Hydrodynamic limit of move-to-front rules and LRU caching

Tetsuya Hattori (Keio Univ.)
Kumiko Hattori (Tokyo Metropolitan Univ.)

We study a hydrodynamic limit approach to move-to-front rules. Namely, we consider a stochastic process of particles aligned in a line, each of which jumps randomly to the top, and study a large particle number limit. A scaling limit of the joint empirical distribution of jump rate and position satisfies a system of Burgers type partial differential equations. Results are applied to the search cost probabilities for the least-recently-used caching in the data theory of computer sciences.

1. Move-to-front rules. Let N be a positive integer, and \mathcal{S}_{N} a set of all permutations of $1,2, \cdots, N$, and define a Markov process

$$
X^{(N)}(t)=\left(X_{1}^{(N)}(t), \cdots, X_{N}^{(N)}(t)\right), \quad t \geqq 0
$$

with the state space \mathcal{S}_{N}, as follows. For each $i=1,2, \ldots, N$, let $\tau_{i, j}^{(N)}, j=1,2, \cdots$, be an increasing sequence of random variables (jump times, to be specified shortly), and we define $X^{(N)}(t)$ to be constant in t for $t \notin\left\{\tau_{i, j}^{(N)} \mid i=1,2, \cdots, N, j=1,2, \cdots\right\}$. At a jump time $t=\tau_{i, j}$, we define $X_{i}^{(N)}\left(\tau_{i, j}\right)=1$, and for $i^{\prime} \neq i$,

$$
X_{i^{\prime}}^{(N)}\left(\tau_{i, j}\right)=X_{i^{\prime}}^{(N)}\left(\tau_{i, j}-0\right)+ \begin{cases}1, & \text { if } X_{i^{\prime}}^{(N)}\left(\tau_{i, j}-0\right)<X_{i}^{(N)}\left(\tau_{i, j}-0\right), \\ 0, & \text { if } X_{i^{\prime}}^{(N)}\left(\tau_{i, j}-0\right)>X_{i}^{(N)}\left(\tau_{i, j}-0\right) .\end{cases}
$$

For convenience, we put $\tau_{i, 0}^{(N)}=0(\forall i)$, and we define $\left\{\tau_{i, j+1}^{(N)}-\tau_{i, j}^{(N)}, j=0,1,2, \cdots\right\}$ to be independent in i and j, identical in distribution for all j, whose distribution is the exponential distribution with parameter $w_{i}^{(N)}>0: \mathrm{P}\left[\tau_{i, 1}^{(N)}>t\right]=\exp \left(-w_{i}^{(N)} t\right)$. Note that as in the standard Poisson process, with probability 1 the jump times are different for different (i, j). This completes the definition of the process $X^{(N)}$.

In the following, we regard $X^{(N)}$ as an N particle system aligned on a single line, with the suffix i in $X_{i}^{(N)}(t)$ standing for the label of the particle and $X_{i}^{(N)}(t)$ denoting the position (rank) of the particle i at time t.
2. Hydrodynamic limit. We embed $\mathcal{S}_{N} \subset \mathbb{R}_{+}$and scale by N to consider a particle system in an interval $[0,1) ; Y_{i}^{(N)}(t):=\frac{1}{N}\left(X_{i}^{(N)}(t)-1\right)$. Note that $y_{C}^{(N)}(t)=$ $\frac{1}{N} \sharp\left\{i \mid \tau_{i, 1} \leqq t\right\} \in[0,1)$ is the boundary of particles which jumped to the top position and those which has not jumped up to time t. In the following we denote by δ_{a} the unit distribution concentrated on a, and assume $\lambda^{(N)}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{w_{i}^{(N)}} \rightarrow \lambda$ weakly as $N \rightarrow \infty$, for a probability distribution λ.
Proposition $1([1]) . y_{C}^{(N)}(t) \rightarrow y_{C}(t):=1-\int_{0}^{\infty} e^{-w t} \lambda(d w)(N \rightarrow \infty$, in prob.). \diamond Consider a joint empirical distribution $\mu_{t}^{(N)}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\left(w_{i}^{(N)}, Y_{i}^{(N)}(t)\right)}$.
Theorem 2([1]). Assume $\int_{0}^{\infty} w \lambda(d w)<\infty$ and $\lambda(\{0\})=0$, and assume that the initial distribution $\mu_{0}^{(N)}$ determined by the initial configuration $Y^{(N)}(0)=y^{(N)}$ converges weakly to a distribution μ_{0} as $N \rightarrow \infty$. Then for each $t>0$, there exists a deterministic distribution μ_{t} such that $\mu_{t}^{(N)} \rightarrow \mu_{t}$ as $N \rightarrow \infty . \mu_{t}$ is given by

$$
U(d w, y, t):=\mu_{t}(d w,[y, 1))= \begin{cases}\lambda(d w) e^{-w t_{0}(y)}, & y<y_{C}(t), \\ U(d w, \hat{y}(y, t), 0) e^{-w t}, & y>y_{C}(t),\end{cases}
$$

where, $t=t_{0}(y)$ is the inverse function of $y=y_{C}(t)$, and $\hat{y}(y, t)$ is the inverse function in y of $y_{C}(y, t)=1-\int_{y}^{1} \int_{0}^{\infty} e^{-w t} \mu_{0}(d w, d z)$.
The assumption $\int_{0}^{\infty} w \lambda(d w)<\infty$ is unnecessary for the convergence at $y>0$.
3. Burgers type equation. We succeeded in proving Theorem 2 by guessing the explicit formula for μ_{t} correctly, and then by proving the convergence. The explicit formula hence is of importance, which we found as a solution to a following system of PDEs. Consider the case where there are at most countable types of jump rates; $\lambda=\sum_{\alpha} \rho_{\alpha} \delta_{f_{\alpha}}$, where f_{α} and ρ_{α} are positive constants, satisfying $\sum_{\alpha} \rho_{\alpha}=1$.
Proposition 3([2]). $U_{\alpha}(y, t):=U\left(\left\{f_{\alpha}\right\}, y, t\right)=\mu_{t}\left(\left\{f_{\alpha}\right\},[y, 1)\right)$ is a unique classical time global solution to the following initial value problem:
$\frac{\partial U_{\alpha}}{\partial t}(y, t)+\sum_{\beta} f_{\beta} U_{\beta}(y, t) \frac{\partial U_{\alpha}}{\partial y}(y, t)=-f_{\alpha} U_{\alpha}(y, t),(y, t) \in[0,1) \times[0, \infty), \alpha=$
$1,2, \cdots$, with boundary conditions $U_{\alpha}(0, t)=\rho_{\alpha}, t \geqq 0, \alpha=1,2, \cdots$. For each α, the initial data $U_{\alpha}(y, 0)=U_{\alpha}(y), 0 \leqq y<1$, are smooth, non-negative, nondecreasing, satisfying $\sum_{\beta} f_{\beta} U_{\beta}(0)<\infty$ and $\sum_{\beta} U_{\beta}(y)=1-y$.

This system is solved by a standard method of characteristic curves, with explicit formula containing inverse functions such as t_{0} of the characteristic curve y_{C}. Hence the idea of hydrodynamic limit is of relevance to the results. (Incidentally, the method of characteristic curves gives time local solutions, while the assumptions on initial data satisfies no-shock wave condition, implying time global solution.)
4. Search cost. There is a large number of studies concerning move-to-front rule in the context of data theory in computer sciences. The LRU (least-recentlyused) caching as a data allocation algorithm in computer memory or web page browsing is equivalent to move-to-front rule, with a data request corresponding to a particle jumping to the top position. The search $\operatorname{cost} C_{N}$ defined as the position of the first requested data just before the request is of interest. See [4] for references. We have $\frac{1}{N} C_{N}=Y_{Q^{(N)}(t)}^{(N)}(t)$, where $Q^{(N)}(t)$ is the label of the particle which jumped first after time t, to which we can apply Theorem 2 to obtain, for example, $\lim _{N \rightarrow \infty} \mathrm{P}_{t}\left[\frac{1}{N} C_{N}(t)>x\right]=\frac{\iint w \mu_{y, t}(d w) d y}{\int w \lambda(d w)}$.

Stationary distribution $\mathrm{E}_{\infty}[\cdot]$ for $N<\infty$ has naturally been studied since the model's first appearance in the literature [5]. By having the initial configuration $y^{(N)}$ distribute under $\mathrm{E}_{\infty}[\cdot]$, we can handle the stationary distribution $\mu_{\infty}^{(N)}=\mathrm{E}_{\infty}\left[\mu_{0}^{(N)}\right]$ for the joint jump rate and position distribution in our framework. Theorem 2 then implies, for example, $\lim _{N \rightarrow \infty} \mathrm{P}_{\infty}\left[\frac{1}{N} C_{N}>x\right]=\frac{\int w e^{-w t_{0}(x)} \lambda(d w)}{\int w \lambda(d w)}$.

References.

[1] K. Hattori, T. Hattori, Stochastic Processes \& Applications 119 (2009) 966-979.
[2] K. Hattori, T. Hattori, Funkcialaj Ekvacioj (2009), to appear.
[3] K. Hattori, T. Hattori, preprint (2008).
[4] K. Hattori, T. Hattori, preprint (2009).
[1-4] available at http://web.econ.keio.ac.jp/staff/hattori/liamazn.htm.
[5] M. L. Tsetlin, Russian Math. Surv. 18(4) (1963) 1-27.

