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Relativistic hydrodynamic equations are utilized in various fields of physics,
especially in high-energy nuclear physics') and astrophysics,?) and it seems that
the study of the relativistic hydrodynamic equation with dissipative effects is now
becoming a central interest in these fields.

We should, however, note that a full understanding of the theory of relativistic
hydrodynamics for viscous fluids is yet to be done, although there have been many
important studies since Eckart’s pioneering work,? because of the instability* and
causal problems.?)7)

There have been continuous attempts to derive the phenomenological equations
from the relativistic Boltzmann equation to give a microscopic foundation or denial to
them;?: 78 for instance, with use of the Chapman-Enskog expansion method?) and
the Maxwell-Grad moment method.'® Although the past works certainly succeeded
in identifying the assumptions and/or approximations to reproduce the known hydro-
dynamic equations by Eckart, Landau and Lifshitz, Stewart, and Israel, the physical
meaning and foundation of these assumptions/approximations remain obscure, and
thus the uniqueness of those hydrodynamic equations has never been elucidated as
the long-wavelength and low-frequency limit of the underlying dynamics. Their va-
lidity or the fundamental compatibility with the underlying Boltzmann equation has
never been questioned nor addressed. This unsatisfactory situation rather reveals the
incompleteness of the Chapman-Enskog expansion method and the Maxwell-Grad
moment methods themselves as a reduction theory of the dynamics.

In this contribution, which is based on 11), we report a derivation first-order rel-
ativistic dissipative hydrodynamic equations'?)13) from relativistic Boltzmann equa-
tion on the basis of the renormalization-group (RG) method.'*)15)

We introduce a macroscopic-frame vector (MFV), which does not necessarily
coincide with the flow velocity, to specify the local rest frame on which the macro-
scopic dynamics is described. The five hydrodynamic modes are naturally identified
with the same number of the zero modes of the linearized collision operator, i.e., the
collision invariants.

After defining the inner product in the function space spanned by the distribu-
tion function, the higher-order terms, which give rise to the dissipative effects, are
constructed so that they are precisely orthogonal to the zero modes in terms of the
inner product: Here, any ansatz’s, such as the so-called conditions of fit or matching
conditions which have to be imposed in the standard methods in an ad-hoc way, are
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not necessary.

We elucidate that the Burnett term dose not affect the hydrodynamic equations
owing to the very nature of the hydrodynamic modes as the zero modes.

Then, applying the RG equation, we obtain the hydrodynamic equation in a
generic frame specified by the MFV, as the coarse-grained and covariant equation.
Our generic hydrodynamic equation reduces to hydrodynamic equations in various
local rest frames, including the energy and particle frames with a choice of the MFV.
We find that our equation in the energy frame coincides with that of Landau and
Lifshitz, while the derived equation in the particle frame is slightly different from
that of Eckart, owing to the presence of the dissipative internal energy.

We prove that the Eckart equation can not be compatible with the underlying
relativistic Boltzmann equation. The proof is made on the basis of the observation
that the orthogonality condition to the zero modes coincides with the ansatz’s posed
on the dissipative parts of the energy-momentum tensor and the particle current in
the phenomenological equations.

We also present an analytic proof that all of our equations have a stable equi-
librium state owing to the positive definiteness of the inner product.
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