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1. Introduction

Dissipative cavity soliton is an optical localized spatial pattern caused by a kind of

coherent structure in optical nonlinear medium (for example, a Kerr cavity medium).

This is an optical soliton-like pattern, but which is different from the so-called “soliton”

in conservative system, because this is because of proportion among input driving force

and detuning and dissipation for light in nonlinear medium. This is also a kind of

dissipative structure based on excitability of the nonlinear medium. Recently, a lot

of reports have been done from both experimental and theoretical point of views of

physics, for instance, in [2] and in [3]. Especially, we can see the brief history and the

underlying nonlinear optics of cavity and feedback soliton in the review article written

by Professors, T. Ackemann and W.J. Firth [1] and the references therein ([5, 11, 24]

for example).

In this article, we are mainly concerned with clearing out a mathematical aspect of

the phenomena and with giving mathematically rigorous proofs to basic theorems in one

space dimensional bounded interval at a point where the homogeneous steady state loses

its stability and makes a bifurcation, and moreover, with showing perspectives in the

future from a viewpoint of mathematical physics with rigorous mathematical argument.

One of interesting, but difficult points of this problem is lack of variational (Hamiltonian)

structure, which is very useful and important technique ensuring existence of this kind

of pulsating solutions. Because of the lack of this useful structure, we cannot apply

the dynamical system technique of reversible system of 1:1 resonance, and also not

apply the variational method as PDE technique by which, for instance, a ground state

of conservative system of nonlinear Schrödinger equations with a cubic nonlinearity is

captured.

We now introduce the model equation of initial-boundary value problem in one

space dimension:

∂E

∂t
= −(1 + iθ)E + ib2∆E + Ein + i|E|2E, x ∈ Ω, t > 0 (1.1)

E(−1

2
, t) = E(

1

2
, t),

∂E

∂x
(−1

2
, t) =

∂E

∂x
(
1

2
, t), t > 0 (1.2)

E(x, 0) = E0(x), x ∈ Ω (1.3)

where Ω = (−1
2
, 1

2
) ⊂ R, ∆ = ∂2/∂x2 is the Laplacian and i is the imaginary unit. θ ≥ 0

is a detuning parameter and b2 ∈ R is a diffraction constant, and both are constants.

Suppose that the homogeneous driving field Ein is real and positive. Here, E denotes the

slowly varying envelope of the electric field. (1.1) describes physically a unidirectional

ring or Fabry-Perot cavity with plane mirrors containing a Kerr medium driven by a

coherent plane-wave field (see Lugiato and Lefever, [20]).

Note that (1.1) has a homogeneous equilibrium point ES given implicitly by

ES =
Ein

1 + i(θ − IS)
, (1.4)
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where IS = |ES|2. Or, we can easily obtain

|Ein|2 = IS
{
1 + (IS − θ)2} . (1.5)

This cubic steady-state curve IS(|Ein|2) is single-valued for θ <
√

3 while it is multi-

valued for θ >
√

3 and leads to a hysteresis. Let us denote ES as it when we take one

of the homogeneous equilibrium states, even if there are two homogeneous states. We

define an auxiliary complex field A(x, t) by

E = ES(1 + A), (1.6)

and we consider the following equation near the homogeneous state ES:

∂A

∂t
= −(1 + iθ)A+ ib2∆A+ iIs

(
2A+ Ā+ A2 + 2|A|2 + |A|2A

)
. (1.7)

Obviously, A = 0 is a homogeneous equilibrium point of (1.7) and corresponds to ES

by the transformation. One of advantages is that (1.7) turns to be autonomous, but

instead of this, the equation has Ā term so that we should be careful to analyze it a

little.

The rest of this paper is composed of the following sections: In the section 2, we

make an analysis of time evolution equation to determine the long time behavior of the

solution roughly. There exists a finite dimensional global attractor of the dynamical

system defined by (1.1). In the section 3, we make stability and bifurcation analysis

about the homogeneous steady state of ES. We get a theorem in which zero eigenvalue

occurs at a certain critical value of IS. Moreover, the dimension of zero eigenspace is

two, but this has a kind of symmetry. Therefore the bifurcation analysis with a group

symmetry can be applicable ([8] and [9]) for us to get the bifurcation theorem. The

stability of the bifurcation solution will be determined by the theory. Moreover, we

make a much finer analysis at the codimension two bifurcation point to give a proof

to the “fold bifurcation” around the singular point. In the consequence, the bending

solution branch at least once has been captured in an adequate parameter area near the

singularity, which means that a part of the global bifurcation structure is infinitesimally

folding into the singularity with codimension two, although this type analysis is only

for “roll” solutions.

2. Existence of solutions and attractors

2.1. Formulation

We consider the Cauchy problem of the Lugiato-Lefever equation (1.1)-(1.3) on an

interval (−1
2
, 1

2
). It is a weakly dissipative equation, that is, the dissipation occurs

only on the lowest-order terms. We mainly impose periodic boundary conditions.

Remark that, however, the existence result is also valid for the homogeneous Dirichlet

or Neumann boundary conditions on a finite interval.

By an appropriate rescaling, (1.1) can be rewritten as

iut + uxx + g(|u|2)u+ iu = f, x ∈ (0, L) ⊂ R, (2.1)
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where u(x, t) = E(x, t), f(x) = iEin(x), L = 1/b and g(σ) = σ − θ(σ ≥ 0). Now the

boundary conditions are replaced by

u(0, t) = u(L, t), ux(0, t) = ux(L, t). (2.2)

Define two functions related to g by

h(s) = sg(s), G(s) =

∫ s

0

g(σ) dσ. (2.3)

In addition, we set G+(s) = max(G(s), 0) and G−(s) = max(−G(s), 0). We obtain the

following two conditions

• lim
s→+∞

G+(s)

s3
= 0, (2.4)

• there exists ω > 0 such that

lim sup
s→+∞

h(s) − ωG(s)

s3
= 0. (2.5)

This is precisely the case treated in [7].

Let us introduce some notations. Let H = L2 be the space of complex-valued

L2-functions on Ω equipped with the standard scalar product and norm. Let Hk be

the subspace of H such that for u ∈ H, u and ∂ju
∂xj belong to H for j = 1, . . . , k, and

x 7→ u(x) and x 7→ ∂ju
∂xj (x) are L-periodic for j = 1, . . . k − 1. Let A be an unbounded

linear operator on H, Av = −vxx, with domain D(A) = H2. We denote by wj and λj

the eigenvectors and eigenvalues of A in H

Awj = λjwj, j ≥ 1

0 ≤ λ1 ≤ λ2 ≤ . . . , λj → ∞ as j → ∞.
(2.6)

The powers As of A, s ∈ R, are well defined with domain D(As)

D(As) =

{
u ∈ H ;

∞∑
j=1

λ2s
j (u,wj)

2 <∞

}
.

We have V = D(A 1
2 ),V ′ = D(A− 1

2 )(after identification of H and its dual H′).

2.2. Existence results

According to Ghidaglia[7], existence and uniqueness of the solution to the Cauchy

problem for (2.1) with initial condition u(0) = u0:

Theorem 2.1. For every u0 ∈ V and f satisfying

f ∈ L∞
loc(R,H), ft ∈ L∞

loc(R,V ′), (2.7)

the Cauchy problem for (2.1) with initial condition u(0) = u0 possesses a unique solution

and for every t ∈ R, the mapping u0 → u(t) is continuous on V. Moreover, if we have

f ∈ L∞(R+,H), ft ∈ L∞(R+,V ′),

then u ∈ L∞(R+,V).
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The proof is achieved by Faedo-Galerkin method. This theorem implies the

existence of the group {S(t)}t≥0, where

S(t) : u0 7→ u(t), (2.8)

is continuous from V into itself.

Several a priori estimates in L2, H1 and H2 are derived for employing the Galerkin

method. For example, multiplying (2.1) by ū and integrating over Ω and taking the

imaginary part, we find

1

2

d

dt
|u|2L2 + |u|2L2 = Im(f, u)L2 (2.9)

By using Schwarz and Young’s inequalities, we obtain

d

dt
|u|2L2 + |u|2L2 ≤ |f |2L2 , (2.10)

from which we derive an a priori estimate of u in L∞(R+,H):

|u(t)|2L2 ≤ |u0|2L2 exp(−t) + |f |2L2 (1 − exp(−t)) . (2.11)

The absorbing set in L2 is derived from these estimates. Let ρ2
0 = |f |2L2 and let ρ′0 be

any number, ρ′0 > ρ0. Then the ball B0 of L2 centered at 0 of radius ρ′0 is an absorbing

ball for the group S(t). If B is included in the ball of L2 centered at 0 of radius R, then

S(t)B ⊂ B0 for t ≥ t0(B,B0),

t0 = log
R2

(ρ′0)
2 − ρ2

0

. (2.12)

Further estimates give absorbing sets in H1 and H2[7].

Proposition 2.1. There exists a constant ρ1 > 0 such that for every R > 0 and for

every u0 ∈ V with ∥u0∥2
H1 ≤ R2, there exists t1 > 0 such that the solution of (2.1)

satisfies ∥u(t)∥2
H1 ≤ ρ2

1 for t ≥ t1. Therefore the ball B1 of V centered at 0 of radius ρ1

is an absorbing ball for S(t).

Proposition 2.2. There exists a constant ρ2 > 0 such that for every R > 0 and for

every u0 ∈ D(A) with ∥u0∥2
H2 ≤ R2, there exists t2 > 0 such that the solution of (2.1)

satisfies ∥u(t)∥2
H2 ≤ ρ2

2 for t ≥ t2. Therefore the ball B2 of D(A) centered at 0 of radius

ρ2 is an absorbing ball for S(t).

Existence of weak attractor in H2 can be obtained by the argument in [7] (See also

[25]). It has finite Hausdorff and fractal dimension as a subset of H1. These results can

be improved by the augment in [27]. The weak attractor is actually the strong attractor

in H2. The same result is also valid for the attractor in H1.

Theorem 2.2. If f is given in L2, then the semigroup {S(t)}t≥0 possesses a compact

global attractor in H1.
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3. Bifurcation analysis of homogeneous equilibrium point

(1.1) has a spatially homogeneous equilibrium point ES given implicitly by (1.4):

ES =
Ein

1 + i(θ − IS)
,

where IS = |ES|2. Or, we can obtain the relation (1.5). We study the symmetry-breaking

bifurcation of ES.

3.1. Reformulation

We introduce a new parameter α ≥ 0 as a bifurcation parameter and let Ein be a

function of α

Ein(α) =
√
α {1 + (α− θ)2}.

We define Eα by

Eα =

√
α

1 + (θ − α)2
{1 − i(θ − α)} . (3.1)

Eα is a homogeneous equilibrium of (1.1) with |Eα|2 = α.

Then we define an auxiliary complex field A(x, t) by

E = Eα(1 + A),

and, as we stated it in the introduction, (1.7) is derived near the homogeneous state

Eα. We consider (1.7) on a finite interval Ω = (−1
2
, 1

2
) ⊂ R. The boundary conditions

are given by

A(−1

2
, t) = A(

1

2
, t),

∂A

∂x
(−1

2
, t) =

∂A

∂x
(
1

2
, t). (3.2)

Decomposing A(x, t) into its real and imaginary parts by A(x, t) = u1(x, t) + iu2(x, t),

we have

∂u1

∂t
= −b2∆u2 − u1 + (θ − α)u2 − α

(
2u1u2 + u2(u

2
1 + u2

2)
)
,

∂u2

∂t
= b2∆u1 + (3α− θ)u1 − u2 + α

(
3u2

1 + u2
2 + u1(u

2
1 + u2

2)
)
.

(3.3)

We work on two Hilbert spaces, X = H1(Ω)2,Y = L2(Ω)2. X is dense in Y . The

space Y is equipped with the standard inner product

⟨u, v⟩ =

∫
Ω

u(x)Tv(x)dx.

Let F : R ×X → Y be a nonlinear operator defined by

F (α, u) ≡

(
−b2∆u2 − u1 + (θ − α)u2 − α (2u1u2 + u2(u

2
1 + u2

2))

b2∆u1 + (3α− θ)u1 − u2 + α (3u2
1 + u2

2 + u1(u
2
1 + u2

2))

)
, (3.4)

where u = (u1, u2)
T . The steady states of (3.3) are solutions to

F (α, u) = 0. (3.5)
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Obviously, A = 0 corresponds to u = uo = (0, 0)T . We consider the bifurcation problem

of the homogeneous equilibrium point u = uo. The linearized equation of (3.3) near

u = uo is given by

∂

∂t

(
u1

u2

)
=

(
−b2∆u2 − u1 + (θ − α)u2

b2∆u1 + (3α− θ)u1 − u2

)
. (3.6)

We denote the linear operator in the right-hand-side by

Lu = B∆u+ Cu, (3.7)

where

B =

(
0 −b2
b2 0

)
, C =

(
−1 θ − α

3α− θ −1

)
.

3.2. Linearized eigenvalue problem

Now we consider the eigenvalue problem

Lϕ = λϕ. (3.8)

Lemma 3.1. If α < 1, all eigenvalues have negative real parts.

Proof. Multiplying the both sides of (3.8) by ϕ = (ϕ1, ϕ2)
T , integrating over Ω and

taking real parts, we obtain

Reλ

∫
Ω

|ϕ|2dx =

∫
Ω

Lϕ·ϕdx

= b2
∫

Ω

(
∂2ϕ1

∂x2
ϕ2 − ϕ1

∂2ϕ2

∂x2
)dx−

∫
Ω

(ϕ2
1 − 2αϕ1ϕ2 + ϕ2

2)dx

= (α− 1)

∫
Ω

(ϕ2
1 + ϕ2

2)dx− α

∫
Ω

(ϕ1 − ϕ2)
2dx

≤(α− 1)

∫
Ω

|ϕ|2dx.

Thus, if α < 1, then Reλ < 0.

We consider the instability occurring at α = 1. The viewpoint of symmetry helps

our calculation[9, 10]. Let us recall some group theoretical terms: O(n) is the n-

dimensional orthogonal group and SO(n) is the special orthogonal group. The group

O(2) is generated by SO(2) together with the reflection.

Definition 3.1 (Γ-equivariance[9]). Let Γ be a compact Lie group on a vector space V .

The mapping g : V → V commutes with Γ or is Γ-equivariant if

g(γx) = γg(x)

for all γ ∈ Γ, x ∈ V .
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The nonlinear operator F (α, ·) is O(2)-equivariant where SO(2) acts on x ∈ R by

transition modulo the spatial period 1 and the reflection κ acts by x 7→ −x. Then L
also commutes with O(2). Commuting linear operators map isotypic components to

isotypic components. By Fourier analysis we can write

u(x) =
∞∑

n=−∞

unexp(2nπxi), un ∈ C2.

It follows that the subspaces

Xn =
{
exp(2nπxi)a+ c.c : a ∈ C2

}
, n = 0, 1, 2, . . .

are the O(2)-isotypic components of both X and Y , where c.c. is complex conjugate. L
maps each Xn into itself. Thus the eigenvalues of L are the union of all of the eigenvalues

of L|Xn for n = 0, 1, . . .. The problem can be reduced to

Lnψn = λnψn, n = 0, 1, 2, . . . , (3.9)

where ψn ∈ R2, and Ln is 2 × 2 matrix given by

Ln =

(
−1 b2k2

n + θ − α

−b2k2
n + 3α− θ −1

)
, kn = 2nπ.

Then two eigenfunctions associated with the eigenvalue λn can be given by ϕn =

ψn cos(knx) and ϕn = ψn sin(knx). We can easily compute traces and determinants

of Ln:

trLn = −2,

detLn =
(
b2k2

n − 2α+ θ
)2

+ 1 − α2.

Since trLn = −2, a pair of purely imaginary eigenvalues cannot exist. Therefore we

concentrate on the instability by zero eigenvalue, which exists if and only if detLn = 0

for some n ∈ N ∪ {0}. Such n is given by

n = n±(α) =
1

2πb

√
2α− θ ±

√
α2 − 1. (3.10)

Here, we assume that θ ≤ 2. Consider n± as real-valued functions of α ≥ 1. The

following properties can be easily checked:

(i) n+ is monotone increasing for α > 1 and n+ → ∞ as α→ ∞.

(ii) (a) if θ ≤
√

3, then n− is monotone decreasing for 1 < α < 2/
√

3 and monotone

increasing for α > 2/
√

3.

(b) if
√

3 < θ ≤ 2, then n− is monotone decreasing for 1 < α <
(
2θ −

√
θ2 − 3

)
/3

and monotone increasing for α >
(
2θ +

√
θ2 − 3

)
/3. n− is not real-valued for(

2θ −
√
θ2 − 3

)
/3 < α <

(
2θ +

√
θ2 − 3

)
/3.

Hence, there exists α ≥ 1 such that n+(α) ∈ N ∪ {0} or n−(α) ∈ N ∪ {0}. Especially,

we are interested in

α∗ = min {α ; n+(α) ∈ N ∪ {0} or n−(α) ∈ N ∪ {0}} .
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Later in subsection 3.3 and 3.4, we will focus on the case that zero eigenvalue occurs at

α∗ = αo ≡ 1 to make a bifurcation analysis. On the other hand, in subsection 3.5 we

will make a bifurcation analysis of it in the case of α∗ = αo > 1.

Theorem 3.1. For any b > 0 and 0 ≤ θ ≤ 2, there exists n ∈ N∪ {0} and α∗ ≥ 1 such

that

α∗ = min {α ; n+(α) ∈ N ∪ {0} or n−(α) ∈ N ∪ {0}} ,

where n = n+(α∗) or n = n−(α∗). Moreover, the following three properties hold:

• if α < α∗, then uo is exponentially stable.

• if α = α∗, then L has zero eigenvalue with the “n-mode” eigenfunctions.

• if α > α∗, then uo is exponentially unstable at least for the direction of the “n-mode”

eigenfunction.

Furthermore,

(i) If θ = 2, then α∗ = 1 and n = 0. Hence L has zero eigenvalue with the spatially

homogeneous eigenfunction at α = 1. Its geometric multiplicity is one.

(ii) If 0 ≤ θ < 2, then

(a) α∗ = 1 if and only if there exists n ∈ N such that b =
√

2 − θ/2nπ.

(b) if θ ≥
√

3 and b >
[
(θ − 2

√
θ2 − 3)/6π2

] 1
2 , then L has zero eigenvalue with the

spatially homogeneous eigenfunction at α =
(
2θ −

√
θ2 − 3

)
/3. Its geometric

multiplicity is one.

(c) if α∗ > 1 and there exists a number n ∈ N ∪ {0} such that

b =

√
(2n2 − 2n− 1)θ + 2

√
θ2 − 3 + 4n(1 + n)(n2 + n+ θ2 − 3)

2π2(2n2 − 2n− 1)(2n2 + 6n+ 3)
,

then L has zero eigenvalue with the “n-mode” and “n+1-mode” eigenfunctions

at α = α∗.

3.3. Lyapunov-Schmidt reduction with symmetry

We study the problem F (α, u) = 0 for nonlinear operator F : R × X → Y in a

neighborhood of O = (αo, uo). The Lyapunov-Schmidt reduction is a standard method

in bifurcation theory[8]. The method reduces the problem to a finite-dimensional

one. When the system has a certain symmetry, the reduced system can inherit the

symmetry[8].

Suppose that θ < 2 and b =
√

2 − θ/2nπ for some n ∈ N. To study solutions

to (3.5) and their stability in the neighborhood of O, we apply the Lyapunov-Schmidt

reduction.

We introduce some notations:

• Let Lo = (DuF )(αo, uo) be the linearized operator of F with respect to u.

• N = ker(Lo) is nullspace of Lo, which is of course the zero eigenspace of Lo.
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• R = range(Lo) is the range of Lo.

• Let Lo∗ be the adjoint operator of Lo.

• N ∗ = ker(Lo∗) is nullspace of Lo∗.

Remark that if R is closed, then R = (N ∗)⊥. As L is elliptic, we get the following:

Lemma 3.2. Lo is a Fredholm operator with index zero.

Since Lo is Fredholm with index zero, N and N ∗ have same dimension d = 2. X
and Y can be decomposed as

X = N ⊕M, N ∩M = {0}
Y = R⊕ S, R∩ S = {0} .

Let Q : Y → R be a projection onto R along S.

We find the solution to (3.5) in the form of{
α = αo + ν,

u = uo + v + w, v ∈ N , w ∈ M,

in the neighborhood of O. Decompose (3.5) into QY and (I − Q)Y components and

consider the system{
QF (αo + ν, uo + v + w) = 0

(I −Q)F (αo + ν, uo + v + w) = 0.
(3.11)

Thanks to the Implicit Function Theorem, in the neighborhood I×U of (0, 0) ∈ R×N ,

there exists a unique mapping wo(ν, v), wo : I × U ⊂ R ×N → M, such that

wo(0, 0) = 0, QF (αo + ν, uo + v + wo(ν, v)) = 0.

The problem (3.5) is reduced to finite dimensional problem

Φ(ν, v) = (I −Q)F (αo + ν, uo + v + wo(ν, v)) = 0. (3.12)

Remark that the reduced equation (3.12) inherit O(2)-symmetry, that is, Φ commutes

with the action of O(2) (see Proposition 3.3. in [8], Chapter VII).

Choosing a proper basis for N and S, we can consider Φ : I × U ⊂ R ×N → S as

Φ : I × Ũ ⊂ R × R → R for some Ũ ⊂ R. To utilize the symmetry, we should choose

the basis consistently. As we have already seen, N is spanned by

ϕ1 =

(
1

1

)
cos knx, ϕ2 =

(
1

1

)
sin knx.

By the Fredholm alternative, we have S = R⊥ = N ∗ = span {ϕ∗
1, ϕ

∗
2}, where

ϕ∗
1 = ϕ1, ϕ

∗
2 = ϕ2. Define the bifurcation map g : (ν, z) 7→ g(ν, z) ∈ R2 by

g(ν, z) =

(
g1(ν, z)

g2(ν, z)

)
=

(
⟨ϕ∗

1,Φ(ν, z1ϕ1 + z2ϕ2)⟩
⟨ϕ∗

2,Φ(ν, z1ϕ1 + z2ϕ2)⟩

)
, (3.13)

where z = (z1, z2)
T is contained in a small neighborhood of z = (0, 0) ∈ R2. Thus, by

the Lyapunov-Schmidt reduction, we have
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Lemma 3.3. Solutions of (3.5) are locally in one-to-one correspondence with solutions

of the finite system g(ν, z) = 0, where g is defined by (3.13).

Since O(2) acts linearly on N , for each γ ∈ O(2) there is a 2×2 matrix A(γ) =

(aij(γ))
2
i,j=1 such that

γ · ϕi =
2∑

j=1

aji(γ)ϕj, i = 1, 2. (3.14)

Since we take ϕ∗
1 = ϕ1, ϕ

∗
2 = ϕ2, we also have

γ · ϕ∗
i =

2∑
j=1

aji(γ)ϕ
∗
j , i = 1, 2. (3.15)

Then the bifurcation map given by (3.13) satisfies

g(ν, A(γ)z) = A(γ)g(ν, z), (3.16)

where A(γ) is the 2×2 matrix defined by (3.14) and (3.15).

Lemma 3.4. The 2×2 matrix A(γ) defined by (3.14) and (3.15) is determined as

follows:

(i) For ξ ∈ SO(2), the matrix A(ξ) is given by

A(ξ) =

(
cos knξ − sin knξ

sin knξ cos knξ

)
.

(ii) For the reflection κ, the matrix A(κ) is given by

A(κ) =

(
1 0

0 −1

)
.

Therefore A(γ) defines the action on R2 of O(2).

Proof. (i) For a function u(x) and ξ ∈ SO(2), ξ · u(x) = u(x − ξ). By the sum and

difference formulas, we obtain

ξ · ϕ1(x) =

(
1

1

)
cos (kn(x− ξ)) = (cos knξ)ϕ1 + (sin knξ)ϕ2,

ξ · ϕ2(x) =

(
1

1

)
sin (kn(x− ξ)) = −(sin knξ)ϕ1 + (cos knξ)ϕ2.

(ii) For a function u(x), κ · u(x) = u(−x). By the negative angle formula, we obtain

κ · ϕ1(x) = ϕ1(x), κ · ϕ2(x) = −ϕ2(x).

As mentioned above, the bifurcation map g satisfies (3.16). It implies that g is

O(2)-equivariant.
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Lemma 3.5. For the bifurcation map g defined by (3.13), there is a smooth function

p(ν, ξ) such that

g(ν, z) = zp(ν, |z|2), (3.17)

where |z| is the standard norm in R2,that is, |z|2 = z2
1 + z2

2.

Proof. Since g is also SO(2)-equivariant, there exists smooth functions p(ν, ξ), q(ν, ξ)

such that

g(ν, z) = p(ν, |z|2)

(
z1

z2

)
+ q(ν, |z|2)

(
−z2

z1

)
, (3.18)

(see [8], chapter VIII). Remark that O(2) is generated by SO(2) and reflection κ. We

can easily get A(κ)g(ν, A(κ)z) = A(κ)2g(ν, z) = g(ν, z), where A(κ) is the 2×2 matrix

defined in the previous lemma. Substituting (3.18), we obtain

A(κ)g(ν, A(κ)z) = p(ν, |z|2)

(
z1

z2

)
+ q(ν, |z|2)

(
−z2

z1

)
.

This formula can equal g(ν, z) only if q(ν, |z|2) = 0. Hence (3.17) holds.

Then we study bifurcation solutions in the neighborhood of O. We need the Fréchet

derivatives of F at O. Let us denote the derivatives at O by (DuF )o, (DαF )o, . . ..

Lemma 3.6. For the nonlinear operator F (α, u) defined in (3.5), the Fréchet derivatives

at O = (αo, uo) are given as follows: for u = (u1, u2)
T , v = (v1, v2)

T , w = (w1, w2)
T ∈ X ,

(DαF )o = 0, (D2
αF )o = 0,

(DuF )ou = Lou, ((DαuF )o)u =

(
−u2

3u1

)
,

(D2
uF )o(u, v) =

(
−2(u2v1 + u1v2)

2(3u1v1 + u2v2)

)
,

(D3
uF )o(u, v, w) =

(
−2(u2v1 + u1v2)w1 − 2(u1v1 + 3u2v2)w2

2(3u1v1 + u2v2)w1 + 2(u2v1 + u1v2)w2

)
.

Now we calculate the Taylor expansion of g(ν, z) around (ν, z) = (0, 0). First, the

Taylor expansion of F is given by

F (αo + ν, uo + v) = F (αo, uo) + ν(DαF )o + (DuF )ov

+
ν2

2
(D2

αF )o + ν((DαuF )o)v +
1

2
(D2

uF )o(v, v) +O(3),
(3.19)

where O(3) is the higher order terms of |ν|, |v|.
Then wo(ν, z) is determined as follows:
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Lemma 3.7. In a neighborhood of (ν, z) = (0, 0), the Taylor expansion of wo(ν, z) ∈ QX
is given by

wo(ν, z) = −(QLo)−1Q{νz1(DαuF )oϕ1 + νz2(DαuF )oϕ2

+
z2
1

2
(D2

uF )o(ϕ1, ϕ1) + z1z2(D
2
uF )o(ϕ1, ϕ2) +

z2
2

2
(D2

uF )o(ϕ2, ϕ2)} +O(3).
(3.20)

Proof. Substituting v = z1ϕ1 + z2ϕ2 + w into (3.19) and taking the projection Q.

Substituting w = wo(ν, z) =
∑
wijkν

izj
1z

k
2 , (wijk ∈ QX ) into the resulting equation

and equating each term, we obtain (3.20). Remark that QLo : QX → QY is invertible

according to the Fredholm property.

We compute the Taylor expansion of g defined by(
g1(ν, z)

g2(ν, z)

)
=

(
⟨ϕ∗

1, F (αo + ν, uo + z1ϕ1 + z2ϕ2 + wo(ν, z1ϕ1 + z2ϕ2))⟩
⟨ϕ∗

2, F (αo + ν, uo + z1ϕ1 + z2ϕ2 + wo(ν, z1ϕ1 + z2ϕ2))⟩

)
, (3.21)

around (ν, z) = (0, 0). Since the function g has the form (3.17), we only have to consider

the case z2 = 0. Taylor coefficients are

gj,k =
∂j+kg

∂νj∂zk
1

(0, 0), j, k ≥ 1.

Remark that g0,0 and g0,1 are 0 because we have

g0,0 = g(0, 0) = ⟨ϕ∗
1, F (αo, uo)⟩ = 0,

g0,1 =
∂g

∂z1

(0, 0) = ⟨Lo∗ϕ∗
1, ϕ1 +Dzw

o(0, 0)⟩ = 0.

Similarly, we obtain

Lemma 3.8. The coefficients gj,k are given as follows:

g0,0 = 0, g0,1 = 0, g1,0 = 0, g2,0 = 0,

g1,1 = ⟨ϕ∗
1, (DαuF )oϕ1⟩, g0,2 = ⟨ϕ∗

1, (D
2
uF )o(ϕ1, ϕ1)⟩,

g0,3 = ⟨ϕ∗
1, (D

3
uF )o(ϕ1, ϕ1, ϕ1) − 3(D2

uF )o(ϕ1, (QLo)−1Q(D2
uF )o(ϕ1, ϕ1))⟩.

Proof. Substituting v = z1ϕ1 + wo(ν, z1ϕ1) into (3.19) and taking into account Lemma

3.6, we get

F (αo + ν, uo + v) = Lowo + νz1(Duα)oϕ1 +
z2
1

2
(D2

uF )o(ϕ1, ϕ1)

+ ν(Duα)owo + z1(D
2
uF )o(ϕ1, w

o) +
z3
1

3!
(D3

uF )o(ϕ1, ϕ1, ϕ1) + · · · .

Substitute (3.20) and take a product with ϕ∗
1. Remark that ⟨ϕ∗

1,Lowo⟩ = ⟨Lo∗ϕ∗
1, w

o⟩ =

0. Then we obtain

g(ν, z1, 0) = νz1⟨ϕ∗
1, (DαuF )oϕ1⟩ +

z2
1

2
⟨ϕ∗

1, (D
2
uF )o(ϕ1, ϕ1⟩

+
ν3

3!
⟨ϕ∗

1, (D
3
uF )o(ϕ1, ϕ1, ϕ1) − 3(D2

uF )o(ϕ1, (QLo)−1Q(D2
uF )o(ϕ1, ϕ1))⟩ + · · · .
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Now we can compute g1,1, g0,2 and g0,3 explicitly.

Lemma 3.9. g1,1, g0,2 and g0,3 are given by

g1,1 = 1, g0,2 = 0, g0,3 =
2(30θ − 41)

3(2 − θ)2
.

Therefore the bifurcation map is represented as

g(ν, z) = z

(
ν +

30θ − 41

9(2 − θ)2
|z|2 + · · ·

)
, (3.22)

in a neighborhood of (ν, z) = (0, 0).

Proof. First, we compute g1,1. As (DαuF )oϕ1 is given by

(DαuF )oϕ1 =

(
−1

3

)
cos(2nπx),

we get

g1,1 =

∫ 1
2

− 1
2

2 cos2(2nπx)dx = 1.

Next, we compute g0,2. (D2
uF )o(ϕ1, ϕ1) is given by

(D2
uF )o(ϕ1, ϕ1) =

(
−4

8

)
cos2(2nπx).

We get

g0,2 = ⟨ϕ∗
1, (D

2
uF )o(ϕ1, ϕ1)⟩

=

∫ 1
2

− 1
2

4 cos3(2nπx)dx

=

∫ 1
2

− 1
2

(cos(6nπx) + 3 cos(2nπx)) dx = 0.

Finally, we consider g0,3. We have

Q(D2
uF )o(ϕ1, ϕ1)) = (I − P)(D2

uF )o(ϕ1, ϕ1))

= (D2
uF )o(ϕ1, ϕ1)) − ⟨ϕ∗

1, (D
2
uF )o(ϕ1, ϕ1))⟩ϕ1

=

(
−4

8

)
cos2(2nπx)

=

(
−2

4

)
+

(
−2

4

)
cos2(4nπx).
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Then we solve Loψ = Q(D2
uF )o(ϕ1, ϕ1)). Although Lo is not invertible, this system

has a solution because the right-hand-side is orthogonal to N ∗. The solution can be

obtained in the form ψ = ψ0 + ψ2n cos(4nπx), where ψ0 and ψ2n are solutions to(
−1 θ − 1

3 − θ −1

)
ψ0 =

(
−2

4

)
,(

−1 b2k2
2n + θ − 1

−b2k2
2n + 3 − θ −1

)
ψ2n =

(
−2

4

)
,

where k2n = 4nπ and ψ0, ψ2n ∈ R2. ψ0 and ψ2n are found to be

ψ0 =
2

(2 − θ)2

(
3 − 2θ

1 − θ

)
, ψ2n =

2

9(2 − θ)2

(
6θ − 13

3θ − 7

)
.

Since ⟨ϕ∗
1, ψ⟩ = 0, Qψ is given by Qψ = ψ0 + ψ2n cos(4nπx). Now we obtain

(D2
uF )(ϕ1, ψ) =

2

9(2 − θ)2

{(
45θ − 52

−105θ + 134

)
cos(2nπx) +

(
20 − 9θ

21θ − 46

)
cos(6nπx)

}
.

Thus we get

g0,3 = ⟨ϕ∗
1,−3(D2

uF )(ϕ1, ψ)⟩ =
2(30θ − 41)

3(2 − θ)2
.

Theorem 3.2. The set of solutions to the bifurcation equation (3.21) near (ν, z) = (0, 0)

is given by {
(ν, z) ; ν = − 30θ − 41

9(2 − θ)2
|z|2 + o(|z|2)

}
∪ {(ν, z) ; z = 0} .

Proof. The bifurcation map (3.13) can be written as (3.17). Hence g(ν, z) = 0 is

equivalent to z1 = z2 = 0 or p(ν, |z|2) = 0. The branch of nontrivial solutions

corresponds to solutions to the latter condition.

Now Σ = Z2(κ) = {1, κ} is a subgroup of O(2) and its fixed-point subspace Fix(Σ),

Fix(Σ) =
{
z ∈ R2 ; σz = z, ∀σ ∈ Σ

}
,

is one-dimensional. Recall that O(2) acts on R2 absolutely irreducibly. Since g is O(2)-

equivariant, there exists a real-valued function c : ν 7→ c(ν) such that (Dzg)(ν, 0) =

c(ν)I. As we have c(0) = 0 and c′(0) = 1 ̸= 0. Thus we can apply the Equivariant

Branching Lemma[9, 10]. It follows that there exists a unique branch of nontrivial

solutions to g(ν, z) = 0 in R×Fix(Σ). The solution set to p = 0 consists of the group

orbit through points on this branch. Taking the previous lemmas into account, we get

the statement.
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Thus the occurrence of zero eigenvalue of uo = 0 at α = 1 leads to a pitchfork of

revolution bifurcation. The cycles of equilibria exist for α > 1 if θ < 41
30

, otherwise for

α < 1. As discussed in [10] Chapter 7.2, the bifurcation with (homogeneous) Neumann

boundary conditions on an interval (0, 1
2
) can be treated as the restriction of O(2)-

equivariant maps to Fix(Z2(κ)). It follows that with NBC on (0, 1
2
) the equilibrium

point uo undergoes a pitchfork bifurcation at α = 1.

Let us study the change of stability along each branch of solution. The symmetry

forces the nontrivial branch to have zero eigenvalue. By the isotypic decomposition for

isotropy subgroup Σ, we can restrict the stability problem on Fix(Σ).

Let s ∈ R be a parameter which parametrizes a branch of solutions. In our cases,

s = ν or z1. Consider a family of eigenvalue problem

L(s)ϕ(s) = ζ(s)ϕ(s), ϕ ∈ X , s ∈ R.

Eigenvalues on z1-(ν-)branch is denoted by ζz1(z) (ζν(ν)). By a straightforward

calculation we get

Lemma 3.10. The following three hold:

• dζν

dν
(0) = g1,1 > 0 (3.23)

• dζz1

dz1

(0) = g0,2 = 0 (3.24)

• d2ζz1

dz2
1

(0) =
2

3
g0,3 = −2

dζν

dν
(0)

d2νz1

dz2
1

(0) (3.25)

(3.23) says that trivial equilibrium point u = 0(ν-branch) loses its stability at

α = 1. On the other, z1-branch is tangent to z1-axis with order 2. If g0,3 < 0, then

ζz1 is negative in a small neighborhood of the bifurcation point. If g0,3 > 0, then ζz1 is

positive. Therefore,

• if θ < 41
30

, then u = 0 undergoes supercritical pitchfork bifurcation and stable branch

arises for α > 1.

• if θ > 41
30

, then u = 0 undergoes subcritical pitchfork bifurcation and unstable

branch arises for α < 1.

Theorem 3.3. Assume θ < 2 and there exists n ∈ N such that b =
√

2 − θ/2nπ.

Consider (3.3) with PBC on an interval (−1
2
, 1

2
). Then the homogeneous equilibrium

point uo = 0 undergoes a pitchfork of revolution bifurcation at α = 1. uo is linearly

stable for α < 1 and unstable for α > 1.

(i) If θ < 41
30

, then the bifurcation is supercritical. A unique branch of nontrivial

solutions with isotropy subgroup Z2 arises for α > 1, which consists of neutral

stable solutions.

(ii) If θ > 41
30

, then the bifurcation is subcritical. A unique branch of nontrivial solutions

with isotropy subgroup Z2 arises for α < 1, which consists of unstable solutions.
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3.4. Codim 2 Bifurcation at (α, θ) = (1, 41
30

)

As shown in the previous subsection, the bifurcation map g(ν, z) have a degeneracy of

nonlinear term at (α, θ) = (1, 41
30

). That is, cubic terms of g(0, z) vanish for θ = 41
30

.

We focus on the bifurcation near this codim 2 point (α, θ) = (1, 41
30

). Here we apply the

center manifold reduction near α = 1 [18].

We redefine bifurcation parameters. Let ν1 = α− 1, ν2 = θ − 41
30

and ν = (ν1, ν2).

Consider a suspended system
dν

dt
= 0,

du

dt
= F (ν, u).

(3.26)

We have the decomposition X = N ⊕ M. Let P be a projection defined by

Pu =
∑

⟨ϕ∗
j , u⟩ϕj. Let Q = I − P . Remark that the real parts of spectrum of QLo are

negative. Decompose F by projections P and Q:

dν

dt
= 0,

dzi

dt
= ⟨ϕ∗

i , F (ν,
∑

zj(t)ϕj + v(t))⟩

dv

dt
= QF (ν,

∑
zj(t)ϕj + v(t)).

(3.27)

According to the center manifold theorem, there exists four dimensional center manifold

v = V (ν, z) ∈ QX . The reduced dynamics on a parameter-dependent center manifold

is given by

dzi

dt
= ⟨ϕ∗

i , F (ν,
∑

zjϕj + V (ν, z))⟩, i = 1, 2. (3.28)

Due to the O(2)-symmetry, this reduced vector field is also O(2)-invariant [23]. Hence

there exists a real-valued function p such that

dz

dt
= zp(ν, |z|2). (3.29)

Thus we can restrict the problem to the subspace of even functions to compute the

Taylor expansion of the reduced vector field.

We need some Taylor coefficients of the reduced vector field dz
dt

= f(ν, z) =∑
fijν

i
1z

j. Remark that the coefficients of νi
1z

2m-terms (i,m ∈ N) vanish due to the

Z2-symmetry. The center manifold satisfies the homological equation

QF (ν, zϕ1 + V (ν, z)) = DzV (ν, z)⟨ϕ∗
1, F (ν, zϕ1 + V (ν, z))⟩. (3.30)

Expand V (ν, z) as V (ν, z) =
∑
Vijν

i
1z

j. Here we need V02, V03, V04, f11, f03 and f05.
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Substituting this into (3.30) and equating each term, we obtain a set of equations

QLoV02+
1

2
Q(D2

uF )o(ϕ1, ϕ1) = 0,

QLoV03+ Q(D2
uF )o(ϕ1, V02) +

1

6
Q(D3

uF )o(ϕ1, ϕ1, ϕ1) = 2f02V02,

QLoV04 = −
[
(D2

uF )o(ϕ1, V03) +
1

2
(D2

uF )o(V02, V02) +
1

2
(D3

uF )o(ϕ1, ϕ1, V02)

]
+ 2f03V02 + 3f02V03.

On the other, the Taylor coefficients of f(ν, z) is given by

f11 =⟨ϕ∗
1, (DαuF )oϕ1⟩,

f03 =⟨ϕ∗
1, (D

2
uF )o(ϕ1, V02) +

1

6
(D3

uF )o(ϕ1, ϕ1, ϕ1)⟩,

f05 =⟨ϕ∗
1, (D

2
uF )o(ϕ1, V04) + (D2

uF )o(V02, V03) +
1

2
(D3

uF )o(ϕ1, ϕ1, V03)

+
1

2
(D3

uF )o(ϕ1, V02, V02)⟩.

It is possible to compute these coefficients successively. As in the previous subsections,

we have

f11 = 1, f03 =
30θ − 41

9(2 − θ)2
.

Furthermore, we can compute V02, V03 and V04 as

V02 =
1

(2 − θ)2

(
2θ − 3

θ − 1

)
+

cos(4nπx)

9(2 − θ)2

(
13 − 6θ

7 − 3θ

)

V03 =
cos(2nπx)

12(2 − θ)2

(
26 − 14θ − 9θ2

−(26 − 14θ − 9θ2)

)
+

cos(6nπx)

288(2 − θ)4

(
525 − 574θ + 192θ2 − 18θ3

317 − 374θ + 144θ2 − 18θ3

)

V04 =
1

162(2 − θ)6

(
−6390 + 9004θ − 1347θ2 − 2961θ3 + 1512θ4 − 243θ5

+6866 − 11570θ − 5049θ2 − 234θ3 + 297θ4

)

+
cos(4nπx)

11664(2 − θ)6

(
−56383 + 131772θ − 155736θ2 + 108270θ3 − 39852θ4 + 5832θ5

−179965 + 382959θ − 294498θ2 + 97578θ3 − 11826θ4

)

+
cos(8nπx)

291600(2 − θ)6

(
683425 − 1167612θ + 739872θ2 − 205578θ3 + 21060θ4

400075 − 709677θ + 471582θ2 − 139158θ3 + 15390θ4

)
Finally it can be found out that f05 is given by

f05 =
−26244θ6 + 23328θ5 + 532656θ4 − 1657800θ3 + 797148θ2 + 1975164θ − 1767245

23328(2 − θ)6
.

Lemma 3.11. Expansion of f(ν, z) as a Taylor series with respect to z at z = 0 yields

dz

dt
= f1(ν)z + f3(ν)|z|2z + f5(ν)|z|4z +O(|z|7), (3.31)

where coefficients satisfy

f1(0) = 0,
∂f1

∂ν1

(0) = 1, f3(0) = 0, f5(0) < 0.
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Proof. Because of O(2)-symmetry, |z|6-term vanishes.

f1(0) = 0 since the expansion has no ν0
1z-term. We have already seen ∂f1

∂ν1
(0) =

f11 = 1 and f3(0) vanishes. Finally we have f5(0) = f05|θ= 41
30

= −3067411529
376367048

< 0.

Let us introduce new parameters µ = (µ1, µ2) by

µ1 = f1(ν), µ2 = f3(ν).

This transform is regular at ν = 0. Indeed, we get

det

(
∂f1

∂ν1

∂f1

∂ν2
∂f3

∂ν1

∂f3

∂ν2

)∣∣∣∣
ν=0

̸= 0.

Hence we can write ν in terms of µ near the origin and obtain the equation

dz

dt
= µ1z + µ2|z|2z + F5(µ)|z|4z +O(|z|7),

where F5(µ) = f5(ν(µ)).

Then, rescaling

y = 4
√
|F5(µ)|z, y ∈ R2

and defining the parameters

β1 = µ1, β2 =
√

|F5(µ)|µ2,

yields the normal form

dy

dt
= β1y + β2|y|2y − |y|4y +O(|y|7). (3.32)

Write the system in polar coordinates (ρ, φ), where y1 = ρ cosφ, y2 = ρ sinφ:

dρ

dt
= ρ(β1 + β2ρ

2 − ρ4 +O(ρ6)),

dφ

dt
= 0.

(3.33)

There two equations are independent. We have to study non-negative solutions to the

first equation. Since it is one-dimensional, the problem is to study the number and

stability of equilibria.

First, the system always has the trivial equilibrium ρ = 0. It is obvious that

{(β1, β2) : β1 = 0} is the bifurcation curve (line) of the trivial equilibrium. ρ = 0 is

stable if β1 < 0, while it is unstable if β1 > 0.

Next, we consider nontrivial equilibria of (3.33). Nontrivial equilibria should satisfy

h(ρ2, β) ≡ β1 + β2ρ
2 − ρ4 +O(ρ6) = 0.

Therefore the problem is to find non-negative solutions to

h(ξ, β) = β1 + β2ξ − ξ2 +O(ξ3) = 0, (3.34)

in a small neighborhood of (ξ, β) = (0, 0) ∈ R × R2. We apply scaling procedures as

shown in [4].
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Lemma 3.12. There is a neighborhood U of (ξ, β) = (0, 0) and a constant c > 0 such

that any solution of (3.34) in U must satisfy

|ξ| ≤ c
(
|β1|

1
2 + |β2|

)
.

Proof. We prove it by use of a contradiction. If the consequence is not be satisfied, then

there exist sequences of solutions and parameters: {(ξn, β1n, β2n)}∞n=1 corresponding to

(3.34) such that, if n→ ∞, then

(ξn, β1n, β2n) → (0, 0, 0), and

(
|β1n|
|ξn|2

,
|β2n|
|ξn|

)
→ (0, 0).

But, this is a contradiction with the equation (3.34).

Consider the solutions of (3.34) along the β1-axis. Suppose that β2 = 0, β1 ̸= 0 and

consider

β1 − ξ2 +O(ξ3) = 0. (3.35)

Rescaling (3.35) by ξ = |β1|1/2ζ, we get{
1 − ζ2 +O(|β1|1/2) = 0 for β1 > 0 small,

−1 − ζ2 +O(|β1|1/2) = 0 for β1 < 0 small.
(3.36)

By Lemma 3.12, to find small solution of (3.35) is equivalent to finding all solutions of

(3.36) in R. If β1 = 0, then the first equation of (3.36) has two real solutions ζ = ±1,

while the second one has no real solutions. Hence, by the Implicit Function Theorem,

there exists two distinct solutions ξj(β1) = |β1|1/2ζj(β1), ζj(0) = (−1)j, j = 0, 1 of (3.35)

for β1 > 0, and (3.36) has no real solutions for small β1 < 0. Furthermore, β1 = 0 is a

fold bifurcation point of (3.35). Remark that only ξ0(β1), β1 ≥ 0 gives the non-negative

solutions.

Next, consider the solutions along the β2-axis. Suppose that β1 = 0, β2 ̸= 0 and

consider

β2ξ − ξ2 +O(ξ3) = 0. (3.37)

Rescaling (3.37) by ξ = β2η, we get

η − η2 +O(β2) = 0. (3.38)

By Lemma 3.12, to find small solution of (3.37) is equivalent to find all solutions of

(3.38) in R. If β2 = 0, then η = 0 and η = 1 are solutions of (3.38). It should

be noted that Z2-symmetry forces η = 0 to be a solution for any β2 small. As in

the previous case, the Implicit Function Theorem implies that there exist two distinct

solutions η0(β2), η0(0) = 1 and η1(β2) = 0 of (3.38). Then ξ̃j(β2) = β2ηj(β2), j = 0, 1

gives two distinct solutions of (3.37). Remark that there exist positive solutions ξ̃0(β2)

only if β2 > 0.
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We now find the bifurcation curve of (3.34). Rescale (3.34) by ξ = |β1|1/2ζ and

β2 = γ2|β1|1/2:{
1 + γ2ζ − ζ2 +O(|β1|1/2) = 0 for β1 > 0 small

−1 + γ2ζ − ζ2 +O(|β1|1/2) = 0 for β1 < 0 small.
(3.39)

Since (3.39) and the equation resulting from the differentiation in ζ of (3.39) have no

solutions for β1, γ2 small, there exist no multiple solutions of (3.39) for β1, γ2 small.

Therefore, no bifurcation occurs near β1-axis. Thus, it is necessary that |γ2| should be

somewhat large. To avoid the non-compactness of the range of γ2, let us reparametrize

by ξ = β2η and β1 = γ1β
2
2 , γ1 = γ−2

2 in (3.34):

γ1 + η − η2 +O(β2) = 0,

where the moduli of β2 and γ1 are small, and η ∈ R. The bifurcation curve is given by

(3.40) and the following derivative in η of (3.41):

γ1 + η − η2 +O(β2) = 0, (3.40)

1 − 2η +O(β2) = 0. (3.41)

If β2 = 0, then (3.40), (3.41) has the unique solution η = 1
2
, γ1 = −1

4
. The

Implicit Function Theorem implies the existence of solutions η∗(β2), γ
∗
1(β2) with η∗(0) =

1
2
, γ∗1(0) = −1

4
near β2 = 0. Thus the bifurcation curve is given by β1 = γ∗1(β2)β

2
2 while

the solutions along this curve are given by ξ∗(β2) = η∗(β2)β2. Remark that β2 > 0 is

necessary for positive solutions.

Finally we consider the solutions away from the bifurcation curve. Suppose

γ1 ̸= γ∗1(β2) and consider (3.40). If β2 = 0, then the solutions of (3.40) is given by

η = 1
2

(
1 ±

√
1 + 4γ1

)
. If 1 + 4γ1 > 0, then there exists two distinct solutions in R:

two positive solutions for −1
4
< γ1 < 0, while only one positive solution for γ1 ≥ 0.

If 1 + 4γ1 < 0, then no solutions in R exists. Again, the Implicit Function Theorem

implies the existence of solutions of (3.40) near β2 = 0. Remark that if β2 and η have

the same sign, then ξ = β2η gives a positive solution of (3.34).

The above discussion yields the number of equilibria in each parameter region in the

neighborhood of β = 0. It is also possible to determine the stability of these equilibria.

Thus we obtain the following lemma.

Lemma 3.13. There is a small neighborhood of (ρ, β) = (0, 0) in which the following

properties hold: There exists two bifurcation curves of (3.33)

P = {(β1, β2) : β1 = 0} ,
S =

{
(β1, β2) : β1 = γ∗1(β2)β

2
2 , β2 ≥ 0

}
,

and which divide the neighborhood of β = 0 into three regions

D1 = {(β1, β2) : β1 < 0, β2 < 0} ∪
{
(β1, β2) : β1 < γ∗1(β2)β

2
2 , β2 > 0

}
,

D2 = {(β1, β2) : β1 > 0} ,
D3 =

{
(β1, β2) : γ∗1(β2)β

2
2β1 < 0, β2 > 0

}
.
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(3.33) has the trivial equilibrium for any β. It is stable for β1 < 0 and unstable for

β1 > 0. D1 contains no equilibria other than the trivial one. On the other, there exists

a stable nontrivial equilibrium point in D2. In D3, there exists a pair of nontrivial

equilibria, one is stable and the other is unstable. This pair of equilibria undergoes fold

bifurcation at the parameter on S.

Remark 3.1. It can be shown that the truncated system

dy

dt
= β1y + β2|y|2y − |y|4y.

is a topological normal form for (3.32) (refer to [18]), which means that this is locally

topologically equivalent to (3.32) in a neighborhood of the origin. Moreover, due to our

discussions in this section, the neighborhood obtains the bending branch of solution, if

β1 and β2 are small enough.

On the other hand, it seems that this property can be proved indirectly via this

topological normal form, because of uniformness of the radius of the neighborhood for β1

and β2. But, here we have immediately constructed the bending branch of solution for

β1 and β2 small enough. This is because it is clearer than the indirect way.

Thus the bifurcation of the original system near the codimension 2 point (α, θ) =

(1, 41
30

) is summarized as follows:

Theorem 3.4. Assume θ < 2 and there exists n ∈ N such that b =
√

2 − θ/2nπ.

Consider (3.3) with PBC on an interval (−1
2
, 1

2
). Then there exists a small neighborhood

Uθ of θ = 41
30

which satisfies the following properties: fix θ ∈ Uθ and consider of α as a

bifurcation parameter, then

(i) if θ < 41
30

, then uo undergoes supercritical pitchfork of revolution bifurcation at

α = 1. A family of nontrivial equilibria with Z2-symmetry arises for α > 1. It

consists of neutrally stable equilibria.

(ii) if θ > 41
30

, then uo undergoes subcritical pitchfork of revolution bifurcation at α = 1.

A family of nontrivial equilibria with Z2-symmetry arises for α < 1. It consists of

unstable equilibria. Furthermore, these equilibria undergo fold bifurcation at some

αf < 1. That is, this unstable branches coexist with a family of neutrally stable

nontrivial equilibria for α > αf , and collide and disappear at α = αf .

3.5. Codim 1 Bifurcation at α > 1

In the previous subsections, we have studied the bifurcation of ES at α = 1. Here we

consider the case α∗ > 1 (see Theorem 3.1). We assume that for given b and θ < 2 the

linearized operator L has zero eigenvalue with “n-mode” eigenfunction at α = α∗ > 1,

where n ̸= 0. In this subsection, we set O = (α∗, u
o) and use the same notations. The

bifurcation point α∗ is given by

α∗ =
1

3

[
2
{
(2nπb)2 + θ

}
−
√
{(2nπb)2 + θ}2 − 3

]
. (3.42)
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Remark that if n−(α∗) = n, then 1 ≤ α ≤ 2/
√

3 is necessary.

We can perform the same type of Lyapunov-Schmidt reduction as in the previous

subsections. The discussion can be similarly applied. Only the coefficient of the

bifurcation map differs. As O(2)-symmetry is also valid, we only have to consider

on the subspace of even functions.

First we choose the basis of the kernel of Lo. Set l = b2k2
n+θ−α∗. Since detLn = 0,

we get l−1 = −b2k2
n + 3α∗ − θ. Then N = span {ϕ} and N ∗ = span {ϕ∗} are given by

ϕ =

(
l

1

)
cos knx, ϕ∗ =

(
l−1

1

)
cos knx. (3.43)

Note that ⟨ϕ∗, ϕ⟩ = 1.

Let ν = α − α∗. The Taylor expansion of the bifurcation map g1(ν, z) is given by

g1(ν, z) = g11νz + · · ·. For any m ∈ N, z2m-terms vanish due to the Z2-symmetry.

We calculate the coefficient g11:

g11 = ⟨ϕ∗, (DαuF )oϕ⟩ =
3l − l−1

2
.

Since l = b2k2
n + θ − α∗ and (2n±πb)

2 = 2α∗ − θ ±
√
α2
∗ − 1, we get

g11 =

{
α∗ + 2

√
α2
∗ − 1 if n+(α∗) ∈ N,

α∗ − 2
√
α2
∗ − 1 if n−(α∗) ∈ N.

It is easy to check that α∗ + 2
√
α2
∗ − 1 is positive for 1 ≤ α∗, and α∗ − 2

√
α2
∗ − 1 is

positive for 1 ≤ α∗ <
2√
3
. Therefore, in generic, g11 is positive. g11 > 0 and g02 = 0

imply the occurrence of the pitchfork bifurcation at α = α∗. Furthermore, for periodic

boundary conditions case, the Equivariant Branching Lemma can be applied.

Theorem 3.5. Let b > 0 and 0 ≤ θ < 2. Assume the following three:

(i) θ <
√

3 or b <

(
θ − 2

√
θ2 − 3 +

√
(2θ −

√
θ2 − 3)2 − 9

) 1
2

/2
√

3π.

(ii) (a) b ̸=
√√

3 − θ/2π or θ > 7
√

3/9.

(b) b ̸=
√√

3 − θ/4π or θ > 7
√

3/15.

(c) b ̸=
√√

3 − θ/6π or θ >
√

3/7.

(iii) there does not exist n ∈ N ∪ {0} such that

b =

√
(2n2 − 2n− 1)θ + 2

√
θ2 − 3 + 4n(1 + n)(n2 + n+ θ2 − 3)

2π2(2n2 − 2n− 1)(2n2 + 6n+ 3)
.

Then there exists α∗ ≥ 1 at which the homogeneous equilibrium of (3.3) with PBC on

(−1
2
, 1

2
) generically undergoes pitchfork of revolution bifurcation.

Remark 3.2. The assumption 1 implies that zero eigenvalue with spatially homogeneous

eigenfunction does not occur at the bifurcation point. The assumption 2 implies that

α∗ ̸= 2√
3

or n−( 2√
3
) /∈ N ∪ {0}. The assumption 3 implies that mode interaction does

not occur.
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3.6. Spatially homogeneous equilibria

Here we give some remarks on spatially homogeneous equilibria.

If θ <
√

3, then the input field Ein and equilibrium ES have one-to-one

correspondence. For such case, we need not make a special mention.

We assume θ >
√

3. Given Ein the cubic equation E2
in = IS [1 + (θ − IS)2] has one,

two or three positive roots. We can construct the homogeneous equilibrium from Ein

and root IS by

ES =
Ein

1 + i(θ − IS)
.

Now we parametrize Ein by Ein(α) =
√
α [1 + (θ − α)2]. The system always has an

equilibrium Eα with |Eα|2 = α. Moreover, for Ein given by Ein = Ein(α), we can solve

the cubic equation Ein(α)2 = IS [1 + (θ − IS)2] for IS:

IS = α,
1

2

(
2θ − α±

√
−3α2 + 4θα− 4

)
.

We define I±(α) =
(
2θ − α±

√
−3α2 + 4θα− 4

)
/2. The functions I+(α) and I−(α) are

real and positive for 2
(
θ −

√
θ2 − 3

)
/3 ≤ α ≤ 2

(
θ +

√
θ2 − 3

)
/3. In this interval, the

system has equilibria with |E|2 = I±(α). I+(α) and I−(α) are roots of(
Is +

α− θ

2

)2

+
3

4

(
α− 2

3
θ

)2

− θ2 − 3

3
= 0, (3.44)

which defines an ellipse on (α, IS)-plane as an implicit function. The ellipse and the line

{(α, IS) : IS = α} intersect at α =
(
2θ ±

√
θ2 − 3

)
/3.

It is possible to express spatially homogeneous equilibria of (3.3) in terms of α.

If 2
(
θ −

√
θ2 − 3

)
/3 ≤ α ≤ 2

(
θ +

√
θ2 − 3

)
/3, then (3.3) possesses additional two

equilibria u+ = (u+
1 , u

+
2 ) and u− = (u−1 , u

−
2 ) given by

u±1 =
I±(α)(θ − I±(α))(I±(α) − α)

α {1 + (θ − α)2}
,

u±2 =
I±(α)(I±(α) − α)

α {1 + (θ − α)2}
.

Remark that our bifurcation analysis has been focused on the first bifurcation. A

more careful treatment is required if a modulational instability occurs after “0-mode”

instability.

4. Discussions and concluding remarks

In this paper we have mainly performed a mathematical rigorous study about a spatially

pulsative structure of Lugiato-Lefever equation, that is, nonlinear Schrödinger equation

with dissipation and detuning, and with cubic nonlinearity. One of the characteristic

properties about this problem is lack of variational (Hamiltonian) structure. Because

of the lack, we must state that it is difficult to construct the pulsating solution

mathematically rigorously, especially in the entire infinite interval.
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We have first indicated existence theorem of time global solution and the global

attractor with finite dimensions in appropriate space of functions. This is a simple

application of Prof. Ghidaglia’s theorem in [7], but due to this theorem, we concentrate

to construct a “soliton-like” stationary solution as an important object composing the

global attractor, and stability and bifurcation analysis in one dimensional bounded

interval.

Next, we have made a stability and bifurcation analysis to a homogeneous steady

state. Especially, in a bounded interval with periodic boundary condition or with

homogeneous Neumann boundary condition, the linearized eigenvalue problem near

the homogeneous steady state obtains 0 eigenvalue with nontrivial spatial mode

eigenfunctions and loses its stability. It is found out that α∗ = 1, which is the minimum

value of dispersion curve, becomes the bifurcation point only when the diffraction

constant b2 takes appropriate discrete values. Moreover, at these discrete values, we

have proved rigorously that a pulsating solution is bifurcating from the homogeneous

steady state and stable-unstable pair of pulsating solutions coexists in some parameter

region via bifurcation theory with group symmetry (See [8] and [9]) to get Theorem 3.3.

This means that such a kind of pulsating structure has a preferable distance between a

pulse and the next pulse, because the appropriate discrete values of b2 can be regarded

as appropriate size of the interval by use of a simple rescaling. This is meaning that

the pulse solutions must be packed suitably in the space, and it is one of interesting

properties about this problem.

On the other hand, if “soliton” means only one pulse solution in the entire space

generally, the pulsating solution under consideration here should be called “roll” solution

with periodic structure, which is slightly different from “soliton” solution. We should

study the problem on the entire line of R, if we would like to make a research about a

“soliton” solution as a solitary wave. Very few are known about the dissipative cavity

soliton in this rigorous meaning. In numerical simulations, usually FFT algorithm has

been utilized and naturally it requires the periodic boundary condition (See [21]). In

mathematical point of view, there is a very strong tool by which we prove the existence

of “soliton” solution and its stability analysis in one space dimension. That is a method

of homoclinic bifurcation analysis in reversible 1:1 resonance vector fields (for instance,

see [6, 15, 16, 26], and so forth). Generically speaking, the “soliton” solution can exist

near the “roll” solution via the theory, but this method cannot be simply applicable

to the problem, because this equation dose not have an important conservation law

(for example, like the first integral). Also here, the lack of variational structure affects

analysis to make the problem difficult, but interesting mathematically (See also [17]).

Finally, let us discuss about “snake bifurcation”. As Professors Ackemann and

Firth have made a numerical simulation about it in [1], this has “snake bifurcation”

structure, which means a series of lots of saddle-node bifurcations corresponding to

increasing or decreasing pulses (See also [12]). In fact, if the parameters are taken as

ones just outside of parameters region of this “snake bifurcation” region, then increasing

or decreasing pulses can be comprehensible as transition process of trajectory passing
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through “traces” of stationary states of standing pulses in the phase space. This type

of dynamics had been already pointed out in [22] by the time equal to or more than ten

years ago in the context of self-replicating pattern of pulses in the Gray-Scott model.

Moreover, Swift-Hohenberg equations have also this interesting bifurcation structure,

which has been studied very well recently, for instance, refer to [14], [13], and [19].

But Swift-Hohenberg equation has Hamiltonian structure, it is surely proved that 1:1

resonant Hopf bifurcation actually happens rigorously, which is a quite different point

from Lugiato-Lefever equations.

We have made numerical simulations about such a kind of interesting transition

process to ensure it for ourselves. From this viewpoint, understanding this structure

globally and mathematically is very interesting and important. But, it is difficult

to construct the global bifurcation structure mathematically rigorously. Instead of

that, as the first step, we have made a kind of singularity analysis about it near the

bifurcation point with codimension two to get Theorem 3.4. This rigorously means

that we made a center manifold reduction in which the dynamical system can be make

a reduction to the topological normal form possessing important informations about

the bifurcation branches near the bifurcation points with two codimensions. We have

analyzed it to get the form whose stationary solution means “the first bending solution”

in some parameter regions. Generally speaking, singularity with higher codimensions has

often very important information condensed infinitesimally about the global structure

of bifurcation. In this problem, we have also applied the idea to get an interesting

and crucial information about the structure of bifurcation, although it is for the “roll

solutions”.
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