Asymptotic behavior of the gyration radius for long-range oriented percolation and long-range self-avoiding walk

Akira Sakai
CRIS, Hokkaido University

Let $\alpha>0$ and consider random walk and self-avoiding walk on \mathbb{Z}^{d} whose 1-step distribution is given by $D(x) \approx|x / L|^{-d-\alpha}$ for some $L \in[1, \infty)$ such that

$$
1-\hat{D}(k)=v_{\alpha}|k|^{\alpha \wedge 2} \times \begin{cases}1+O\left(|k|^{\epsilon}\right) & (\alpha \neq 2), \\ \log \frac{1}{|k|}+O(1) & (\alpha=2),\end{cases}
$$

for some $v_{\alpha}=O\left(L^{\alpha \wedge 2}\right)$. We also consider oriented percolation on $\mathbb{Z}^{d} \times \mathbb{Z}_{+}$ whose bond-occupation probability for each bond $((u, s),(v, s+1))$ is given by $p D(v-u)$, where $p \geq 0$, independently of $s \in \mathbb{Z}_{+}$. Let $\varphi_{t}(x)$ denote the two-point functions for those three models simultaneously.

In the recent joint work [2], we have proved, in a unified fashion, sharp asymptotics of the generating function of the sequence $\sum_{x \in \mathbb{Z}^{d}}\left|x_{1}\right|^{r} \varphi_{t}(x)$, where $x=\left(x_{1}, \ldots, x_{d}\right)$ and $r \in(0, \alpha)$, for random walk in any dimension with any L and for self-avoiding walk and critical/subcritical oriented percolation above the common upper-critical dimension $d_{\mathrm{c}}=2(\alpha \wedge 2)$ with $L \gg 1$. As a result, we obtain that, for every $r \in(0, \alpha)$,

$$
\frac{\sum_{x \in \mathbb{Z}^{d}}\left|x_{1}\right|^{r} \varphi_{t}(x)}{\sum_{x \in \mathbb{Z}^{d}} \varphi_{t}(x)} \underset{t \rightarrow \infty}{\sim} \frac{2 \sin \frac{r \pi}{\alpha \sqrt{2}}}{(\alpha \wedge 2) \sin \frac{r \pi}{\alpha}} \frac{\Gamma(r+1)}{\Gamma\left(\frac{r}{\alpha \wedge 2}+1\right)} \times \begin{cases}\left(C_{\alpha} t\right)^{\frac{r}{\alpha \wedge^{2}}} & (\alpha \neq 2), \\ \left(C_{2} t \log t\right)^{r / 2} & (\alpha=2),\end{cases}
$$

where the constant C_{α} depends only on the zeroth and first moments for the time variable of the lace-expansion coefficients when $\alpha \leq 2$, and only on those two quantities and the second moment for the spacial variable of the expansion coefficients when $\alpha>2$. This solves the open problems in $[1,3]$.

References

[1] L.-C. Chen and A. Sakai. Critical behavior and the limit distribution for long-range oriented percolation. II: Spatial correlation. Probab. Theory Relat. Fields 145 (2009): 435-458.
[2] L.-C. Chen and A. Sakai. Asymptotic behavior of the gyration radius for long-range oriented percolation and long-range self-avoiding walk. In preparation.
[3] M. Heydenreich. Long-range self-avoiding walk converges to alpha-stable processes. Preprint, arXiv:0809.4333v1 (2008).

