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1 Introduction

Consider large matrices whose entries are random variables. Famous examples of such matrices are Wigner
matrices: a Wigner matrix is an N × N real or complex matrix W = (wij) whose entries are independent
random variables with mean zero and variance 1/N , subject to the symmetry constraint wij = wji. The
empirical density of eigenvalues converges to the Wigner semicircle law in the large N limit. Under some
additional moment assumptions on the entries this convergence also holds on very small scales: denoting
by GW (z) = (W − z)−1, z ∈ C+, the resolvent or Green function of W , the convergence of the empirical
eigenvalue distribution on scale η at an energy E ∈ R is equivalent to the convergence of the averaged
Green function mW (z) = N−1TrGW (z), z = E + iη. The convergence of mW (z) at the optimal scale
N−1, up to logarithmic corrections, the so-called local semicircle law, was established for Wigner matrices
in a series of papers [11, 12, 13], where it was also shown that the eigenvectors of Wigner matrices are
completely delocalized. The proof is based on a self-consistent equation for mW (z) and the continuity of
the Green function G(z) in the spectral parameter z. Precise estimates on the averaged Green function
mW (z) and on the eigenvalue locations are essential ingredients for proving bulk universality [14, 15] and
edge universality [16] for Wigner matrices. (See also [29, 30].)

Poisson statistics for systems represents the other extreme. It corresponds to diagonal matrices with i.i.d.
random entries. While the eigenvalues of the Wigner matrix are strongly correlated, the diagonal randomness
makes eigenvalues independent, hence uncorrelated. Physically, the diagonal matrix may represent an on-site
random potential on a lattice system. Compared to the mean-field nature of the Wigner matrix, which is in
the weak disorder- or the delocalization regime, the diagonal randomness also provides a good example in the
strong disorder- or the localization regime. It is conjectured that, after quantization, classically integrable
systems correspond to Poisson statistics whereas classically chaotic systems correspond to random matrix
statistics. In terms of quantum chaos, the diagonal matrix describes the ‘regular’ part, while the Wigner
matrix is a good model for the ‘chaotic’ part.

It is thus natural to consider the interpolation of the two, i.e., the N ×N random matrix

H = λV +W , λ ∈ R , (1.1)

where V is a real diagonal random matrix, or a ‘random potential’, and W a standard Hermitian or symmetric
Wigner matrix independent of V . Here, W is properly normalized so that the typical eigenvalues of V and W
are of the same order. The parameter λ determines the relative strength of each part in this model.

For λ ∼ 1 the eigenvalue density is not solely determined by V or W in the limit N → ∞, but can
be described by a functional equation for the Stieltjes transforms of the limiting eigenvalue distributions
of V and W ; see [24]. In general, this eigenvalue distribution, referred to as the deformed semicircle law, is
different from the semicircle distribution. The equal strength of V and W makes it non-trivial to find the
nature of the interpolation H. For example, the eigenvectors are completely delocalized for W whereas they



are localized for V , hence the eigenvector localization/delocalization problem requires deep investigation of
the model.

When W belongs to the Gaussian Unitary Ensemble (GUE), H is called the deformed GUE, and it can
describe Dyson Brownian motion [8] on the real line; see, e.g., [19]. There have been many important works
with various scales of λ: Related to symmetry-breaking, transition statistics for eigenvalues in the bulk,
especially the nearest neighbor spacing, were studied in [17] for λ ∼ N1/2. In this situation, the diagonal
part λV controls the average density, while the GUE part induces fluctuation of eigenvalues. For λ . 1,
it was shown in [26] that universality of eigenvalue correlation functions holds in the bulk of the spectrum.
Concerning the edge behaviour, it was shown in [20] that the transition from the Tracy-Widom to the standard
Gaussian distribution occurs on the scale λ ∼ N−1/6. For λ� N−1/6, the Tracy-Widom distribution for the
edge eigenvalues was established in [27].

There exists, for some choices of V , yet another transition for the limiting behaviour of the largest
eigenvalues µ1 of H as λ changes: For simplicity, we assume that the distribution of the entries of V is
centered and is given by the density

µ(v) := Z−1(1 + v)a(1− v)bd(v)1[−1,1](v) , (1.2)

where −1 ≤ a, b <∞, d is a strictly positive C1-function and Z is a normalization constant. The transition
is based on the transition of the near-edge behaviour of the eigenvalue distribution. Let µfc be The limiting
distribution of the eigenvalues of H. It is well-known that µfc is supported on a compact interval. Denoting
by κE the distance to the endpoints of the support of µfc, i.e.,

κE := min{|E − L−|, |E − L+|} , E ∈ R , (1.3)

we say that the distribution µfc exhibits the square root behaviour if there exists C ≥ 1 such that

C−1
√
κE ≤ µfc(E) ≤ C

√
κE , E ∈ [L−, L+] . (1.4)

The following lemma is proved in [21].

Lemma 1.1. Let µ be a Jacobi measure; see (1.2). Then, for any λ ∈ R, there are −∞ < L− < 0 < L+ <∞,
such that supp µfc = [L−, L+]. Moreover,

1. for −1 < a, b ≤ 1, for any λ ∈ R, µfc exhibits the square root behaviour (1.4);

2. for 1 < a, b <∞, there exists λ− ≡ λ−(µ) > 1 and λ+ ≡ λ+(µ) > 1 such that

(a) for |λ| < λ−, |λ| < λ−, µfc exhibits the square root behaviour at both endpoints;

(b) for |λ| < λ−, |λ| > λ+, µfc exhibits the square root behaviour at the lower endpoint of the support
(i.e., for E ∈ [L−, 0]), but there is C ≥ 1, such that

C−1(L+ − E)b ≤ µfc(E) ≤ C(L+ − E)b , E ∈ [0, L+] . (1.5)

Analogue statements hold for |λ| > λ−, |λ| < λ+, etc..

Depending on whether the measure µfc exhibits the square root behaviour, we have the following dicho-
tomy:

1. if µfc exhibits the square root behaviour at the upper edge (Case 1. and Case 2.(a)), then there are

N -independent constants L̂+ ≡ L̂+(µ, λ) and a ≡ a(µ, λ), such that

lim
N→∞

P(N1/2(L̂+ − µ1) ≤ x) = Φa(x) , b > 1 , |λ| < λ+ , (1.6)

for the largest largest eigenvalue µ1 of H, where Φa denotes the cumulative distribution function of a
centered Gaussian law with variance a.
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2. if µfc does not exhibit the square root behaviour at the upper edge (Case 2.(b)), then the largest
eigenvalue µ1 of H, satisfies

lim
N→∞

P(N1/(b+1)(L+ − µ1) ≤ x) = Gb+1(x) , b > 1 , |λ| > λ+ , (1.7)

where Gb+1 is a Weibull distribution with parameter b + 1.

We remark that the appearance of the Weibull distribution in the model (1.1) is indeed expected in case
λ grows sufficiently fast with N , since in this case the diagonal matrix dominates the spectral properties of
H. However, it is quite surprising that the Weibull distributions already appear for λ order one, since the
local behaviour of the eigenvalues in the bulk in the deformed model mainly stems from the Wigner part,
and the contribution from the random diagonal part is limited to macroscopic fluctuations of the eigenvalues;
see [21].

Having identified two possible limiting distribution of the largest eigenvalues, it is natural to ask about
a behaviour of the associated eigenvectors. Before considering the deformed model, we recall that the eigen-
vectors of Wigner matrices with subexponential decay are completely delocalized, as was proved by Erdős,
Schlein and Yau [11, 12].

In this paper, we show that the eigenvectors of the largest eigenvalues are, in case we have the edge
behaviour (1.7), partially localized. More precisely, we prove that one component of the (`2-normalized)
eigenvectors associated to eigenvalues at the extreme edge carries a weight of order one, while the other
components carry a weight of order o(1) each. If, however, the edge behaviour (1.6) emerges, all eigenvectors
are completely delocalized. Although we do not prove it explicitly, we claim that the bulk eigenvectors of
the model (1.1) with (1.2) for the choice of µ, are completely delocalized (for any choice of λ ∼ 1). This can
be proved with the very same methods as in [21].

The phenomenology described above is quite reminiscent to the one found for ‘heavy tailed’ Wigner
matrices, e.g., real symmetric Wigner matrices, whose distribution function of the entries decays as a power
law, i.e., the entries hij satisfy

P(|hij | > x) = L(x)x−α , (1 ≤ i, j ≤ N) , (1.8)

for some slowly varying function L(x). It was proved by Soshnikov [28] that the linear statistics of the largest
eigenvalues is Poissonian for α < 2, in particular the largest eigenvalue has a Fréchet limit distribution.
Later, Auffinger, Ben Arous and Péché [1] showed that the same conclusions hold for 2 ≤ α < 4 as well.
Recently, it was proved by Bodernave and Guionnet [7] that the eigenvectors of models satisfying (1.8) are
weakly delocalized for 1 < α < 2. For 0 < α < 1, it is conjectured that there is a sharp ‘metal-insulator’
transition. In [7] it is proved that the eigenvectors of sufficiently large eigenvalues for are weakly localized,
for 0 < α < 2/3.

To clarify the terminology ‘partial localization’ we remark that it is quite different from the usual notion of
localization for random Schrödinger operators. The telltale signature of localization for random Schrödinger
operators is exponential decay of off-diagonal Green function entries: it implies absence of diffusion, spectral
localization etc.. For the Anderson model in dimensions d ≥ 3 such an exponential decay was first obtained
by Fröhlich and Spencer [18] using a multiscale analysis. Later, a similar bound was presented by Aizenman
and Molchanov [2] using fractional moments. Due to the mean-field nature of the Wigner matrix W , there
is no notion of distance for the deformed model (1.1) and we attain only a moderate decay, which coincides
with what the first order perturbation theory predicts.

Yet, there are some similarities with the Anderson model in d ≥ 3: In the Anderson model localization
occurs where the density of states is (exponentially) small [18], this is known to happen close to the spectral
edges or for large disorder. Further, it is strongly believed that the Anderson model admits extended states,
i.e., the generalized eigenvectors in the bulk are expected to be delocalized. Moreover, it was proven by
Minami [23] that the local eigenvalue statistics of the Anderson model can be described by a Poisson point
process in the strong localization regime and it is also conjectured that the local eigenvalue statistics in the
bulk is given by the GOE statistics, respectively GUE statistics in case time-reversal symmetry is broken.
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Eventually, we mention that the localization result we prove in this paper also differs from that for
random band matrices, where all the eigenvectors are localized, even in the bulk. We refer to [25, 10] for
more discussion on the localization/delocalization in the random band matrices.

2 Definition and Results

In this section, we define our model and state our main results.

2.1 Free convolution

As first shown in [24] the limiting spectral distribution of the interpolating model (1.1) is given by the
(additive) free convolution measure of µ, the limiting distribution of the entries of λV , and µsc, the semicircular
measure. In a more general setting, the free convolution measure, µ1�µ2, of two probability measures µ1 and
µ2, is defined as the distribution of the sum of two freely independent non-commutative random variables,
having distributions µ1, µ2 respectively. The (additive) free convolution may also be described in terms of
the Stieltjes transform: Let µ be a probability measure on R, then we define the Stieltjes transform of µ by

mµ(z) :=

∫
R

dµ(x)

x− z
, z ∈ C+ . (2.1)

Note that mµ(z) is an analytic function in the upper half plane, satisfying limy→∞ iymµ(iy) = 1. As shown
in [31, 6], the free convolution has the following property: Denote by mµ1 , mµ2 , mµ1�µ2

, the Stieltjes
transforms of µ1, µ2, µ1 � µ2, respectively. Then there exist two analytic functions ω1, ω2, from C+ to C+,
satisfying limy→∞ ωi(iy)/iy = 1, (i = 1, 2), such that

mµ1�µ2
(z) = mµ1(ω1(z)) = mµ2(ω2(z)) ,

ω1(z) + ω2(z) = z − 1

mµ1�µ2
(z)

, (2.2)

for z ∈ C+. The functions ωi are referred to as subordination functions. Note that (2.2) also shows that
µ1 � µ2 = µ2 � µ1. It was pointed out in [4] that the system (2.2) may be used as an alternative definition
of the free convolution. In particular, given µ1, µ2, the system (2.2) has a unique solution (mµ1�µ2

, ω1, ω2).

In case we choose the measure µ2 as the standard semicircular law dµsc(E) = 1
2π

√
(4− E2)+dE. A

simple computation reveals that the Stieltjes transform mµsc ≡ msc satisfies

msc(z) = − 1

z +msc(z)
, z ∈ C+ .

Using this information, we can reduce the system (2.2), to the self-consistent equation

mfc(z) =

∫
dµ(x)

x− z −mfc(z)
, z ∈ C+ , (2.3)

with limy→∞ iymfc(iy) = 1, where we have abbreviated µ ≡ µ1. Equation (2.3) is often called the Pastur
relation. A slightly modified version of the functional equation (2.3) is the starting point of the analysis
in [24] and also of the present paper.

The (unique) solution of (2.3) has first been studied in details in [5]. In particular, it has been shown that
lim supη↘0 |Immfc(E+ iη)| <∞, E ∈ R, and hence the free convolution measure µfc ≡ µ�µsc is absolutely
continuous (for simplicity we denote the density also with µfc) and we conclude from the Stieltjes inversion
formula that

µfc(E) = lim
η↘0

Immfc(E + iη) , E ∈ R .

Moreover, it was shown in [5] that the density µfc is analytic in the interior of the support of µfc. We refer
to, e.g., [3] for further results on the regularity of the free convolution.
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2.2 Notations and Conventions

To state our main results, we need some more notations and conventions. For high probability estimates we
use two parameters ξ ≡ ξN and ϕ ≡ ϕN : We assume that

a0 < ξ ≤ A0 log logN , ϕ = (logN)C , (2.4)

for some fixed constants a0 > 2, A0 ≥ 10, C ≥ 1. They only depend on θ and C0 in (2.5) and will be kept
fixed in the following.

Definition 2.1. We say an event Ω has (ξ, ν)-high probability, if

P(Ωc) ≤ e−ν(logN)ξ ,

for N sufficiently large.
Similarly, for a given event Ω0 we say an event Ω holds with (ξ, ν)-high probability on Ω0, if

P(Ω0 ∩ Ωc) ≤ e−ν(logN)ξ ,

for N sufficiently large.

For brevity, we occasionally say an event holds with high probability, when we mean (ξ, ν)-high probability.
We do not keep track of the explicit value of ν in the following, allowing ν to decrease from line to line such
that ν > 0. From our proof it becomes apparent that such reductions occur only finitely many times.

We define the resolvent, or Green function, G(z), and the averaged Green function, m(z), of H by

G(z) = (Gij(z)) :=
1

λV +W − z
, m(z) :=

1

N
TrG(z) , z ∈ C+ .

Frequently, we abbreviate G ≡ G(z), m ≡ m(z), etc.
We use the symbols O( · ) and o( · ) for the standard big-O and little-o notation. The notations O , o,

�, �, always refer to the limit N → ∞. Here a � b means a = o(b). We use c and C to denote positive
constants that do not depend on N , usually with the convention c ≤ C. Their value may change from line
to line. Finally, we write a ∼ b, if there is C ≥ 1 such that C−1|b| ≤ |a| ≤ C|b|, and, occasionally, we write
for N -dependent quantities aN . bN , if there exist constants C, c > 0 such that |aN | ≤ C(ϕN )cξ|bN |.

2.3 Assumptions

We define the model (1.1) in details and list our main assumptions.
Let W be an N×N random matrix, whose entries, (wij), are independent, up to the symmetry constraint

wij = wji, centered, complex random variables with variance N−1 and subexponential decay, i.e.,

P
(√

N |wij | > x
)
≤ C0 e−x

1/θ

, (2.5)

for some positive constants C0 and θ > 1. In particular,

Ewij = 0 , E|wij |p ≤ C
(θp)θp

Np/2
(p ≥ 3) , (2.6)

and,

Ew2
ii =

1

N
, E|wij |2 =

1

N
, Ew2

ij = 0 (i 6= j) . (2.7)
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Remark 2.2. We remark that all our methods also apply to symmetric Wigner matrices, i.e., when (wij)
are centered, real random variables with variance N−1, with subexponential decay. In this case, (2.7) gets
replaced by

Ew2
ii =

2

N
, Ew2

ij =
1

N
(i 6= j) . (2.8)

Let V be an N ×N diagonal random matrix, whose entries (vi) are real, centered, i.i.d. random variables,
independent of W = (wij), with law µ. More assumptions on µ will be stated below. Without loss of
generality, we assume that the entries of V are ordered,

v1 ≥ v2 ≥ · · · ≥ vN . (2.9)

For λ ∈ R, we consider the random matrix

H = (hij) := λV +W . (2.10)

We choose for simplicity µ as a Jacobi measure, i.e., µ is described in terms of its density

µ(v) = Z−1(1 + v)a(1− v)bd(v)1[−1,1](v) , (2.11)

where a, b > −1, d ∈ C1([−1, 1]) such that d(v) > 0, v ∈ [−1, 1], and Z is an appropriately chosen normal-
ization constant such that µ is a probability measure. We will assume, for simplicity of the arguments, that
µ is centered, but this condition can easily be relaxed. We remark that the measure µ has support [−1, 1],
but we observe that varying λ is equivalent to changing the support of µ. Since µ is absolutely continuous,
we may assume that (2.9) holds with strict inequalities. Finally, since we assume that µ is centered, we may
choose λ ≥ 0 in the following.

We remark that, as one can see from (2.5),

|wij | ≤
(ϕN )ξ√
N

, (2.12)

with (ξ, ν)-high probability, whereas vi ∈ [−1, 1], almost surely.

3 Results

In this section we state our main results.
Since we choose the measure µ to be centered, we may assume that λ ≥ 0, without loss of generality in

the following. Fix some λ0 > 0, then we assume that the perturbation parameter λ is in the domain

Dλ0
:= {λ ∈ R+ : |λ| ≤ λ0} .

We define the spectral parameter z = E + iη, with E ∈ R and η > 0. Let E0 ≥ 3 + λ0 and define the
domain

DL := {z = E + iη ∈ C : |E| ≤ E0 , (ϕN )L ≤ Nη ≤ 3N} , (3.1)

with L ≡ L(N), such that L ≥ 12ξ. Here, we chose E0 bigger than 3 + λ, since we know that the spectrum
of W lies in the set {E ∈ R : |E| ≤ 3} with high probability. Thus spectral perturbation theory implies that
the spectrum of H is contained in {E ∈ R : |E| ≤ 3 + λ}, with high probability. Recall the definition of κE ,
the distance to the endpoints of the support of µfc. In the following, we often abbreviate κ ≡ κE .
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3.1 Delocalization regime

The first theorem shows that a modified local semicircle law, which we will also call a deformed local law,
holds when µfc exhibits a square root behaviour.

Theorem 3.1. [Strong local law] Assume that the limiting distribution µfc for H in (2.10) exhibits a square
root behaviour at the both edges of the spectrum. Let

ξ =
A0 + o(1)

2
log logN . (3.2)

Then there are constants ν > 0 and c1, depending on the constants A0, E0, λ0, θ, C0 in (2.5) and the
measure µ, such that for L ≥ 40ξ, the events⋂

z∈DL
λ∈Dλ0

{
|m(z)−mfc(z)| ≤ (ϕN )c1ξ

(
min

{
λ1/2

N1/4
,

λ√
κ+ η

1√
N

}
+

1

Nη

)}
(3.3)

and ⋂
z∈DL
λ∈Dλ0

{
max
i6=j
|Gij | ≤ (ϕN )c1ξ

(√
Immfc(z)

Nη
+

1

Nη

)}
(3.4)

both have (ξ, ν)-high probability.

For λ = 0, we have mfc = msc, where msc is the Stieltjes transform of the standard semicircle law. In
this case stronger estimates have been obtained; see, e.g., [9]. Roughly speaking, in this situation we have
the high probability bounds

|m(z)−msc(z)| .
1

Nη
and |Gij(z)− δijm(z)| .

√
Immsc(z)

Nη
+

1

Nη
, (3.5)

(up to logarithmic corrections), within the range of admitted parameters.
This suggests that the bound on Gij(z), (i 6= j), in (3.4) is optimal. However, for λ 6= 0, the individual

diagonal resolvent entries Gii(z) do not concentrate around their mean m(z), due to the fluctuations in the
random variables (vi). This becomes apparent from Schur’s complement formula and one easily establishes
that |Gii(z)−m(z)| = O(λ) + o(1), with high probability.

Comparing the estimate on m−mfc in (3.3) with the corresponding estimate in (3.5), one may suspect
that the leading correction terms in (3.3) stem from fluctuations of the random variables (vi). The next
theorem asserts that this is indeed true, at least in the bulk of the spectrum: There are random variables
ζ0 ≡ ζN0 (z), which depend on the random variables (vi), but are independent of the random variables (wij),
such that |m(z)−mfc(z)− ζ0(z)| . (Nη)−1 with high probability in the bulk of the spectrum. Concerning
the spectral edge, we remark that the estimate in (3.3) is optimal for λ � N−1/6, but it is not known
whether λ1/2N−1/4 is the optimal rate for λ� N−1/6.

Next, let µ1 ≥ · · · ≥ µN denote the eigenvalues of H = λV +W , and let u1, · · · , uN denote the associated
eigenvectors. We use the notation uα = (uα(i))Ni=1 for the vector components. All eigenvectors are `2-
normalized. The next theorem asserts that, with high probability, all eigenvectors of H = λV + W are
completely delocalized:

Theorem 3.2. [Eigenvector delocalization] Assume that the limiting distribution µfc for H in (2.10) exhibits
a square root behaviour at the both edges of the spectrum. Then there is a constant ν > 0, depending on A0,
E0, λ0, θ and C0 in (2.5) and the measure µ, such that for any ξ satisfying (2.4), we have

max
1≤α≤N

max
1≤i≤N

|uα(i)| ≤ (ϕN )4ξ√
N

,

with (ξ, ν)-high probability.
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Remark 3.3. In case the entries of V = (vi) are independent Gaussian random variables, the situation is
more subtle: For any finite E0, there exists a constant cE0

, independent of N , and a constant ν, depending
on A0, E0, θ and C0 in (2.5), such that for any ξ satisfying (2.4),

max
1≤i≤N

|uα(i)| ≤ cE0

(ϕN )4ξ√
N

, (3.6)

with (ξ, ν)-high probability. However, cE0
→∞ and ν → 0, as E0 →∞.

In the delocalized regime, we can find a Gaussian fluctuation of the largest eigenvalue, which is explained
in the following theorem.

Theorem 3.4. Let µ be a centered Jacobi measure defined in (2.11) with b > 1. Let suppµfc = [L̂−, L̂+],

where L̂− and L̂+ are random variables depending on (vi). Then, if λ < λ+, the rescaled fluctuation
N1/2(L̂+ − L+) converges to a Gaussian random variable with mean 0 and variance (1 − [mfc(L+)]2) in
distribution, as N →∞.

Remark 3.5. When a > 1, the analogous statement to Theorem 3.4 holds at the lower edge.

For the proof of Theorem 3.4, see Appendix.

3.2 Localization regime

The first result of this subsection shows that the locations of the extreme eigenvalues are given by the order
statistics of the diagonal elements.

Theorem 3.6. Let n0 be a fixed constant independent of N . Let µk be the k-th largest eigenvalue of H =
λV +W , where 1 ≤ k < n0. Fix some λ > λ+. Then, the joint distribution function of the k largest rescaled
eigenvalues

P
(
N1/(b+1)(L+ − µ1) ≤ s1, N1/(b+1)(L+ − µ2) ≤ s2, · · · , N1/(b+1)(L+ − µk) ≤ sk

)
, (3.7)

converges to the joint distribution function of the k largest rescaled order statistics,

P
(
CλN

1/(b+1)(1− v1) ≤ s1, CλN1/(b+1)(1− v2) ≤ s2, · · · , CλN1/(b+1)(1− vk) ≤ sk
)
, (3.8)

as N → ∞, where Cλ =
λ2−λ2

+

λ . In particular, the cumulative distribution function of the rescaled largest

eigenvalue N1/(b+1)(L+ − µ1) converges to the Weibull distribution

Gb+1(z) := Cµs
b exp

(
−Cµs

b+1

(b + 1)

)
, (3.9)

where

Cµ :=

(
λ

λ2 − λ2+

)b+1

lim
v→1

µ(v)

(1− v)b
.

The second result in this subsection asserts that the eigenvectors associated with the extreme eigenvalues
are ‘partially localized’. We denote by (uk(j))Nj=1 the component of the eigenvector uk associated to the

eigenvalue µk. All eigenvectors are normalized as
∑N
j=1 |uk(j)|2 = ‖uk‖22 = 1.

Theorem 3.7. Let n0 be a fixed constant independent of N . Let µk be the k-th largest eigenvalue of H =
λV +W and uk(j) the j-th component of the associated (normalized) eigenvector, where k ∈ J1, n0 − 1K. Fix
λ > λ+. Then, there exist constants δ, δ′, σ > 0, such

P
(∣∣∣∣|uk(k)|2 −

λ2 − λ2+
λ2

∣∣∣∣ ≥ Nδ

)
≤ N−σ . (3.10)
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and, for any j 6= k,

P

(
|uk(j)|2 > Nδ′

N

1

λ2|vk − vj |2
)

)
≤ N−σ . (3.11)

Remark 3.8. In [21], it was proved that all eigenvectors are completely delocalized when λ < λ+. This also
shows a sharp transition from the partial localization to the complete delocalization. Following the proof
in [21], we can prove that the eigenvectors are completely delocalized in the bulk even when λ > λ+.

Remark 3.9. Theorems 3.6 and 3.7 remain valid for deterministic potentials V , provided the entires (vi)
satisfy some suitable assumptions.

Remark 3.10. From (3.10), we find that, for k ∈ J1, n0 − 1K,

N∑
j:j 6=k

|uk(j)|2 =
λ2+
λ2

+ o(1) ,

which is in accordance with the fact that (3.11) holds and that, typically,

1

N

N∑
j:j 6=k

1

λ2|vk − vj |2
=
λ2+
λ2

+ o(1) ,

where we used (3.8). Considering, on a formal level, W as a perturbation of λV , Rayleigh-Schrödinger
perturbation theory predicts that

|uk(j)|2 ' 1

Nλ2|vk − vj |2
, (k 6= j) .

It might be possible to justify some of our results using asymptotic perturbation theory.

In the next section, we introduce the main steps of the proof of Theorem 3.6. Proofs of other theorems
in this section, as well as the detailed proof of Theorem 3.6, can be found in [21, 22].

4 Proof of Theorem 3.6

In this section, we outline the proof of Theorem 3.6. We first fix the diagonal random entries (vi) and consider
µ̂fc, the deformed semicircle measure with fixed (vi). The main tools we use in the proof are Lemma 4.2,
where we obtain a linear approximation of mfc, and Lemma 4.5, which estimates the difference between mfc

and m̂fc, the Stieltjes transform of µ̂fc. Using Proposition 4.6 that estimates the eigenvalue locations in
terms of m̂fc, we prove Theorem 3.6.

4.1 Definition of ΩV

In this subsection we define an event ΩV , on which the random variables (vi) exhibit ‘typical’ behaviour. For
this purpose we need some more notation:

Define the domain, Dε, of the spectral parameter z by

Dε := {z = E + iη ∈ C+ : −3− λ ≤ E ≤ 3 + λ, N−1/2−ε ≤ η ≤ N−1/(b+1)+ε} . (4.1)

Using spectral perturbation theory, we find that the following a priori bound

|µk| ≤ ‖H‖ ≤ ‖W‖+ λ‖V ‖ ≤ 2 + λ+ (ϕN )cξN−2/3 , (4.2)

holds with high probability; see, e.g., Theorem 2.1. in [16].
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Further, denote by b the constant

b :=
1

2
− 1

b + 1
=

b− 1

2(b + 1)
=

b

b + 1
− 1

2
, (4.3)

which only depends on b. Fix a sufficiently small ε > 0 satisfying

ε <

(
10 +

b + 1

b− 1

)
b . (4.4)

Finally, we define N -dependent constants κ0 and η0 as

κ0 := N−1/(b+1), η0 :=
N−ε√
N
. (4.5)

In most cases, the point z = L+ − κ+ iη we consider will satisfy κ . κ0 and η ≥ η0.
Now, we are ready to give a definition of the ‘good’ event ΩV :

Definition 4.1. Let n0 > 10 be a fixed positive integer independent of N . We define ΩV to be the event on
which the following conditions hold for any k ∈ J1, n0 − 1K:

1. The k-th largest random variable vk satisfies, for all j ∈ J1, NK with j 6= k,

N−εκ0 < |vj − vk| < (logN)κ0 . (4.6)

In addition, for k = 1, we have

N−εκ0 < |1− v1| < (logN)κ0 . (4.7)

2. There exists a constant c independent of N such that, for any z ∈ Dε satisfying

min
i∈J1,NK

|Re (z +mfc(z))− λvi| = |Re (z +mfc(z))− λvk| , (4.8)

we have

1

N

N∑
i:i 6=k

1

|λvi − z −mfc(z)|2
< c < 1 . (4.9)

We remark that, together with (4.6) and (4.7), (4.8) implies

|Re (z +mfc(z))− λvi| >
N−εκ0

2
, (4.10)

for all i 6= k.

3. There exists a constant C > 0 such that, for any z ∈ Dε, we have∣∣∣∣∣ 1

N

N∑
i=1

1

λvi − z −mfc(z)
−
∫

dµ(v)

λv − z −mfc(z)

∣∣∣∣∣ ≤ CN3ε/2

√
N

. (4.11)

It can be checked that

P(ΩV ) ≥ 1− C(logN)1+2bN−ε, (4.12)

thus (ΩV )c is indeed a rare event. See Appendix I of [22] for more detail.
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4.2 Definition of m̂fc

Recall that we assume that v1 > v2 > · · · > vN . We will mainly focus on the case where ΩV holds, i.e., (vi)
are fixed and satisfy the conditions in Definition 4.1. Under such consideration, we let µ̂ be the empirical
measure defined by

µ̂ :=
1

N

N∑
i=1

δλvi (4.13)

and we set µ̂fc := µ̂ � µsc, i.e., µ̂fc is the free convolution measure of the empirical measure µ̂ and the
semicircular measure µsc. As in the case of mfc, the Stieltjes transform m̂fc of the measure µ̂fc is a solution
to the equation

m̂fc(z) =
1

N

N∑
i=1

1

λvi − z − m̂fc(z)
, Im m̂fc(z) ≥ 0 , z ∈ C+ . (4.14)

We are going to show that mfc(z) is a good approximation of m̂fc(z) on ΩV for z in some subset of Dε.

4.3 Properties of mfc and m̂fc

Recall the definitions of mfc and m̂fc. Let

R2(z) :=

∫
dµ(v)

|λv − z −mfc(z)|2
, R̂2(z) :=

1

N

N∑
i=1

1

|λvi − z − m̂fc(z)|2
, z ∈ C+ . (4.15)

Since

Immfc(z) =

∫
Im z + Immfc(z)

|λv − z −mfc(z)|2
dµ(v) ,

we have that

R2(z) =
Immfc(z)

Im z + Immfc(z)
< 1 .

Similarly, we also find that R̂2(z) < 1.
The following lemma shows that mfc is approximately a linear function near the spectral edge.

Lemma 4.2. Let z = L+ − κ+ iη ∈ Dε. Then,

z +mfc(z) = λ− λ2

λ2 − λ2+
(L+ − z) +O

(
(logN)(κ+ η)min{b,2}

)
. (4.16)

Similarly, if z, z′ ∈ Dε, then

mfc(z)−mfc(z
′) =

λ2+
λ2 − λ2+

(z − z′) +O
(

(logN)2(N−1/(b+1))min{b−1,1}|z − z′|
)
. (4.17)

Proof. We only prove the first part of the lemma; the second part can be proved analogously. Since L+ +
mfc(L+) = λ, we can write

mfc(z)−mfc(L+) =

∫
dµ(v)

λv − z −mfc(z)
−
∫

dµ(v)

λv − L+ −mfc(L+)

=

∫
mfc(z)−mfc(L+) + (z − L+)

(λv − z −mfc(z))(λv − λ)
dµ(v) .

(4.18)
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If we let

T (z) :=

∫
dµ(v)

(λv − z −mfc(z))(λv − λ)
, (4.19)

we find

|T (z)| ≤
(∫

dµ(v)

|λv − z −mfc(z)|2

)1/2(∫
dµ(v)

|λv − λ|2

)1/2

≤
√
R2(z)

λ+
λ

<
λ+
λ

< 1 .

Hence, for z ∈ Dε, we have

mfc(z)−mfc(L+) =
T (z)

1− T (z)
(z − L+) , (4.20)

which shows that

z +mfc(z) = λ− 1

1− T (z)
(L+ − z) . (4.21)

We also obtain from (4.21) that

|z +mfc(z)− λ| ≤
λ

λ− λ+
|L+ − z| .

We now estimate T (z). Let τ = z +mfc(z). We have

T (z)−
λ2+
λ2

=

∫
dµ(v)

(λv − τ)(λv − λ)
−
∫

dµ(v)

(λv − λ)2
= (τ − λ)

∫
dµ(v)

(λv − τ)(λv − λ)2
. (4.22)

In order to find an upper bound on the integral on the very right side, we consider the following cases:

1. When b ≥ 2, we have ∣∣∣∣∫ dµ(v)

(λv − τ)(λv − λ)2

∣∣∣∣ ≤ C ∫ 1

−1

dv

|λv − τ |
≤ C logN . (4.23)

2. When b < 2, define a set A ⊂ [−1, 1] by

A := {v ∈ [−1, 1] : λv < −λ+ 2 Re τ} ,

and B := [−1, 1]\A. Estimating the integral in (4.22) on A we find∣∣∣∣∫
A

dµ(v)

(λv − τ)(λv − λ)2

∣∣∣∣ ≤ C ∫
A

dµ(v)

|λv − λ|3
≤ C|λ− τ |b−2 , (4.24)

where we have used that, for v ∈ A,

|λv − τ | > |Re τ − λv| > 1

2
(λ− λv) .

On the set B, we have∣∣∣∣∫
B

dµ(v)

(λv − τ)(λv − λ)

∣∣∣∣ ≤ C ∫
B

|λ− λv|b−1

|λv − τ |
dv ≤ C|λ− τ |b−1 logN , (4.25)

where we have used that, for v ∈ B,

|λ− λv| ≤ 2(λ− Re τ) ≤ 2|λ− τ | .
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We also have ∣∣∣∣∫
B

dµ(v)

(λv − λ)2

∣∣∣∣ ≤ C ∫
B

|λv − λ|b−2dv ≤ C|λ− τ |b−1 . (4.26)

Thus, we obtain from (4.22), (4.25) and (4.26) that∣∣∣∣∫ dµ(v)

(λv − τ)(λv − λ)2

∣∣∣∣ ≤ C|λ− τ |b−2 logN . (4.27)

We thus have proved that

T (z) =
λ2+
λ2

+O((logN)|L+ − z|min{b−1,1}) , (4.28)

which, combined with (4.21), proves the desired lemma.

Remark 4.3. Choosing in Lemma 4.2 zk = L+ − κk + iη ∈ Dε with

κk =
λ2 − λ2+

λ
(1− vk)

we obtain

zk +mfc(zk) = λvk +
λ2

λ2 − λ2+
η +O((logN)N−min{b,2}/(b+1)+2ε) . (4.29)

To estimate |m̂fc −mfc|, we consider the following subset of Dε:
Definition 4.4. Let A := Jn0, NK. We define the domain D′ε of the spectral parameter z as

D′ε =

{
z ∈ Dε : |λva − z −mfc(z)| >

1

2
N−1/(b+1)−ε, ∀a ∈ A

}
. (4.30)

Eventually, we will show that µk + iη0 ∈ D′ε, k ∈ J1, n0− 1K, with high probability on ΩV ; see remark 4.7.
We now prove an a priori bound on the difference |m̂fc −mfc| on D′ε.

Lemma 4.5. For any z ∈ D′ε, we have on ΩV that

|mfc(z)− m̂fc(z)| ≤
N2ε

√
N
. (4.31)

Proof. Assume that ΩV holds. For given z ∈ D′ε, choose k ∈ J1, n0 − 1K satisfying (4.8), i.e., among (λvi),
λvk is closest to Re (z +mfc(z)). Suppose that (4.31) does not hold. By definition, we obtain the following
self-consistent equation for (m̂fc −mfc):

m̂fc −mfc =
1

N

N∑
i=1

(
1

λvi − z − m̂fc
−mfc

)

=
1

N

N∑
i=1

(
1

λvi − z − m̂fc
− 1

λvi − z −mfc

)
+

(
1

N

N∑
i=1

1

λvi − z −mfc
−
∫

dµ(v)

λv − z −mfc

)

=
1

N

N∑
i=1

m̂fc −mfc

(λvi − z − m̂fc)(λvi − z −mfc)
+

(
1

N

N∑
i=1

1

λvi − z −mfc
−
∫

dµ(v)

λv − z −mfc

)
.

(4.32)

From the assumption (4.11), we find that the second term in the right hand side of (4.32) is bounded by
N−1/2+3ε/2.
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We want to estimate the first term in the right hand side of (4.32). For i = k, we have

|λvk − z − m̂fc|+ |λvk − z −mfc| ≥ |m̂fc(z)−mfc(z)| >
N2ε

√
N
,

which shows that either

|λvk − z − m̂fc| ≥
N2ε

2
√
N
, or |λvk − z −mfc| ≥

N2ε

2
√
N
.

In either case, by considering the imaginary part, we find

1

N

∣∣∣∣ 1

(λvk − z − m̂fc)(λvk − z −mfc)

∣∣∣∣ ≤ 1

N

2
√
N

N2ε

1

η
≤ CN−ε , z ∈ D′ε .

For the other terms, we use

1

N

∣∣∣∣∣∣
(k)∑
i

1

(λvi − z − m̂fc)(λvi − z −mfc)

∣∣∣∣∣∣ ≤ 1

2N

(k)∑
i

(
1

|λvi − z − m̂fc|2
+

1

|λvi − z −mfc|2

)
. (4.33)

From (4.14), we have that

1

N

N∑
i=1

1

|λvi − z − m̂fc|2
=

Im m̂fc

η + Im m̂fc
< 1 . (4.34)

We also assume in the assumption (4.9) that

1

N

(k)∑
i

1

|λvi − z −mfc|2
< c < 1 , (4.35)

for some constant c. Thus, we get

|m̂fc(z)−mfc(z)| <
1 + c

2
|m̂fc(z)−mfc(z)|+N−1/2+3ε/2 , z ∈ D′ε , (4.36)

which implies that
|m̂fc(z)−mfc(z)| < CN−1/2+3ε/2 , z ∈ D′ε .

Since this contradicts with the assumption that (4.31) does not hold, this proves the desired lemma.

4.4 Proof of Theorem 3.6

The main result of this subsection is Proposition 4.8, which will imply Theorem 3.6. The key ingredient of
the proof of Proposition 4.8 is an implicit equation for the largest eigenvalues (µk) of H, Equation (4.37)
in Proposition 4.6 below, involving the Stieltjes transform m̂fc and the random variables (vk). Using the
information on m̂fc gathered in the previous subsections the Equation (4.37) can be solved approximately
for (µk).

Proposition 4.6. Let n0 > 10 be a fixed integer independent of N . Let µk be the k-th largest eigenvalue
of H, k ∈ J1, n0 − 1K. Suppose that the assumptions in Theorem 3.6 hold. Then, the following holds with
(ξ − 2, ν)-high probability on ΩV :

µk + Re m̂fc(µk + iη0) = λvk +O(N−1/2+3ε) . (4.37)
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Remark 4.7. Since |λvi − λvk| ≥ N−εκ0 � N−1/2+3ε, for all i 6= k, on ΩV , we obtain from Proposition 4.6
that

|µk + iη0 + Re m̂fc(µk + iη0)− λvi| ≥ |λvi − λvk| − |µk + iη0 + Re m̂fc(µk + iη0)− λvk| ≥
N−εκ0

2
,

on ΩV . Hence, we find that µk + iη0 ∈ D′ε, k ∈ J1, n0 − 1K, with high probability on ΩV .

For the proof of Proposition 4.6, see Section 5 of [22], where Cauchy’s interlacing property of eigenvalues
of H and its minor H(i) is used. Combining the tools we developed in the previous subsection, we now prove
the main result on the location of the eigenvalues.

Proposition 4.8. Let n0 > 10 be a fixed integer independent of N . Let µk be the k-th largest eigenvalue
of H = λV + W , where k ∈ J1, n0 − 1K. Then, there exist constants C and ν > 0 such that we have, with
(ξ − 2, ν)-high probability on ΩV ,∣∣∣∣µk − (L+ −

λ2 − λ2+
λ

(1− vk)

)∣∣∣∣ ≤ C 1

N1/(b+1)

(
N3ε

Nb
+

(logN)2

N1/(b+1)

)
. (4.38)

Proof of Theorem 3.6 and Proposition 4.8. It suffices to prove Proposition 4.8. Let k ∈ J1, n0 − 1K. From
Lemma 4.5 and Proposition 4.6, we find that, with high probability on ΩV ,

µk + Remfc(µk + iη0) = λvk +O(N−1/2+3ε) . (4.39)

In Lemma 4.2, we showed that

µk + iη0 +mfc(µk + iη0) = λ− λ2

λ2 − λ2+
(L+ − µk) + iCη0 +O

(
κ
min{b,2}
0 (logN)2

)
. (4.40)

Thus, we obtain

µk + Remfc(µk + iη0) = λ− λ2

λ2 − λ2+
(L+ − µk) +O

(
κ
min{b,2}
0 (logN)2

)
. (4.41)

Therefore, we have with high probability on ΩV that

µk = L+ −
λ2 − λ2+

λ
(1− vk) +O

(
κ
min{b,2}
0 (logN)2

)
+O(N−1/2+3ε) , (4.42)

completing the proof of Proposition 4.8.

Remark 4.9. The constants in Proposition 4.8 depend only on λ, the distribution µ and the constant C0

and θ in (2.5), but are otherwise independent of the detailed structure of the Wigner matrix W .

5 Appendix

In this appendix, we consider the Gaussian fluctuation of the largest eigenvalue in Theorem 3.4.

Proof of Theorem 3.4. Following the proof in [27, 21], we find that L̂+ be the solution to the equations

m̂fc(L̂+) =
1

N

N∑
j=1

1

λvj − L̂+ − m̂fc(L̂+)
,

1

N

N∑
j=1

1

(λvj − L̂+ − m̂fc(L̂+))2
= 1. (5.1)

Let
τ := L+ +mfc(L+), τ̂ := L̂+ + m̂fc(L̂+).
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From the condition λ < λ+, we assume that∫
dµ(v)

(λv − λ)2
> 1 + δ,

1

N

N∑
j=1

1

(λvj − λ)2
> 1 + δ (5.2)

for some δ > 0. Notice that the second inequality holds with high probability on V . From the assumption,
we also find that τ, τ̂ > λ.

We first consider

0 =
1

N

N∑
j=1

1

(λvj − τ̂)2
− 1 =

1

N

N∑
j=1

1

(λvj − τ̂)2
− 1

N

N∑
j=1

1

(λvj − τ)2
+O(ϕξN−1/2)

=
1

N

N∑
j=1

(−2λvj + τ + τ̂)(τ − τ̂)

(λvj − τ)2(λvj − τ̂)2
+O(ϕξN−1/2), (5.3)

which holds with high probability. Since τ, τ̂ > λ, we have

−2λvj + τ + τ̂ ≥ 0.

Moreover, with high probability, |{vj : vj < 0}| > cN for some constant c > 0, independent of N . In
particular,

1

N

N∑
j=1

−2λvj + τ + τ̂

(λvj − τ)2(λvj − τ̂)2
> c′ > 0

for some constant c′ independent of N . This shows that

τ − τ̂ = O(ϕξN−1/2).

We now consider

m̂fc(L+) = τ̂ − L̂+ =
1

N

N∑
j=1

1

λvj − τ̂
=

1

N

N∑
j=1

1

λvj − τ
+

1

N

N∑
j=1

τ̂ − τ
(λvj − τ)2

+O(ϕ2ξN−1)

= mfc(L+) +X + (τ̂ − τ) +O(ϕ2ξN−1), (5.4)

with high probability, where we define the random variable X by

X :=
1

N

N∑
j=1

1

λvj − τ
−
∫

dµ(v)

λv − τ
=

1

N

N∑
j=1

(
1

λvj − τ
− E

[
1

λvj − τ

])
. (5.5)

Notice that, by the central limit theorem, we have that X converges to the Gaussian random variable with
mean 0 and variance N−1(1− (mfc(L+))2). Thus, we obtain that

L+ − L̂+ = X +O(ϕ2ξN−1), (5.6)

which proves the desired lemma.

When (vi) are fixed, we may follow the proof of Theorem 2.21 in [21] and get

|L+ − µ1| ≤ ϕCξN−2/3 (5.7)

with high probability. Since |L̂+−L+| ∼ N−1/2, we find that the leading fluctuation of the largest eigenvalue
comes from the Gaussian fluctuation we proved in Lemma 3.4. This also shows that there is a sharp transition
from the order statistics to the Gaussian as λ changes.
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[16] Erdős, L., Yau, H.-T., Yin, J.: Rigidity of Eigenvalues of Generalized Wigner Matrices, Adv. Math.
229, 1435-1515 (2012).

[17] Forrester, P. J., Nagao, T.: Correlations for the Circular Dyson Brownian Motion Model with Poisson
Initial Conditions, Nuclear Phys. B 532, 733-752 (1998).
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