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1 The Fröhlich Hamiltonian for a single polaron

The Fröhlich Hamiltonian for a single polaron is given by

HΛ =− 1
2
∆−√α

∫

|k|≤Λ
dk

1
|k|

[
eik·xa(k) + e−ik·xa(k)∗

]
+ Nf ,

Nf =
∫

R3

dk a(k)∗a(k).

a(k), a(k)∗ are annihilation- and creation operators, respectively. These satisfy the standard
commutation relations:

[a(k), a(k′)∗] = δ(k − k′), [a(k), a(k′)] = 0 = [a(k)∗, a(k′)∗].

The Hamiltonian HΛ lives in the Hilbert space L2(R3) ⊗ F, where F is the Fock space over
L2(R3):

F =
∞⊕

n=0

L2
s(R3n).

L2
s(R3n) is the set of all symmetric vectors in L2(R3n):

L2
s(R3n) =

{
ϕ ∈ L2(R3n)

∣∣∣ϕ(kσ(1), . . . , kσ(n)) = ϕ(k1, . . . , kn) a.e. ∀σ ∈ Sn

}
,

where Sn is the permutation group on {1, . . . , n}. Λ > 0 is the ultraviolet cutoff and α > 0 is
the coupling strength. By the Kato-Rellich theorem, HΛ is semibounded self-adjoint operator
on dom(−∆) ∩ dom(Nf) for all α,Λ > 0.

This Hamiltonian was introduced by H. Fröhlich [5] as a model of the large polaron. As
to the physical background of this model, see [1, 4] and references therein. Readers can learn
recent developments concering mathematical analysis of the model from [3, 12] for example.
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2 The Fröhlich Hamiltonian at a fixed total momentum

The total momentum operator is defined by

Ptot = −i∇+ Pf , Pf =
∫

R3

dkka(k)∗a(k).

Ptot,j , j = 1, 2, 3 is essentially self-adjoint. We denote its closure by the same symbol. Let U be
a unitary operator defined by

U = Feix·Pf ,

where F is the Fourier transformation: (Ff)(p) = (2π)−3/2
∫
R3 f(x)e−ip·xdx. Then we obtain

UPtotU∗ =
∫ ⊕

R3

PdP, UHΛU∗ =
∫ ⊕

R3

HΛ(P )dP,

where

HΛ(P ) =
1
2
(P − Pf)2 −

√
α

∫

|k|≤Λ
dk

1
|k|

[
a(k) + a(k)∗

]
+ Nf .

HΛ(P ) is the Hamiltonian at a fixed total momentum P . HΛ(P ) is a semibounded self-adjoint
operator acting in F.

3 Monotonicity of the polaron energy

Let EΛ = inf spec(HΛ) and let EΛ(P ) = inf spec(HΛ(P )). In [10], we obtained the following
theorems.

Theorem 3.1 EΛ(P ) is monotonically decreasing in Λ for all P ∈ R3.

Theorem 3.2 EΛ(P ) is strictly decreasing in Λ provided |P | < √
2.

Remark 3.3 J. Moller obtained similar results for a reguralized Hamiltonian [12]. In contrast,
we employ the sharp cutoff function as a form factor. This makes mathematical analysis harder.

Theorem 3.4 EΛ is strictly decreasing in Λ.

4 Uniqueness of the ground state

By Theorems 3.2 and 3.4, the ultraviolet cutoff has to be removed from the Hamiltonian because
EΛ=∞(P ) is most stable enegetically. As to the removal of ultraviolet cutoff, the following
propositon is fundamental.

Proposition 4.1 [6, 13] There exists a semibounded self-adjoint operator H(P ) such that HΛ(P )
converges to H(P ) in the strong resolvent sense as Λ →∞.

In this way, we can define the Hamiltonian without ultraviolet cutoff as a limiting operator.
Our next problem is to investigate spectral properties of H(P ). In [7, 14], it was already proven
that H(P ) has a ground state. Now a natural question arises. Is this ground state unique? The
following theorem answers the question.
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Theorem 4.2 H(P ) has a unique ground state provided |P | < √
2.

Our main purpose in this note is to show how useful operator inequalities are when we prove
above theorems. To this end, we will illustrate essential ideas of proofs of Theorems 3.1 and 4.2
as examples.

5 Proof of Theorem 3.1

5.1 Basic definitions

Definition 5.1 (i) The Fröhlich cone F+ is a cone in F defined by

F+ =
⊕

n≥0

L2
s(R3n)+,

L2
s(R3n)+ = {ψ ∈ L2

s(R3n) |ψ(k1, . . . , kn) ≥ 0 a.e.}

with L2
s(R0)+ = R+.

(ii) A bounded linear operator A in F is said to be positivity preserving if

AF+ ⊆ F+.

We denote this as A ¥ 0. This symbol was introduced by Miura [8].
(iii) If two linear operators A,B satisfy A−B ¥ 0, then we write this as A ¥ B.

5.2 Basic properties

Lemma 5.2 We have the follwoing.

(1) ϕ,ψ ∈ F+ ⇒ 〈ϕ,ψ〉 ≥ 0.

(2) If A ¥ 0 and B ¥ 0, then AB ¥ 0.

(3) If A ¥ 0 and B ¥ 0, then αA + βB ¥ 0 for all α, β ∈ R+.

(4) If A ¥ B, then 〈ϕ,Aψ〉 ≥ 〈ϕ,Bψ〉 for all ϕ,ψ ∈ F+.

Proof. (1) is trivial.
(2) BF+ ⊆ F+ ⇒ ABF+ ⊆ AF+ ⊆ F+ ⇒ AB ¥ 0.
(3) A,B ¥ 0 ⇒ αA, βB ¥ 0 ⇒ αA + βB ¥ 0.
(4) A ¥ B ⇒ (A−B)ψ ∈ F+ ⇒ 〈ϕ, (A−B)ψ〉 ≥ 0. 2

5.3 Second quantized operators

In case of unbounded operators, we modify the defintion as follow: A ¥ 0 if and only if

A[dom(A) ∩ F+] ⊆ F+.

Lemma 5.3 If f ∈ L2(R3)+, then a(f) ¥ 0 and a(f)∗ ¥ 0 hold.
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Proof. For ψ = ⊕n≥0ψ
(n) ∈ dom(a(f)) ∩ F+, remark that ψ(n)(k1, . . . , kn) ≥ 0 a.e.. Thus

(
a(f)ψ

)(n)
(k1, . . . , kn) =

√
n + 1

∫

R3

dk f(k)︸︷︷︸
≥0

ψ(n+1)(k, k1, . . . , kn)︸ ︷︷ ︸
≥0

≥ 0.

This means that a(f) preserves the positivity. 2

Lemma 5.4 If ω is a positive function on R3, then e−tdΓ(ω) ¥ 0 for all t ≥ 0, where dΓ(ω) =∫

R3

dkω(k)a(k)∗a(k).

Proof. For ψ = ⊕n≥0ψ
(n) ∈ F+, one has

(
e−tdΓ(ω)ψ

)(n)
(k1, . . . , kn) = e−t(ω(k1)+···+ω(kn))︸ ︷︷ ︸

≥0

ψ(n)(k1, . . . , kn)︸ ︷︷ ︸
≥0

≥ 0.

Thus e−tdΓ(ω) preserves the positivity. 2

5.4 Proof of Theorem 3.1: Step 1

Proposition 5.5 For all P ∈ R3, β ≥ 0 and Λ ≥ 0, e−βHΛ(P ) ¥ 0 holds.

Scketch of Proof. Write

HΛ(P ) = L(P )− VΛ,

where

L(P ) =
1
2
(P − Pf)2 + Nf , VΛ =

√
α

∫

|k|≤Λ
dk

1
|k| [a(k) + a(k)∗].

Note that

e−βL(P ) ¥ 0, VΛ ¥ 0.

By the Duhamel expansion, one has

e−βHΛ(P ) =
∞∑

n=0

Dn,

Dn =
∫ β

0
ds1

∫ β−s1

0
ds2 · · ·

∫ β−s1−···−sn−1

0
dsn

× e−s1L(P )VΛe−s2L(P ) · · · e−snL(P )VΛe−(β−s1−···−sn)L(P ).

Remark

e−s1L(P )︸ ︷︷ ︸
¥0

VΛ︸︷︷︸
¥0

e−s2L(P )︸ ︷︷ ︸
¥0

· · · e−snL(P )︸ ︷︷ ︸
¥0

VΛ︸︷︷︸
¥0

e−(β−s1−···−sn)L(P )︸ ︷︷ ︸
¥0

¥0.

Thus Dn ¥ 0 for all n, which implies
∑∞

n=0 Dn ¥ 0, which implies e−βHΛ(P ) ¥ 0. 2
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5.5 Proof of Theorem 3.1: Step 2

For each ε > 0, there is a normalized vector ϕε,Λ = ⊕n≥0ϕ
(n)
ε,Λ ∈ dom(P 2

f ) ∩ dom(Nf) such that

ϕ
(n)
ε,Λ is real and

〈ϕε,Λ,HΛ(P )ϕε,Λ〉 ≤ EΛ(P ) + ε.

ϕ
(n)
ε,Λ can be written as ϕ

(n)
ε,Λ = ϕ

(n)+
ε,Λ − ϕ

(n)−
ε,Λ , where ϕ

(n)+
ε,Λ , ϕ

(n)−
ε,Λ are positive and negative part

of ϕ
(n)
ε,Λ respectively. Thus it holds that ϕ

(n)±
ε,Λ ∈ L2

s(R3n)+ and 〈ϕ(n)+
ε,Λ , ϕ

(n)−
ε,Λ 〉 = 0. We define

ϕ+
ε,Λ =

⊕

n≥0

ϕ
(n)+
ε,Λ , ϕ−ε,Λ =

⊕

n≥0

ϕ
(n)−
ε,Λ ,

|ϕε,Λ| = ϕ+
ε,Λ + ϕ−ε,Λ.

Note ϕε,Λ = ϕ+
ε,Λ − ϕ−ε,Λ.

Lemma 5.6 It holds that ϕε,Λ ∈ dom(|HΛ(P )|1/2) and

〈ϕε,Λ,HΛ(P )ϕε,Λ〉 ≥ 〈|ϕε,Λ|,HΛ(P )|ϕε,Λ|〉.
Proof. Since e−βHΛ(P ) ¥ 0, we have

〈ϕε,Λ, e−βHΛ(P )ϕε,Λ〉 = 〈ϕ+
ε,Λ, e−βHΛ(P )ϕ+

ε,Λ〉+ 〈ϕ−ε,Λ, e−βHΛ(P )ϕ−ε,Λ〉︸ ︷︷ ︸
≥0

−〈ϕ+
ε,Λ, e−βHΛ(P )ϕ−ε,Λ〉 − 〈ϕ−ε,Λ, e−βHΛ(P )ϕ+

ε,Λ〉︸ ︷︷ ︸
≤0

≤〈ϕ+
ε,Λ, e−βHΛ(P )ϕ+

ε,Λ〉+ 〈ϕ−ε,Λ, e−βHΛ(P )ϕ−ε,Λ〉
+ 〈ϕ+

ε,Λ, e−βHΛ(P )ϕ−ε,Λ〉+ 〈ϕ−ε,Λ, e−βHΛ(P )ϕ+
ε,Λ〉

=〈|ϕε,Λ|, e−βHΛ(P )|ϕε,Λ|〉.
Thus we arrive at

〈ϕε,Λ, e−βHΛ(P )ϕε,Λ〉 ≤ 〈|ϕε,Λ|, e−βHΛ(P )|ϕε,Λ|〉.
Hence

1
β

〈
ϕε,Λ,

(
1l− e−βHΛ(P )

)
ϕε,Λ

〉
≥ 1

β

〈
|ϕε,Λ|,

(
1l− e−βHΛ(P )

)
|ϕε,Λ|

〉
.

Taking β → +0, we have the desired result. 2

5.6 Proof of Theorem 3.1: Step 3

Lemma 5.7 If Λ ≤ Λ′, we have HΛ(P ) ¥ HΛ′(P ).

Proof. Define

ηΛ′,Λ(k) =
χΛ′(k)− χΛ(k)

|k| ≥ 0,

where χΛ(k) = 1 if |k| ≤ Λ, χΛ(k) = 0 otherwise. One has, by Lemma 5.3,

HΛ(P )−HΛ′(P ) =
√

α
(

a(ηΛ′,Λ)︸ ︷︷ ︸
¥0

+ a(ηΛ′,Λ)∗︸ ︷︷ ︸
¥0

)
¥ 0. 2
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5.7 Completion of proof of Theorem 3.1

We have

EΛ(P ) + ε ≥ 〈ϕε,Λ,HΛ(P )ϕε,Λ〉
≥ 〈|ϕε,Λ|,HΛ(P )|ϕε,Λ|〉 (Lemma 5.6)
≥ 〈|ϕε,Λ|,HΛ′(P )|ϕε,Λ|〉 (Lemma 5.7)
≥ EΛ′(P ),

whenever Λ′ > Λ. Note ‖ϕ‖ = ‖|ϕ|‖. Thus we conclude that EΛ(P ) ≥ EΛ′(P ).

6 Comments on Theorems 3.2 and 3.4

Proofs of Theorems 3.2 and 3.4 are much more difficult. In this note, we will not prove these
theorems. Instead we only provide a list of essential ingredients for proofs. (As to complete
proofs, see [9, 10, 11] for details. )

(1) For all Λ > 0, HΛ(P ) has a ground state provided |P | < √
2.

(2) The abstract Perron-Frobenius theorem(Theorem 7.2).
(3) Positivity arguments and spectral properties of HΛ(P ).

7 Idea of proof of Theorem 4.2

7.1 Basic definitions

We will try to expalin basic ideas of proof of Theorem 4.2. To this end, we need some additional
definitions.

Definition 7.1 (1) We say a vector ϕ = ⊕n≥0ϕ
(n) ∈ F+ is strictly positive if

ϕ(n)(k1, . . . , kn) > 0 a.e.

(2) A bounded linear operator A is positivity improving if for each ϕ ∈ F+\{0}, Aϕ is strictly
positive. We denote this as A ¤ 0.

7.2 Perron-Frobenius-Faris theorem

Theorem 7.2 [2, 9] Let A be a positive self-adjoint operator on F. Suppose that e−tA ¥ 0 for
all t ≥ 0 and inf spec(A) is an eigenvalue. Let PA be the orthogonal projection onto the closed
subspace spanned by eigenvectors associated with inf spec(A). Then the following are equivalent.

(i) dim ran(PA) = 1 and PA ¤ 0.

(ii) e−tA ¤ 0 for all t > 0.

By Theorem 7.2 and §6 (2), it suffices to show that e−βH(P ) ¤ 0 for all β > 0. Remark that
this is not so easy because H(P ) is defined by the limiting procedure.
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7.3 Hamiltonian with a mild cutoff

For each n ∈ N, let
%n(k) = e−k2/n > 0.

We introduce the Hamiltonian with a mild cutoff by

H%n(P ) =
1
2
(P − Pf)2 −

√
α

∫

R3

dk
%n(k)
|k|

[
a(k) + a(k)∗

]
+ Nf .

Proposition 7.3 We have the following.

(1) H%n(P ) converges to H(P ) in the strong resolvent sense as n →∞.

(2) For all n ∈ N and β > 0, it holds that e−βH%n (P ) ¤ 0.

Proof. See [6, 9, 11]. 2

Proposition 7.4 One has e−βH%n+1 (P )
¥ e−βH%n(P ) for all β ≥ 0 and n ∈ N.

Proof. By an argument similar to the proof of Lemma 5.7, we have H%n+1(P ) £ H%n(P ). In
addition, e−βH%n(P ) ¥0 for all n ∈ N. This is equivalent to (H%n(P )+s)−1 ¥0, since (A+s)−1 =∫∞
0 e−λ(A+s)dλ and e−βA = s- limN→∞(1l + βA/N)N . Thus we have

(H%n+1(P ) + s)−1 − (H%n(P ) + s)−1

=(H%n+1(P ) + s)−1

︸ ︷︷ ︸
¥0

(H%n(P )−H%n+1(P ))︸ ︷︷ ︸
¥0

(H%n(P ) + s)−1

︸ ︷︷ ︸
¥0

¥0.

This completes the proof. 2

7.4 Completion of proof of Theorem 4.2

By Proposition 7.4, e−βH%n (P ) is monotonically increasing sequence of operators:

e−βH%N
(P ) ¥ e−βH%n(P ), whenever N > n.

Taking the limit N →∞, we obtain

e−βH(P ) ¥ e−βH%n(P )

by Proposition 7.3 (1). Since the right hand side of the above improves the positivity by
Proposition 7.3 (2), it follows that e−βH(P ) ¤ 0 for all β > 0.
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