 to obtain, for example,

lim
N→∞

Pt[
1

N
CN(t) > x ] =

∫∫
w µy,t(dw) dy∫

w λ(dw)
.

Stationary distribution E∞[ · ] for N < ∞ has naturally been studied since the
model’s first appearance in the literature [5]. By having the initial configuration y(N)

distribute under E∞[ · ], we can handle the stationary distribution µ(N)
∞ = E∞[ µ

(N)
0 ]

for the joint jump rate and position distribution in our framework. Theorem 2 then

implies, for example, lim
N→∞

P∞[
1

N
CN > x ] =

∫
we−wt0(x)λ(dw)∫

wλ(dw)
.
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