Functional Integral Representation for Relativistic Schrödinger Operator Coupled to a Scalar Bose Field

Toshimitsu Takaesu. (Kyushu Univ.)

Abstract

In this paper the system of a quantum particle interacting with a scalar Bose field is investigated. The particle's Hamiltonian is given the relativistic Schrödinger operator with potential

$$H_{\rm p} = \sqrt{-\triangle + M^2} - M + V \tag{1}$$

A scalar Bose field is constructed by infinite dimensional stochastic process. The field operators $\{\phi(f)\}_{f\in\mathcal{K}_b}$ are defined by the Gaussan random process indexed by a Hilbert space \mathcal{K}_b on a probability space $(Q_b, \mathfrak{B}_b, P_b)$. The state space is given by $L^2(Q_{\mathcal{K}_b})$ and the free Bose Hamiltonian H_b is defined by the differential second quantization of $\omega_b(-i\nabla)$ where ω_b is non-negative and continuous function. Physically $\omega_b(\mathbf{k}) \ge 0$ denotes the one-particle energy of the field with momentum \mathbf{k} . Thus the triplet $(L^2(Q_{\mathcal{K}_b}), H_b, \{\phi(f)\}_{f\in\mathcal{K}_b})$ of the scalar Bose field is defined.

The state space of the interacting system is given by $\mathcal{H} = L^2(\mathbf{R}^d_{\mathbf{x}}) \otimes L^2(Q_b) \simeq \int_{\mathbf{R}^d}^{\oplus} L^2(Q_b) d\mathbf{x}$ where \int^{\oplus} denotes the fibre direct integral. The free Hamiltonian is defined by $H_0 = H_p \otimes I + I \otimes H_b$ and the total Hamiltonian by

$$H_{\kappa} = H_0 + \kappa \int_{\mathbf{R}^d}^{\oplus} P(\phi(\rho_{\mathbf{x}})) d\mathbf{x}$$
(2)

where $\dot{+}$ denotes the form sum, $P(\lambda) = \sum_{j=1}^{2n} c_j \lambda^j$, $c_j \in \mathbf{R}$, $j = 1, \dots, 2n-1$, $c_{2n} > 0$, and the ultraviolet cutoff condition $\rho_x \in S'_{\text{real}}$ for each $\mathbf{x} \in \mathbf{R}^d$ is supposed.

In the main theorem, the functional integral representation of $e^{-tH_{\kappa}}$ is derived.