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Abstract

We review our recent construction of the φ4-model on four-dimensional
Moyal space. A milestone is the exact solution of the quartic matrix
model Z[E, J ] =

∫
dΦexp(trace(JΦ−EΦ2 − λ

4
Φ4)) in terms of the solu-

tion of a non-linear equation for the 2-point function and the eigenvalues
of E. The β-function vanishes identically. For the Moyal model, the the-
ory of Carleman type singular integral equations reduces the construction
to a fixed point problem. Its numerical solution reveals a second-order
phase transition at λc ≈ −0.396 and a phase transition of infinite order at
λ = 0. The resulting Schwinger functions in position space are symmet-
ric and invariant under the full Euclidean group. They are only sensitive
to diagonal matrix correlation functions, and clustering is violated. The
Schwinger 2-point function is reflection positive iff the diagonal matrix
2-point function is a Stieltjes function. Numerically this seems to be the
case for coupling constants λ ∈ [λc, 0].

1 Introduction

Perturbatively renormalised quantum field theory is an enormous phenomeno-
logical success, a success which lacks a mathematical understanding. The per-
turbation series is at best an asymptotic expansion which cannot converge at
physical coupling constants. Some physical effects such as confinement are out
of reach for perturbation theory. In two and partly three dimensions, meth-
ods of constructive physics [GJ87, Riv91], often combined with the Euclidean
approach [Sch59, OS73, OS75], were used to rigorously establish quantum field
theory models.

In four dimensions there was little success so far. It is generally believed that
due to asymptotic freedom, non-Abelian gauge theory (i.e. Yang-Mills theory) has
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the chance of a rigorous construction. But this is a hard problem [JW00]. What
makes it so difficult is the fact that any simpler model such as quantum electro-
dynamics or the λφ4-model cannot be constructed in four dimensions (Landau
ghost problem [LAK54a, LAK54b, LAK54c] or triviality [Aiz81, Frö82]).

One of the main difficulties is the non-linearity of the models under consider-
ation. Fixed point methods provide a standard approach to non-linear problems,
but they are rarely used in quantum field theory. In this contribution we review
a sequence of papers [GW12b, GW13b, GW14] in which we successfully used
symmetry and fixed point methods to exactly solve a toy model for a quantum
field theory in four dimensions.

1. Following [GW12b], we show in sec. 2 that a Ward identity for the U(∞)
group action leads to an exact solution of the quartic matrix model Z =
∫
D[Φ] exp(trace(JΦ−EΦ2−λ

4
Φ4)) in terms of the solution of a non-linear

equation. As by-product we find that any renormalisable quartic matrix
model has vanishing β-function. All these steps are completely elementary.

2. Self-dual φ4
4-theory on Moyal space [GW05b, GW05c] is of that type. For

extreme noncommutativity θ → ∞, and after careful discussion of ther-
modynamic and continuum limit, the non-linear equation is reduced to
a fixed-point problem [GW12b] which has a unique non-perturbative and
non-trivial solution for λ < 0 [GW14]. Sec. 3 reviews this work. The key
step is the observation that a certain difference function satisfies a linear
singular integral equation of Carleman type [Car22, Tri57]. We also present
some numerical results, contained in work in progress [GW14], which show
evidence for phase transitions.

3. Following [GW13b], we identify in sec. 4 a limit to Schwinger functions
for a scalar field on R

4. Surprisingly for a highly noncommutative model,
these Schwinger functions show full Euclidean symmetry. Otherwise they
have unusual properties such as absent momentum transfer in interaction
processes. This seems to suggest triviality, but the numerical investigation
[GW14] of the 2-point function shows scattering remnants from a non-
commutative geometrical substructure. Most surprisingly, the Schwinger
2-point function seems to be reflection positive in one of its phases.

2 Exact solution of the quartic matrix model

For us a ‘matrix’ is a compact (Hilbert-Schmidt) operator on Hilbert space H =
L2(I, µ). Such operators Φ ∈ L2(H) can be represented by integral kernel oper-
ators (Φv)a =

∫

I
dµb Φabvb. Then all natural matrix operations such as product,

adjoint and trace have counterparts (ΦΦ′)ab =
∫

I
dµc ΦacΦ

′
cb, (Φ

∗)ab = Φba and
tr(ΦΦ′) =

∫

I
dµa (ΦΦ

′)aa in L2(H).
To define a Euclidean quantum field theory for a matrix Φ ∈ L2(H) we give
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ourselves an action functional

S[Φ] = V tr(EΦ2 + P [Φ]) . (1)

Here, P [Φ] is a polynomial in Φ with scalar coefficients, and this alone would
be a familiar action in the theory of matrix models [DGZ95]. To be closer to
field theory on a (compact) manifold M we add the analogue of the kinetic term
∫

M dx (−∆φ)φ, that is, we require the external matrix E to be an unbounded
selfadjoint positive operator on H with compact resolvent. The volume V will
play a crucial rôle. The construction involves several regularisation and limiting
procedures. One such regularisation consists in a finite size N for the matrices,
and V will be a certain function of N which together with N is sent to ∞.

Adding a source term to the action, we define the partition function as

Z[J ] =

∫

D[Φ] exp(−S[Φ] + V tr(ΦJ)) , (2)

where D[Φ] is the extension of the Lebesgue measure from finite-rank operators

to L2(H) and J a test function matrix. For absent P [Φ] 7→ 0 in (1), D[Φ]
Z[0]

would
be the Gaußian measure of covariance determined by E. What we want, and
what we achieve, is to construct D[Φ]

Z[0]
for P [Φ] = λ

4
Φ4 in the limit V → ∞. Such

a limit cannot be expected for Z. Instead, we pass to the generating functional
logZ[J ] of connected correlation functions,

〈ϕa1b1 . . . ϕaN bN 〉c =
∂N logZ[J ]

∂Jb1a1 . . . ∂JbNaN

∣
∣
∣
J=0

. (3)

2.1 Ward identity and topological expansion

Unitary operators U belonging to an appropriate unitisation of the compact op-
erators on H give rise to a transformation Φ 7→ Φ̃ = UΦU∗. Since the space of
selfadjoint compact operators is invariant under the adjoint action, we have

∫

D[Φ] exp(−S[Φ] + V tr(ΦJ)) =

∫

D[Φ̃] exp(−S[Φ̃] + V tr(Φ̃J)) .

Unitary invariance D[Φ̃] = D[Φ] of the Lebesgue measure implies

0 =

∫

D[Φ
{

exp(−S[Φ] + V tr(ΦJ))− exp(−S[Φ̃] + V tr(Φ̃J))
}

.

Note that the integrand {. . . } itself does not vanish because tr(EΦ2) and tr(ΦJ)
are not unitarily invariant; we only have tr(P [Φ]) = tr(P [Φ̃]) due to UU∗ =
U∗U = id together with the trace property. Linearisation of U about the identity
operator leads to the Ward identity

0 =

∫

D[Φ]
{

EΦΦ− ΦΦE − JΦ+ ΦJ
}

exp(−S[Φ] + V tr(ΦJ)) . (4)
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We can always place ourselves in an orthonormal basis of H where E is diagonal
(but J is not). Since E is of compact resolvent, E has eigenvalues Ea > 0
of finite multiplicity µa. We thus label the matrices by an enumeration of the
(necessarily discrete) eigenvalues of E and an enumeration of the basis vectors
of the finite-dimensional eigenspaces. Writing Φ in {. . . } of (4) as functional
derivative Φab =

∂
V ∂Jba

, we have proved (first obtained in [DGMR07]):

Proposition 1 The partition function Z[J ] of the matrix model defined by the
external matrix E satisfies the |I| × |I| Ward identities

0 =
∑

n∈I

((Ea − Ep)

V

∂2Z
∂Jan∂Jnp

+ Jpn

∂Z
∂Jan

− Jna

∂Z
∂Jnp

)

. (5)

Without loss of generality we can assume that the map I ∋ m 7→ Em ∈ R+ is
injective. Namely, correlation functions will only depend on the set of eigenvalues
(Em) of E. Partitioning the index set I into equivalence classes [m] which have
the same Em, the index sum over a function that only depends on Em becomes
∑

m∈I f(m) =
∑

[m]∈[I] µ[m]f([m]). Therefore, at the expense of adding a measure

µ[m] = dimker(E − Emid), we can assume that m 7→ Em is injective.
In a perturbative expansion, Feynman graphs in matrix models are ribbon

graphs. Viewed as simplicial complexes, they encode the topology (B, g) of a
genus-g Riemann surface with B boundary components (or punctures, marked
points, holes, faces). Some simple examples for P [Φ] = Φ4 are:

B = 1
g = 1

//
oo��
MMQQ


//
oo oo

//
a

b

a

b

B = 2
g = 0

oo
//

�� OO

//
oo

//
oo

OO��
OO

��

//
oo

OO��

OO

//

p q

p

q

a b
b

c

c

d
da

Since E is diagonal, the matrix index is conserved along each strand of the ribbon
graph. We have to distinguish between internal faces (with constant matrix
index) and broken faces which constitute the boundary components. Such a
boundary face is characterised by Nk ≥ 1 external double lines to which we
attach the source matrices J . Conservation of the matrix index along each strand
implies that the right index of Jab coincides with the left index of another Jbc,
or of the same Jbb. Accordingly, the kth boundary component carries a cycle
JNk
p1...pNk

:=
∏Nk

j=1 Jpjpj+1
of Nk external sources, with Nk + 1 ≡ 1.

Being interested in a non-perturbative solution, we will not expand the par-
tition function into ribbon graphs. But we keep the topological information and
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expand logZ[J ] according to the cycle structure:

log
Z[J ]

Z[0]
=

∞∑

B=1

∞∑

1≤N1≤···≤NB

∑

p
β
1 ,...,p

β
Nβ

∈I

V 2−B

SN1...NB

G|p11...p1N1
|...|pB1 ...pBNB

|

B∏

β=1

(J
Nβ

p
β
1 ...p

β
Nβ

Nβ

)

.

(6)

The symmetry factor SN1...NB
is obtained as follows: If νi of the B numbers Nβ

in a given tuple (N1, . . . , NB) are equal to i, then SN1...NB
=
∏NB

i=1 νi!.
Next we turn the Ward identity (5) for injective m 7→ Em into a formula

for the second derivative
∑

n∈I
∂2Z[J ]

∂Jan∂Jnp
of the partition function. The J-cycle

structure in logZ creates

• singular contributions ∼ δap,

• regular contributions present for all a, p:

Theorem 2

∑

n∈I

∂2Z[J ]

∂Jan∂Jnp

= δap

{

V 2
∑

(K)

JP1 · · ·JPK

S(K)

(∑

n∈I

G|an|P1|...|PK |
V |K|+1

+
G|a|a|P1|...|PK |

V |K|+2

+
∑

r≥1

∑

q1,...,qr∈I

G|q1aq1...qr |P1|...|PK |J
r
q1...qr

V |K|+1

)

+ V 4
∑

(K),(K ′)

JP1 · · ·JPK
JQ1 · · ·JQK′

S(K)S(K ′)

G|a|P1|...|PK |
V |K|+1

G|a|Q1|...|QK′ |
V |K ′|+1

}

Z[J ]

+
V

Ep − Ea

∑

n∈I

(

Jpn

∂Z[J ]

∂Jan

−Jna

∂Z[J ]

∂Jnp

)

. (7)

Proof. We identify the following four sources of a singular contribution ∼ δap:

1.
∑

n

∂2

∂Jan∂Jnp

∑

q1,q2,...

G...|q1q2|...
(

↓
Jq1q2

↓
Jq2q1

2

)∏

J

2.
∑

n

∂2

∂Jan∂Jnp

∑

q1,q2,...

G...|q1|...|q2|...
(

↓
Jq1q1

1

)(
↓

Jq2q2

1

)∏

J

3.
∑

n

∂

∂Jan

∂

∂Jnp

∑

q0,...,qr+1,...

G...|q0q1...qrqr+1|...
(Jq0q1Jq1q2· · ·Jqrqr+1

↓
Jqr+1q0

r + 2

)∏

J

=
∑

n

∂

∂Jan

∑

q1,...,qr,...

G...|pq1...qrn|...
( ↓
Jpq1 Jq1q2 · · ·Jqrn

)∏

J
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4.
∑

n

∂2

∂Jan∂Jnp

[∑

q1,...

G...|q1|...
(

↓
Jq1q1

1

)∏

J
][∑

q2,...

G...|q2|...
(

↓
Jq2q2

1

)∏

J
]

All other types of derivatives, collected into
(∑

n∈I
∂2Z[J ]

∂Jan∂Jnp

)

reg
, persist for a 6= p.

For p 6= a we clearly have

(∑

n∈I

∂2Z[J ]

∂Jan∂Jnp

)

reg
=
∑

n∈I

∂2Z[J ]

∂Jan∂Jnp

∣
∣
∣
a6=p

=
V

Ep − Ea

(

Jpn

∂Z
∂Jan

− Jna

∂Z
∂Jnp

)

, (8)

where the last equality is the Ward identity (5), divided by Ep−Ea

V
6= 0. By a con-

tinuity argument, the rightmost term in (8) must agree with
(∑

n∈I
∂2Z[J ]

∂Jan∂Jnp

)

reg

also in the limit p → a, and this finishes the proof. �

2.2 Schwinger-Dyson equations

We can write the action as S = V
2

∑

a,b(Ea+Eb)ΦabΦba + V Sint[Φ], where Ea are
the eigenvalues of E. Functional integration yields, up to an irrelevant constant,

Z[J ] = e−V Sint[
∂

V ∂J
]e

V
2
〈J,J〉E , 〈J, J〉E :=

∑

m,n∈I

JmnJnm

Em + En

. (9)

Instead of a perturbative expansion of e−V Sint[
∂

V ∂J
], we apply those J-derivatives

to (9) which give rise to a correlation function G... on the lhs. On the rhs of
(9), these external derivatives combine with internal derivatives from Sint[

∂
V ∂J

]
to certain identities for G.... These Schwinger-Dyson equations are often of little
use because they express an N -point function in terms of (N+2)-point functions.

In the field-theoretical matrix models under consideration, the Ward identity
(7) lets this tower of Schwinger-Dyson equation collapse. To see this we consider
the 2-point function G|ab| for a 6= b. According to (6), G|ab| is obtained by deriving
(9) with respect to Jba and Jab:

G|ab| =
1

V Z[0]

∂2Z[J ]

∂Jba∂Jab

∣
∣
∣
J=0

(disconnected part of Z does
not contribute for a 6= b)

=
1

VZ[0]

{ ∂

∂Jba

e−V Sint

[
∂

V ∂J

]
∂

∂Jab

e
V
2
〈J,J〉E

}

J=0

=
1

(Ea + Eb)Z[0]

{ ∂

∂Jba

e−V Sint

[
∂

V ∂J

]

Jbae
V
2
〈J,J〉E

}

J=0

=
1

Ea + Eb

+
1

(Ea + Eb)Z[0]

{(

Φab

∂(−V Sint)

∂Φab

)[ ∂

V ∂J

]}

Z[J ]
∣
∣
∣
J=0

. (10)

Now observe that ∂(−V Sint)
∂Φab

contains, for any P [Φ], the derivative
∑

n
∂2

∂Jan∂Jnp

which we know from (7). In case of the quartic matrix model P [Φ] = λ
4
Φ4 we
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have ∂(−V Sint)
∂Φab

= −λV
∑

n,p∈I ΦbpΦpnΦna, hence

(

Φab

∂(−V Sint)

∂Φab

)[ ∂

V ∂J

]

= − λ

V 3

∑

p,n∈I

∂2

∂Jpb∂Jba

∂2

∂Jan∂Jnp

,

and the Schwinger-Dyson equation (10) for G|ab| becomes with (7)

G|ab| =
1

Ea + Eb

− λ

V 3(Ea + Eb)Z[0]

∑

p∈I

∂2

∂Jpb∂Jba

∑

n∈I

∂2Z
∂Jan∂Jnp

∣
∣
∣
J=0

=
1

Ea + Eb

− λ

V (Ea + Eb)Z[0]

∂2

∂Jab∂Jba

{

(∑

n∈I

G|an|
V

+
∑

n,q,r∈I

G|an|qr|
V 2

JqrJrq

2
+
∑

n,q,r∈I

G|an|q|r|
V 3

Jqq

1

Jrr

1

+
G|a|a|
V 2

+
∑

q,r∈I

G|a|a|qr|
V 3

JqrJrq

2
+
∑

q,r∈I

G|a|a|q|r|
V 4

Jqq

1

Jrr

1

+
∑

q,r∈I

G|qaqr|
V

JqrJrq + V 2G|a|q|
V 2

Jqq

1

G|a|r|
V 2

Jrr

1

)

Z[J ]
}
∣
∣
∣
∣
J=0

− λ

V 2(Ea + Eb)Z[0]

∑

p∈I

(
∂2Z[J ]

∂Jab∂Jba
+ δpb

∂2Z[J ]
∂Jaa∂Jbb

− ∂2Z[J ]
∂Jpb∂Jbp

)

Ep − Ea

∣
∣
∣
∣
∣
J=0

. (11)

Taking ∂2Z[J ]
∂Jpb∂Jbp

= (V G|pb| + δpbG|p|b|)Z[0] + O(J) and ∂Jrr
∂Jab

= 0 for a 6= b into

account, we have proved:

Proposition 3 The 2-point function of a quartic matrix model with action S =
V tr(EΦ2 + λ

4
Φ4) satisfies for injective m 7→ Em the Schwinger-Dyson equation

G|ab| =
1

Ea + Eb

− λ

Ea + Eb

1

V

∑

p∈I

(

G|ab|G|ap| −
G|pb| −G|ab|
Ep − Ea

) }

(12a)

− λ

V 2(Ea + Eb)

(

G|a|a|G|ab| +
1

V

∑

n∈I
G|an|ab|

+G|aaab| +G|baba| −
G|b|b| −G|a|b|
Eb − Ea

)







(12b)

− λ

V 4(Ea + Eb)
G|a|a|ab| .

}

(12c)

It can be checked [GW12b] that in a genus expansion G... =
∑∞

g=0 V
−2gG(g)

...

(which is probably not convergent but Borel summable), precisely the line (12a)
preserves the genus, the lines (12b) increase g 7→ g+1 and the line (12c) increases
g 7→ g+2. In particular, in a scaling limit V → ∞ with 1

V

∑

p∈I finite, the exact
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Schwinger-Dyson equation for G|ab| coincides with its restriction (12a) to the

planar sector g = 0, a closed non-linear equation for G
(0)
|ab| alone:

G
(0)
|ab| =

1

Ea + Eb

− λ

Ea + Eb

1

V

∑

p∈I

(

G
(0)
|ab|G

(0)
|ap| −

G
(0)
|pb| −G

(0)
|ab|

Ep − Ea

)

. (13)

We have derived in 2007/08 this self-consistency equation for the Moyal model by
the graphical method proposed by [DGMR07]. In this form, (13) is meaningless
because

∑

p∈I diverges. In 2009 we solved the renormalisation problem, namely
the renormalisation of infinitely many Feynman graphs at once [GW09]. This
renormalisation increases the non-linearity. In [GW09] we have solved (13) per-
turbatively to O(λ3). After several years of setbacks with the non-perturbative
solution, a breakthrough came in 2012: The equation (13) can be turned into

an equation which is linear in the difference G
(0)
|ab| − G

(0)
|a0| to the boundary and

non-linear only in G
(0)
|a0|!

A similar calculation gives the Schwinger-Dyson equation for higher N -point
functions:

G|ab1...bN−1|

= − λ

Ea + Eb1

(
1

V

∑

p∈I

(

G|ap|G|ab1...bN−1| −
G|pb1...bN−1| −G|ab1...bN−1|

Ep − Ea

)

−
N−2

2∑

l=1

G|b1...b2l|
G|b2l+1...bN−1a| −G|b2l+1...bN−1b2l|

Eb2l − Ea

)







(14a)

− λ

V 2(Ea + Eb1)

(

G|a|a|G|ab1...bN−1| +
N−1∑

k=1

G|b1...bkabk ...bN−1a|

+G|aaab1...bN−1| +
1

V

∑

n∈I
G|an|ab1...bN−1|

−
N−1∑

k=1

G|b1...bk|bk+1...bN−1bk| −G|b1...bk|bk+1...bN−1a|
Ebk − Ea

)







(14b)

− λ

V 4(Ea + Eb1)
G|a|a|ab1...bN−1| .

}

(14c)

Again, the first lines (14a) preserve the genus, whereas g 7→ g + 1 in (14b) and

g 7→ g+2 in (14c). The planar sector G
(0)
|ab1...bN−1|, exact for V → ∞ with 1

V

∑

p∈I
finite, is a linear inhomogeneous equation with inductively known parameters.

It turns out that a real theory with Φ = Φ∗ admits a short-cut which directly
gives the higher N -point functions without any index summation. Since the
equations for G... are real and Jab = Jba, the reality Z = Z implies (in addition
to invariance under cyclic permutations) invariance under orientation reversal

G|p10p11...p1N1−1|...|pB0 pB1 ...pBNB−1| = G|p10p1N1−1...p
1
1|...|pB0 pBNB−1...p

B
1 | . (15)
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Whereas empty for G|ab|, in (Ea+Eb1)Gab1b2...bN−1
− (Ea+EbN−1

)GabN−1...b2b1 the
identities (15) lead to many cancellations which result in a universal algebraic
recursion formula:

Proposition 4

G|b0b1...bN−1| = (−λ)

N−2
2∑

l=1

G|b0b1...b2l−1|G|b2lb2l+1...bN−1| −G|b2lb1...b2l−1|G|b0b2l+1...bN−1|
(Eb0 − Eb2l)(Eb1 − EbN−1

)

+
(−λ)

V 2

N−1∑

k=1

G|b0b1...bk−1|bkbk+1...bN−1| −G|bkb1...bk−1|b0bk+1...bN−1|
(Eb0 −Ebk)(Eb1 − EbN−1

)
. (16)

The last line of (16) increases the genus and is absent in G
(0)
|b0b1...bN−1|. Instead of

giving the general proof, let us look at the case N = 4. Then (14), multiplied by
Ea − Eb1 , reads

(Ea −Eb)G|abcd|

= (−λ)

(
1

V

∑

p∈I

(

G|ap|G|abcd| −
G|pbcd| −G|abcd|

Ep −Ea

)

−G|bc|
G|da| −G|dc|
Ec −Ea

)

− λ

V 2

(

G|a|a|G|abcd| +G|babcda| +G|bcacda| +G|bcdada| +G|aaabcd| +
1

V

∑

p∈I
G|ap|abcd|

− G|b|cdb| −G|b|cda|
Eb − Ea

− G|bc|dc| −G|bc|da|
Ec − Ea

− G|d|bcd| −G|a|bcd|
Ed − Ea

)

− λ

V 4
G|a|a|abcd| . (17)

Write down the same equation but with b ↔ d, and take the difference between
these equations. Then most terms cancel because by (15) we have the equal-
ities G|abcd| = G|adcb|, G|pbcd| = G|pdcb|, G|babcda| = G|dcbaba|, G|bcacda| = G|dcacba|,
G|bcdada| = G|dadcba|, G|aaabcd| = G|aaadcb|, G|ap|abcd| = G|ap|adcb|, G|b|cdb| = G|dcb|b|,
G|bc|dc| = G|dc|bc|, G|bcd|d| = G|d|cbd| and G|a|a|abcd| = G|a|a|adcb|. Altogether, the
difference (17)−(17)b↔d reads after cancellation

(Ed − Eb)G|abcd| = (−λ)
G|ab|G|cd| −G|ad|G|cb|

Ec − Ea

− λ

V 2

(G|b|cda| −G|a|cdb|
Eb − Ea

+
G|bc|da| −G|ba|dc|

Ec − Ea

+
G|a|bcd| −G|d|bca|

Ed −Ea

)

,

and this is (16) for N = 4.
For completeness, we list in the appendix the Schwinger-Dyson equation for

B = 2 boundary components.
We make the following key observation: An affine transformation E 7→ ZE+C

together with a corresponding rescaling λ 7→ Z2λ leaves the algebraic equations
(16) as well as (65) and (66) invariant:
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Theorem 5 Given a real quartic matrix model with S = V tr(EΦ2 + λ
4
Φ4) and

m 7→ Em injective, which determines the set G|p11...p1N1
|...|pB1 ...pBNB

| of (N1+ . . .+NB)-

point functions. Assume that the basic functions with all Ni ≤ 2 are turned finite

by Ea 7→ Z(Ea +
µ2

2
− µ2

bare

2
) and λ 7→ Z2λ. Then all functions with one Ni ≥ 3

1. are finite without further need of a renormalisation of λ, i.e. all renormal-
isable quartic matrix models have vanishing β-function,

2. are given by universal algebraic recursion formulae in terms of renormalised
basic functions with Ni ≤ 2. �

The theorem tells us that vanishing of the β-function for the self-dual Φ4
4-model on

Moyal space (proved in [DGMR07] to all orders in perturbation theory) is generic
to all quartic matrix models, and the result even holds non-perturbatively!

The universal recursion formula (16) computes the planar N -point function
G|b0...bN−1| at B = 1 as a sum of fractions with products of 2-point functions in
the numerator and products of differences of eigenvalues of E in the denomin-
ator. This structure admits an interesting graphical interpretation. We draw the
indices b0, . . . bN−1 in cyclic order on the circle S1 and represent a factor Gbibj as
a chord connecting bi with bj and a factor 1

Ebi
−Ebj

as an arrow from bi to bj :

G
(0)
|b0b1b2b3| = (−λ)

Gb0b1Gb2b3−Gb0b3Gb2b1

(Eb0 − Eb2)(Eb1 − Eb3)
= (−λ)







•

•

+ •

•







,

Gb0...b5 = (−λ)2







•

•

+

••

+

•

•

+








•

•

+ •

•

+ •

•







+








••

+

••

+

••













. (18)

The chords form the non-crossing chord diagrams counted by the Catalan num-
ber CN

2
= N !

(N
2
+1)!N

2
!
. The arrows form two disjoint trees, one connecting the even

vertices ans one connecting the odd vertices. By rational fraction expansion it
is possible to achieve that each tree intersects the chord only in the vertices.
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The assignment of trees to a given chord diagram is, in general, not unique. A
canonical choice is not known to us.

2.3 Digression: Quantum gravity in two dimensions

Two-dimensional quantum gravity (see [DGZ95, ADJ97] for reviews) can be in-
terpreted as the enumeration of random triangulations of surfaces. Its asymptotic
behaviour is captured by the matrix model partition function

Z =

∫

D[Φ] exp
(

−N
∑

n

tn tr(Φn)
)

, (19)

where the integral is over (N ×N )-Hermitean matrices Φ and the tn are scalar
coefficients. In the limit N → ∞, this series in (tn) is evaluated in terms of
the τ -function for the Korteweg-de Vries (KdV) hierarchy. There is another
approach to topological gravity in which the partition function is a series in
(tn) with coefficients given by intersection numbers of complex curves. Witten
conjectured [Wit91] that the partition functions of the two approaches coincide.
This conjecture was proved by Kontsevich [Kon82] who achieved the computation
of the intersection numbers in terms of weighted sums over ribbon graphs (fat
Feynman graphs), which he proved to be generated from the Airy function matrix
model (Kontsevich model)

Z[E] =

∫

D[Φ] exp
(
− 1

2
tr(EΦ2) + i

6
tr(Φ3)

)

∫

D[Φ] exp
(
− 1

2
tr(EΦ2)

)
. (20)

The external matrix E = E∗ > 0 is related by tn = (2n−1)!! tr(E−(2n−1)) to the
series (tn). The limit N → ∞ of Z[E] gives the KdV evolution equation, thus
proving Witten’s conjecture.

We have proved that also the quartic matrix model

Z[E, J, λ] =

∫

D[Φ] exp
(
− tr(EΦ2) + tr(JΦ)− λ

4
tr(Φ4)

)

∫

D[Φ] exp
(
− tr(EΦ2)− λ

4
tr(Φ4)

)
(21)

is in the large-N limit exactly solvable in terms of the solution of a non-linear
equation (13). Any triangulation can be subdivided into a quadrangulation

������

@
@

@

��
(((PP

(and vice versa). From Witten’s uniqueness argument [Wit91], 2D quantum
gravity should have equivalent descriptions as cubic (20) and quartic (21) matrix
model. Understanding the precise relation between (20) and (21) would be of
high interest:

11



1. In contrast to (21), the cubic action (20) lacks manifest positivity due to
its purely imaginary coupling constant.

2. A quartic action admits a Hubbard-Stratonovich transform which is the key
ingredient of a new approach to constructive quantum field theory [Riv07b]
that avoids the cluster expansion.

3. Conversely, the integrability of (20) might provide valuable information
about the solution of the self-consistency equation (13).

Coloured tensor models (see [GP12, Riv13] for recent reviews) extend these
methods to quantum gravity in D ≥ 3. They became a very active domain of
research after understanding [Gur10] of the analogue of the large-N behaviour of
matrix models [tHo74]. They have Schwinger-Dyson equations (see e.g. [Bon12])
and action of the U(∞) group. It might be promising to extend our techniques
to coloured tensor models.

3 Φ4
4-theory on Moyal space as a fixed point problem

3.1 Preliminaries

Taking the renormalisation group [WK74] serious, we would expect that General
Relativity, because not renormalisable, is irrelevant and hence scaled away. The
existence of gravity thus tells us that the scaling must stop at some length scale,
and from the weakness of the gravitational coupling constant one deduces the
value of that scale: the Planck length 10−35m. There, the geometry of nature is
expected to differ from the familiar structure of a differentiable manifold. One of
many candidates for Planck scale physics is noncommutative geometry [Con94],
a vast reformulation of geometry and topology in the language of operator al-
gebras. The focus is shifted from manifolds to generalisations of the algebra of
functions. This concept proved very successful in understanding the geometry of
the Standard Model of particle physics as Riemannian geometry of a space which
is the product of a manifold with a discrete space [Con96, CC96].

A large class of examples of noncommutative geometries comes from deform-
ations of the algebra of functions on manifolds. Schwartz functions on Euclidean
space R4 admit an R4-group action by translation. As shown by Rieffel [Rie93],
this group action induces a noncommutative associative product on the space of
Schwartz functions, the Moyal product:

(f ⋆ g)(x) =

∫

R4×R4

dy dk

(2π)4
f(x+1

2
Θk) g(x+y) ei〈k,y〉 , Θ = −Θt ∈ M4(R) . (22)

Whether or not the Moyal space (R4, ⋆) is relevant for Planck scale physics
is pure speculation (although a refinement can be justified by uncertainty rela-
tions for position operators [DFR95]). In any case the Moyal space is a nice toy
model on which it is easy to formulate and to study (quantum) field theories. To
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formulate a Euclidean quantum field theory on Moyal space it is, at first sight,
enough to replace in the action of a usual field theory the pointwise product of
functions by the ⋆-product. The simplest example is the φ⋆4

4 -model with action

S[φ] =

∫

R4

dx
(1

2
φ ⋆ (−∆+ µ2)φ+

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) . (23)

The resulting Feynman rules [Fil96] lead to situations where a multiple insertion
of non-planar subgraphs gives rise to divergences of arbitrarily high degree (ul-
traviolet/infrared mixing [MVS00]). See [CR00] for a thorough investigation of
this problem. Relativistic quantum field theories on noncommutative Minkowski
space are much more difficult [BDFP02]. Here the UV/IR-mixing problem occurs
in different types of graphs [Bah10].

The Moyal algebra (S(R4), ⋆) has a matrix basis [GV88, VG88, GGISV03]

φ(x) =
∑

m,n∈N2

Φmnfmn(x), fmn(x) = fm1n1(x
0, x1)fm2n2(x

3, x4) ,

fmn(y
0, y1) = 2(−1)m

√

m!

n!

(
√

2

θ
y
)n−m

Ln−m
m

(2|y|2
θ

)

e−
|y|2

θ , (24)

where Ln
m are Laguerre polynomials and y ≡ y0+iy1. Without loss of generality

we assume the only non-vanishing components of Θ to be θ := Θ12 = −Θ21 =
Θ34 = −Θ43. The functions fmn satisfy

(fkl⋆fmn)(x) = δmlfkn(x) ,

∫

R4

dx fmn(x) = (2πθ)2δmn .

Therefore, the φ⋆4
4 -interaction in (23) becomes a matrix product (we write φ for

a function and Φ for a matrix):

S[φ] = (2πθ)2
∑

k,l,m,n∈N2

(
1
2
Φkl(∆kl;mn + µ2δknδlm)Φmn +

λ

4
ΦklΦlmΦmnΦnk

)

. (25)

The matrix kernel ∆kl;mn of the Laplacian (−∆), viewed as map from N4 to N4,
consists of a local interaction plus nearest neighbour interaction.

In [GW05b] we studied the renormalisation group flow of the φ⋆4
4 -model in

matrix representation (using a power-counting theorem [GW05a] for matrix mod-
els with kernel ∆kl;mn). We noticed that the marginal parts of the local term and
of the nearest neighbour term in ∆kl;mn have different flows. To absorb these dif-
ferent flows a 4th relevant/marginal operator in the action functional is necessary.
This operator corresponds to a harmonic oscillator potential:

S[φ] = 64π2

∫

d4x
(Z

2
φ⋆
(
−∆+Ω2(2Θ−1x)2 + µ2

bare

)
φ+

λZ2

4
φ⋆φ⋆φ⋆φ

)

(x) . (26)
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We proved in [GW05b] that the corresponding Euclidean quantum field theory is
renormalisable to all orders in perturbation theory. This result was reestablished
by various methods, see [Riv07a] for a review.

Presence of the harmonic oscillator term Ω 6= 0 breaks translation invariance.
Conversely, this term achieves covariance under Langmann-Szabo duality trans-
formation [LS02] which consists in exchanging x ↔ p and φ(x) ↔ φ̂(p) followed
by Fourier transform back to the original variables. Remarkably, this trans-

formation leaves

∫

dx φ⋆φ⋆φ⋆φ invariant, and it exchanges
∫
dx φ(−∆)φ with

∫
dx φ|2Θ−1x|2φ. Presence of the oscillator term gives rise to an interesting spec-

tral noncommutative geometry [GW13a] (see also [GW12a]) which is conceptually
simpler than the isospectral deformation [GGISV03] of R4. Most importantly,
the oscillator term cures the Landau ghost problem [LAK54a, LAK54b, LAK54c]
of usual φ4

4-theory: We have discovered in [GW04, GW05c] that the one-loop
renormalisation group flows of Ω and λ influence each other in such a way that
the running coupling constant λ(Λ) remains finite at any scale Λ. Even more,
at the self-duality point Ω = 1 the β-function of the λΦ4

4-coupling vanishes to
all orders in perturbation theory [DGMR07]. This result was obtained by an
ingenious combination of Ward identities and Schwinger-Dyson equations (see
[DR07] for an explicit three-loop calculation). In [GW12b] we have generalised
the method of Disertori-Gurau-Magnen-Rivasseau [DGMR07] to the whole class
of quartic matrix models (reviewed in sec. 2). Vanishing of the β-function is
often connected with integrability, and together with the absent Landau ghost
problem a non-perturbatively constructed φ4

4-model on Moyal space came into
reach. The first milestone was the derivation of the self-consistency equation
(13) and the understanding of its renormalisation in [GW09]. It took us several
years to fully understand this equation, and it is only recently that we finished
the solution/construction of the Moyal space φ4

4-model [GW12b]. In the sequel
we review this construction.

3.2 Renormalisation and integral representation

At the self-duality point Ω = 1, the matrix kernel ∆Ω=1
kl;mn of the Schrödinger

operator H = −∆+ ‖2Θ−1x‖2 becomes purely local and turns the action (26) in
matrix basis (24) into a (field-theoretical) quartic matrix model with action

S[Φ] = V

(
∑

m,n∈N2
N

EmΦmnΦnm +
Z2λ

4

∑

m,n,k,l∈N2
N

ΦmnΦnkΦklΦlm

)

, (27)

Em = Z
( |m|√

V
+

µ2
bare

2

)

, |m| := m1 +m2 ≤ N , V =
(θ

4

)2

.
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Our general results on quartic matrix models imply that the planar 2-point func-
tion G

(0)
|ab| satisfies the self-consistency equation (13),

G
(0)
|ab| =

1

Ea + Eb

− Z2λ

Ea + Eb

1

V

∑

p∈N2
N

(

G
(0)
|ab|G

(0)
|ap| −

G
(0)
|pb| −G

(0)
|ab|

Ep − Ea

)

. (28)

We have introduced a cut-off N2
N in the matrix size; the index sum diverges for

N
2
N 7→ N

2. As usual, the renormalisation strategy consists in adjusting Z, µbare in
such a way that the limit N2

N 7→ N2 exists. This will be achieved by normalisation

conditions for the 1PI function Γab defined by G
(0)
|ab| =: (Hab − Γab)

−1, where

Hab := Ea + Eb. We express (28) in terms of Γab,

Γab = −λZ2

V

∑

p∈N2
N

( 1

Hap − Γap

+
1

Hpb − Γpb

− 1

(Hpb − Γpb)

Γpb − Γab

Z√
V
(|p|−|a|)

)

, (29)

and write Γab as first-order Taylor formula with remainder Γren
ab ,

Γab = Zµ2
bare − µ2 + (Z−1)√

V
(|a|+ |b|) + Γren

ab , Γren
00 = 0 , (∂Γren)00 = 0 .

Equation (29) for Γab

[
Γren
ab , µ2

bare, Z
]
together with Γren

00 = 0 and (∂Γren)00 con-
stitute three equations to determine the three functions Γren

ab , µ2
bare, Z. Elimin-

ating µ2
bare, Z thus gives rise to a closed equation for the renormalised function

Γren
ab alone. For this elimination it is important to note that the equations for

Γren
ab , µ2

bare, Z depend on a, b only via the norms |a|, |b| which parametrise the spec-
trum of E. Therefore, Γab is actually a function only of |a|, |b|, and consequently

the index sum reduces to
∑

p∈N2
N
f(|p|) =∑N

|p|=0(|p|+1)f(|p|).
We study a particular scaling limit in which matrix size N and volume V

are simultaneously sent to ∞ such that the ratio N√
V µ4

= Λ2(1+Y) is kept fixed.

Note that V =
(
θ
4

)2 → ∞ is a limit of extreme noncommutativity! The new
parameter (1+Y) corresponds to a finite wavefunction renormalisation, identified
later to decouple our equations. The parameter Λ2 represents an ultraviolet cut-
off which is sent to Λ → ∞ in the very end (continuum limit). In the scaling

limit, functions of
|p|√
V
=: µ2(1 + Y)p converge to functions of ‘continuous matrix

indices’ p ∈ [0,Λ2]. In the same way, Γren
ab converges to a function µ2Γab with

a, b ∈ [0,Λ2], and the discrete sum converges to a Riemann integral

1

V

N∑

|p|=0

(|p|+ 1)f
( |p|√

V

)
−→ µ4(1 + Y)2

∫ Λ2

0

p dp f
(
µ2(1 + Y)p

)
.

This limit makes the restriction to the planar sector (13) of (12) exact.
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After elimination of µ2
bare, but before elimination of Z, our equation for Γab

becomes

(Z − 1)(1 + Y)(a+ b) + Γab

= −λ(1+Y)2
∫ Λ2

0

p dp
( Z2

(a+ p)(1+Y) + 1− Γap

− Z2

p(1+Y) + 1− Γ0p

)

− λ(1+Y)2
∫ Λ2

0

p dp
( Z

(b+ p)(1+Y) + 1− Γpb

− Z

p(1+Y) + 1− Γp0

− Z

(b+ p)(1+Y) + 1− Γpb

Γpb − Γab

(1 + Y)(p− a)

+
Z

p(1 + Y) + 1− Γp0

Γp0

p(1 + Y)

)

. (30)

Applying d
db

∣
∣
a=b=0

we get Z in terms of Γab (and its derivative). Inserted back one
gets a highly non-linear integro-differential equation. Fortunately we can reduce
the non-linearity by subtracting from (30) the same equation taken at b = 0.
This subtraction eliminates the second line of (30) containing Z2. In terms of

Gab :=
(
(a+ b)(1+Y) + 1− Γab

)−1
, this difference equation reads

Z−1

(1 + Y)

( 1

Gab

− 1

Ga0

)

= b− λ

∫ Λ2

0

p dp

Gpb

Gab
− Gp0

Ga0

p− a
. (31)

Differentiation d
db

∣
∣
a=b=0

of (31) yields Z in terms of Gab and its derivative. The
resulting derivative G′ can be avoided by adjusting

Y := −λ lim
b→0

∫ Λ2

0

dp
Gpb −Gp0

b
.

This choice leads to
Z−1

(1+Y)
= 1 − λ

∫ Λ2

0

dp Gp0, which is a perturbatively di-

vergent integral for Λ → ∞. Inserting Z−1 and Y back into (31) we end up in
a linear integral equation for the difference function Dab :=

a
b
(Gab − Ga0) to the

boundary:

( b

a
+

1

aGa0

)

Dab +Ga0 = λ

∫ Λ2

0

dp
(Dpb −Dab

Gp0

Ga0

p− a

)

. (32)

The non-linearity restricts to the boundary function Ga0 where the second index
is put to zero. Assuming a 7→ Gab Hölder-continuous, we can pass to Cauchy
principal values. In terms of the finite Hilbert transform

HΛ
a [f(•)] :=

1

π
lim
ǫ→0

(∫ a−ǫ

0

+

∫ Λ2

a+ǫ

)f(q) dq

q − a
, (33)
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the integral equation (32) becomes

( b

a
+

1 + λπaHΛ
a

[
G•0
]

aGa0

)

Dab − λπHΛ
a

[
D•b
]
= −Ga0 . (34)

3.3 The Carleman solution

Equation (34) is a well-known singular integral equation of Carleman type [Car22,
Tri57]:

Theorem 6 ([Tri57], transformed from [−1, 1] to [0,Λ2]) The singular lin-
ear integral equation

h(a)y(a)− λπHΛ
a [y] = f(a) , a ∈ ]0,Λ2[ ,

is for h(a) continuous on ]0,Λ2[, Hölder-continuous near 0,Λ2, and f ∈ Lp for
some p > 1 (determined by ϑ(0) and ϑ(Λ2)) solved by

y(a) =
sin(ϑ(a))e−HΛ

a [π−ϑ]

λπa

(

a f(a)eH
Λ
a [π−ϑ] cos(ϑ(a))

+HΛ
a

[

eH
Λ
• [π−ϑ] • f(•) sin(ϑ(•))

]

+ C
)

(35a)

∗
=

sin(ϑ(a))eH
Λ
a [ϑ]

λπ

(

f(a)e−HΛ
a [ϑ] cos(ϑ(a))

+HΛ
a

[

e−HΛ
• [ϑ]f(•) sin(ϑ(•))

]

+
C ′

Λ2 − a

)

, (35b)

where ϑ(a) = arctan
[0, π]

( λπ

h(a)

)

, sin(ϑ(a)) = |λπ|√
(h(a))2+(λπ)2

≥ 0 and C,C ′ are arbit-

rary constants.

The possibility of C,C ′ 6= 0 is due to the fact that the finite Hilbert transform
has a kernel, in contrast to the infinite Hilbert transform with integration over
R. The two formulae (35a) and (35b) are formally equivalent, but the solutions
belong to different function classes and normalisation conditions may (and will)
make a choice.

In principle, (35) provides the solution Gab of (34), where the angle function

ϑb(a) := arctan
[0, π]

(

λπa

b+ 1+λπaHΛ
a [G•0]

Ga0

)

(36)

plays a key rôle. This solution involves multiple Hilbert transforms which are
difficult to control. A better strategy starts from the observation that the angle
(36) satisfies, for b = 0, again a Carleman type singular integral equation

λπ cotϑ0(a)Ga0 − λπHΛ
a [G•0] =

1
a
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with solution

Ga0 =
e−HΛ

a [π−ϑ0] sin(ϑ0(a))

λπa

(
eH

Λ
a [π−ϑ0] cos(ϑ0(a))

+HΛ
a

[
eH

Λ
• [π−ϑ0] sin(ϑ0(•))

]
+ C

)
(37a)

∗
=

eH
Λ
a [ϑ0] sin(ϑ0(a))

λπ

(e−HΛ
a [ϑ0] cos(ϑ0(a))

a

+HΛ
a

[e−HΛ
• [ϑ0] sin(ϑ0(•))

•
]

+
C ′

Λ2 − a

)

. (37b)

Tricomi’s identities [Tri57, §4.4(28+18)], which can be arranged as

e±HΛ
a [ϑb] cos(ϑb(a))∓HΛ

a

[
e±HΛ

• [ϑb] sin(ϑb(•))
]
= 1 ,

and rational fraction expansion HΛ
a

[
f(•)
•
]
= 1

a

(
HΛ

a

[
f(•)

]
− HΛ

0

[
f(•)

])
simplify

(37) to

Ga0 =
e−HΛ

a [π−ϑ0] sin(ϑ0(a))

λπa

(
C − 1

)
(38a)

∗
=

eH
Λ
a [ϑ0] sin(ϑ0(a))

λπa

(

e−HΛ
0 [ϑ0] cos(ϑ0(0)) +

C ′a

Λ2 − a

)

. (38b)

Both lines are formally equivalent, but we have to guarantee the normalisation

lima→0 Ga0 = 1. From (36) one concludes limp→0 ϑ0(p) =

{
0 for λ ≥ 0
π for λ < 0

}

.

Consequently, e−HΛ
0 [ϑ0] = exp

(
− 1

π

∫ Λ2

0
dp

p
ϑ0(p)

) λ<0

−→ 0, which means that (38b)

reduces for λ < 0 to (38a), with C ′ 7→ C − 1. Similarly, lima→0 e
−HΛ

a [π−ϑ0] λ>0
= 0,

so that (38a) is only consistent with λ < 0. The normalisation lima→0Ga0 = 1

leads with lima→0
sinϑ0(a)
|λ|πa = 1 to 1−C = e−HΛ

0 [π−ϑ0] in (38a), whereas (38b) stays
as it is for λ > 0. These results can be summarised as follows:

Lemma 7 The angle function τb(a) := arctan
[0, π]

(

|λ|πa
b+ 1+λπaHΛ

a [G•0]
Ga0

)

is for b = 0

reverted to

Ga0 =
sin(τ0(a))

|λ|πa esign(λ)(H
Λ
0 [τ0(•)]−HΛ

a [τ0(•)])
{

1 for λ < 0 ,
(
1+ Ca

Λ2−a

)
for λ > 0 ,

(39)

where C is an arbitrary constant.

Recall that Ga0 forms the inhomogeneity in the Carleman equation (34). We
insert (39) into the Carleman solution (35) for (34) and obtain with the addition
theorem |λ|πa sin

(
τd(a) − τb(a)

)
= (b − d) sin τb(a) sin τd(a) after essentially the

same steps as in the proof of (39):
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Theorem 8 ([GW14]) The full matrix 2-point function Gab of self-dual φ4
4-

theory on Moyal space is in the limit θ → ∞ given in terms of the boundary
2-point function Ga0 by the equation

Gab =
sin(τb(a))

|λ|πa esign(λ)(H
Λ
0 [τ0(•)]−HΛ

a [τb(•)])
{

1 for λ < 0 ,
(
1+Ca+bF (b)

Λ2−a

)
for λ > 0 ,

(40)

where C is a undetermined constant and b F (b) an undetermined function of b
vanishing at b = 0.

Some remarks:

• We have proved this theorem in 2012 for λ > 0 under the assumption C ′ = 0
in (35b), but knew that non-trivial solutions of the homogeneous Carleman
equation parametrised by C ′ 6= 0 are possible. That no such term arises for
λ < 0 (if angles are redefined ϑ 7→ τ) is a recent result [GW14].

• An important observation is Gab ≥ 0, at least for λ < 0. This is a truly
non-perturbative result; individual Feynman graphs show no positivity at
all!

• As in [GW09], the equation for Gab can be solved perturbatively. Matching

at λ = 0 requires C, F to be flat functions of λ. Because of HΛ
a [G•0]

a→Λ2

−→
−∞, the näıve arctan series is dangerous for λ > 0. Unless there are
cancellations, we expect zero radius of convergence!

• From (40) we deduce the finite wavefunction renormalisation

Y := −1 − dGab

db

∣
∣
∣
a=b=0

=

∫ Λ2

0

dp

(λπp)2 +
(1+λπpHΛ

p [G•0]

Gp0

)2
−
{

0 for λ < 0 ,

F (0) for λ > 0 .

(41)

• The partition function Z is undefined for λ < 0. But the Schwinger-Dyson
equations for Gab and for higher functions, and with them logZ, extend
to λ < 0. These extensions are unique but probably not analytic in a
neighbourhood of λ = 0.

It remains to identify the boundary function Ga0. The Carleman equation
(34) for Gab was obtained from the difference (30)−(30)b=0. Consequently, (30)b=0

gives the second relation between Gab and Ga0 from which both are determined.
Combining them we obtain a single consistency equation for Ga0, which in terms
of Ta := |λ|πa cot τ0(a) reads

Ta = 1 + a+ λπaHΛ
a [1]

+

∫ Λ2

0

dp

(p exp
(

HΛ
a

[

arctan
[0, π]

|λ|π•
p+T•

])

√

(λπa)2 + (p + Ta)2
−

p exp
(

HΛ
0

[

arctan
[0, π]

|λ|π•
p+T•

])

1 + p

)

. (42)
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This equation is, unfortunately, of little use. The integrals are individually di-
vergent for Λ→∞ so that we have to rely on cancellations on which we have no
control.

We compensate this lack by a symmetry argument. Given the boundary
function Ga0, the Carleman theory computes the full 2-point function Gab via
(40). In particular, we get G0b as function of Ga0. But the 2-point function is
symmetric, Gab = Gba, and the special case b = 0 leads to the following self-
consistency equation:

Proposition 9 The limit θ → ∞ of φ4
4-theory on Moyal space is determined by

the solution of the fixed point equation G = TG,

Gb0 =

{
1 for λ<0

1+bF (b) for λ>0

}

1+b
exp

(

−λ

∫ b

0

dt

∫ Λ2

0

dp

(λπp)2 +
(
t+

1+λπpHΛ
p [G•0]

Gp0

)2

)

. (43)

At this point we can eventually send Λ → ∞. Any solution of (43) is automat-
ically smooth and (for λ > 0 but F = 0) monotonously decreasing. Any solution
of the true equation (30) (without the difference to b = 0) also solves the master
equation (43), but not necessarily conversely. In case of a unique solution of (43),
it is enough to check one candidate.

Existence of a solution of (43) is established (for λ > 0 but F (b) = 0) by the
Schauder fixed point theorem. We consider the following subset of continuously
differentiable functions on R+ vanishing at ∞:

Kλ :=
{

f ∈ C1
0(R+) : f(0) = 1 , 0 < f(b) ≤ 1

1 + b
,

0 ≤ −f ′(b) ≤
(

1
1+b

+ Cλ

)
f(b)

}

,

where Cλ is defined via 2λP 2
λ(1+Cλ)e

CλPλ = 1 at Pλ =
exp(− 1

λπ2 )√
1+4λ

. Then [GW12b]:

1. Kλ convex,

2. TKλ ⊂ Kλ,

3. (Tf)′′(b) ≤
(
23
4
+ 2

π
+ 7+8π

2
1

(λπ2Pλ)2

)
(Tf)(b) for any f ∈ Kλ,

4. T : Kλ → Kλ is continuous.

The properties 1.–3. imply that TKλ is relatively compact in Kλ by a variant of
the Arzelá-Ascoli theorem. Together with 4. the Schauder fixed point theorem
then guarantees that (43) has a solution Ga0 ∈ Kλ.

This solution provides Gab via (40) and all higher correlation functions via
the universal algebraic recursion formulae (16), (65), (66), etc, or via the linear
equations for the basic (N1+ . . .+NB)-point functions such as (63) and (64). The
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recursion formula (16) becomes after transition to continuous matrix indices

Gb0...bN−1
=

(−λ)

(1 + Y)2

N−2
2∑

l=1

Gb0b1...b2l−1
Gb2lb2l+1...bN−1

−Gb2lb1...b2l−1
Gb0b2l+1...bN−1

(b0 − b2l)(b1 − bN−1)
.

(44)

It involves the finite wavefunction renormalisation 1 +Y = −dGab

db

∣
∣
a=b=0

given by
(41). Of particular interest is the effective coupling constant λeff = −G0000. This
limit of coinciding indices is not so easy; therefore we directly solve the integral
equation for Ga000 before using the reality condition. We find [GW12b]

λeff = λ

{

1 +
λ

(1+Y)

∫ ∞

0

dp

( 1−Gp0

(1 + Y)p
−Gp0

)

Gp0

(
λπpGp0

)2
+
(
1 + λπpH∞

p [G•0]
)2

}

. (45)

The equation for the basic function Gab|cd arising from (64) is solved in two
steps. A first summation over b ∈ I in (64) yields after passage to the integral

representation a Carleman equation for Xa|cd :=
∫ Λ2

0
qdq Gaq|cd

Xa|cd
{

1 + λ

∫ ∞

0

dq (Gaq −G0q)− λ

∫ ∞

0

dq
Gaq sin τq(a) cos

(
τq(a)− τ0(a)

)

sin τ0(a)

}

+H∞
a

[X•|cd
π•

∫ ∞

0

q dq sin2 τq(•)Gaq

]

= λ

∫ ∞

0

q dq (Faq|cdcq + Faq|dcdq) +
λ

(1 + Y)2
(Gacdc+Gadcd) ,

where Fab1|c1c2c3c4 :=
Gab1c1c2c3c4

Gb1c3
−Gb1c1c2c3

Gab1c3c4

Gb1c1
Gb1c3

. Inserted back into (64) gives

(after passage to the integral representation) a familiar Carleman equation for
Gab|cd with solution

Gab|cd = Fab|cdcb + Fab|dcdb

− sin τb(a)

λπa
cos τb(a)GabXa|cd −GabH∞

a

[sin2 τb(•)
λπ• X•|cd

]

. (46)

The (2+2)-point function Gab|cd turns out to be the most interesting part of the
4-point function in position space (see sec. 4).

3.4 Perturbation theory

The master equation (43) can, for F (b) ≡ 0, be iteratively solved. To lowest
order one has Ga0 =

1
1+a

+O(λ), from which the next order becomes

Ga0 =
1

1 + a
− λ

log(1 + a)

(1 + a)
+O(λ2) . (47)
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If we put in Ga0 =
1

(1+a)1+λ+O(λ2) the index a 7→ p2

µ2 , see (58), we get

∫

R4

dp

(2πµ)4
eip(x−y)G p2

µ2
0
=

2−λ

4π2Γ(1 + λ)

K1−λ(µ‖x− y‖)
(µ‖x− y‖)1−λ

x−y→0−→ 2−2λΓ(1− λ)

4π2Γ(1 + λ)

1

(µ‖x− y‖)2−2λ
,

where Kν(x) is the modified Bessel function. We thus conclude that the anomal-
ous dimension is η = −2λ, i.e. negative for the stable sign λ > 0 of the coupling
constant. We shall see in the next section that this result excludes a Wightman
theory for λ > 0. It is worthwhile to mention that this wrong sign is a con-
sequence of renormalisation. The divergent bare 2-point function would lead to
the opposite sign. Removing the divergence at a = 0 overcompensates for a > 0
and gives η = −2λ. In two dimensions, η would be non-negative for λ > 0.

From (47) we get:

• Hilbert transform: λπH∞
a [G•0] = −λ

log(a)
1+a

+O(λ2),

• angle function: τb(a) =
|λ|πa
1+a+b

(

1− λ
(1+a) log(1+a)−a log a

(1+a+b)

)

+O(λ3),

• wavefunction renormalisation: 1 + Y = −dGa0

da

∣
∣
a=0

= 1 + λ+O(λ2).

Inserted into (40) one finds

Gab =
1

1 + a + b
− λ

(1 + a) log(1 + a) + (1 + b) log(1 + b)

(1 + a + b)2
+O(λ2) . (48)

This result coincides with renormalised 1-loop ribbon graph computation.
From the action functional (27) one obtains in the infinite volume limit to con-
tinuous matrix indices the following Feynman rules:

• oo
//

b

a =
1

1 + (a + b)(1 + Y)

•
�� ?? �� __

??��__��

= −Z2λ (index conserved at every corner)

•"!
# 

p = (1+Y)2
∫ Λ2

0

p dp for every closed face

To lowest order we have Gab =
1

1 + (a+ b)(1 + Y)− Γren
ab

, where Γrn
ab is the

Taylor remainder of

Γab =

�� ?? �� __

����

b

p

a a
+

__�� ??��

__??

p

a

b b +O(λ2)
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=

∫ Λ2

0

p dp
(−λ)

1 + a+ p
+

∫ Λ2

0

p dp
(−λ)

1 + b+ p
+O(λ2) ,

= Γren +

(∫ Λ2

0

p dp
(−λ)

1 + p
+

∫ Λ2

0

p dp
(+λ)a

(1 + p)2
︸ ︷︷ ︸

(Z−1)a

+
(
a 7→ b

)
+O(λ2)

)

, (49a)

Γren
ab = (−λ)

∫ Λ2

0

p dp
( 1

1+a+p
− 1

1+p
+

a

(1+p)2

)

+
(
a 7→ b

)
+O(λ2) , (49b)

in agreement with (48). There is no doubt that the fixed point solution for Ga0

and the Carleman solution for Gab capture the resummation of infinitely many
renormalised Feynman graphs!

From (44) and Y = λ+O(λ2) we obtain for the 4-point function

Gabcd =
(−λ)

(1 + Y)2
GabGcd −GadGcd

(a− c)(b− d)
=: GabGbcGcdGda(−Γabcd) ,

Γabcd = λ
(

1− λ
a− (1 + a) log(1 + a)− c+ (1 + c) log(1 + c)

a− c

− λ
b− (1 + b) log(1 + b)− d+ (1 + d) log(1 + d)

b− d

)

+O(λ3) , (50)

which agrees with

Γabcd = −
�� ?? �� __

??��__��

a
b

c
d −

�� ?? �� __

??��__��

�� ��__ ??

a a
b

c c

d p −

�� ??
��__??��

__ ��

��
��

__
??

a
b

b
c

d

d

p +O(λ3)

= −(−λ)
(

1 + 2λ

∫ Λ2

0

p dp

(1 + p)2

)

︸ ︷︷ ︸

=Z2+O(λ2)

− (−λ)2
∫ Λ2

0

p dp

(1+p+a)(1+p+c)
− (−λ)2

∫ Λ2

0

p dp

(1+p+b)(1+p+d)
. (51)

The singularities of Z2 and of the 4-point graphs cancel exactly!

3.5 Computer simulations [GW14]

A numerical investigation of (43), for F (b) ≡ 0, reveals interesting properties of
the φ4

4-theory on Moyal space. We approximate Ga0 as piecewise linear function
on [0,Λ2] sampled according to a geometric progression and view (43) as iteration
Gn+1

a0 = (TGn)a0 for some initial function G0. In this way we find numerically
that T satisfies, for any λ ∈ R, the assumptions of the Banach fixed point theorem
for Lipschitz functions on [0,Λ2], i.e. T is contractive and (Gn) converges to a
fixed point which approximates Ga0. Whereas (Gn) converges for any sign of λ
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(without discontinuity at λ = 0), the necessary consistency condition Gab = Gba

for (40) turns out to be maximally violated for λ > 0 (assuming C = 0 = F (b))
and satisfied (within numerical error bounds) for λ ≤ 0. The observed relative
asymmetry supa,b

∣
∣Gab−Gba

Gab+Gba

∣
∣ of nearly 100% for λ > 0 signals that the parameters

C, F (b) in (40) which reflect the non-trivial solution of the homogeneous Carleman
equation are definitely non-zero. Taking C, F (b) 6= 0 for λ > 0 into account is not
feasible at the moment so that our numerical results are reliable only for λ ≤ 0.
For λ = 107 and only 2000 sample points in [0,Λ2], the relative asymmetry for
λ ≤ 0 is of the order of 5%.

The most striking outcome of our computer simulations concerns the finite
wavefunction renormalisation (1 + Y) given by (41). Figure 1 shows both Y and
the effective coupling constant λeff given by (45) as functions of λ. We find clear

æ æ æ ææææææææ
æææ
ææ
ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
æ
ææ
æ
æ æ æ æ æ

à

à

à

à

à

ààà
à
à
à

à

à

à

à

à

à

à

à

à

à

à

à
à
à
à
à
à
à

à

à

à

à

à

à

à
à
à

à

à

à

à

à

à

à

à

-1.0 -0.5 0.5 1.0
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Gab 6= Gba

(solution of
homogeneous
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Ga1a2...aN

singular

λ0λc

• Y=−1− dGa0
da

∣
∣
a=0

� λeff = −G0000

Figure 1: Y , λeff based on Ga0 for Λ2=107 with 2000 sample points.

evidence for a second-order phase transition: Y ′ is discontinuous at λc = −0.396,
and we have in reasonable approximation a critical behaviour

1 + Y =

{
A(λ− λc)

α for λ ≥ λc ,

0 for λ < λc ,
(52)
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for some A, α > 0. To be precise, we find 1+Y = 0 only at λ0=−0.455, but this
seems to be due to the discretisation. Of course, there cannot be a discontinuity
in Y ′ for finite Λ, but Figure 1 is strong support for a critical behaviour (52) in
the limit Λ2 → ∞. It is worthwhile to mention that nothing particular happens
at the expected pole λb = − 1

72
= 0.014 of Borel resummation! Since 1 + Y = 0

(within numerical error bounds) in the phase λ < λc, we see from (44) that higher
N -point functions will not exist for λ < λc. Most surprisingly, as we discuss at
the end of section 4.2, a key property of the Schwinger 2-point function Sc(x, y)
in position space is precisely realised in [λc, 0], not outside! In fact, as shown in
Figure 2, one has in reasonable approximation Gab = 0 for 0 ≤ a, b ≤ Λ2

0, where

5 10 15

-5

-4

-3

-2

-1

log(1+a)

logGa0

logGaa

λ = −0.477

5 10 15

-1.5

-1.0

-0.5

log(1+a)

logGa0

logGaa

λ = −0.796

Figure 2: Plots of logGa0 and logGaa over log(1 + a) for λ < λc.

Λ2
0 increases with λc−λ > 0. This could leave the possibility of meaningful higher

functions (44) for matrix indices 0 ≤ ai ≤ Λ2
0, but not for larger indices. Such

a picture could have the interpretation of a maximal momentum cut-off of the
Euclidean particles.

4 Schwinger functions and reflection positivity

In the previous section we have constructed the connected matrix correlation
functions G|q11...q1N1

|...|qB1 ...qBNB
| of the (θ→∞)-limit of φ4

4-theory on Moyal space.

These functions arise from the topological expansion (6) of the free energy

log
Z[J ]

Z[0]
=

∞∑

B=1

∞∑

1≤N1≤···≤NB

(V µ4)2−B

SN1...NB

∑

q
β
i ∈N2

G|q11...q1N1
|...|qB1 ...qBNB

|

B∏

β=1

1

Nβ

(J
q
β
1 q

β
2

µ3
· · ·

J
q
β
Nβ

q
β
1

µ3

)

.

(53)

Since limV µ4→∞G|q11...q1N1
|...|qB1 ...qBNB

| is finite, the limit limV→∞
1

V µ4 log
Z[J ]
Z[0]

of the

naturally expected free energy density removes (in addition to the removal of
higher-genus contributions) all contributions from B ≥ 2. As shown in previous
sections, this planar limit is an exactly solvable and (without any doubt) non-
trivial matrix model.
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4.1 Schwinger functions

We are interested here in another limit to Schwinger functions [Sch59] in position
space. For this end we revert the matrix representation (24) and take the infinite
volume limit V µ4 → ∞, where we carefully have to pass to densities. Absolute
position x ∈ R4 have no meaning, only µx can be used. This means that we
consider (up to a factor discussed below)

〈
φ(µx1) . . . φ(µxN)

〉
≡

∑

m1,n1,...,mN ,nN∈N2

fm1m2(µx1) · · ·fmNmN
(µxN )

〈
Φm1n1 . . .ΦmNnN

〉
,

where the matrix correlation functions
〈
Φm1n1

. . .ΦmNnN

〉
are obtained by deriv-

atives of (53) with respect to Jm1n1 , . . . , JmNnN
. We shall see in this section that

the additional index summation over mi, ni ∈ N2 gives a meaningful limit only
if we redefine the volume factor in the free energy density to F = 1

(µV )2
log Z[J ]

Z[0]
.

The occurrence of V 2 as the volume has its origin in the spectral geometry of
the Moyal plane with harmonic propagation [GW13a, GW12a] which has a finite
volume (V

Ω
)2.

Definition 10 The connected Schwinger functions associated with the action
(26) are

µNSc(µx1, . . . , µxN)

:= lim
V µ4→∞

∑

m1,n1,...,mN ,nN∈N2

fm1n1(µx1) · · ·fmNnN
(µxN)

µ4N∂NF [J ]

∂Jm1n1 . . .∂JmNnN

∣
∣
∣
∣
J=0

, (54)

F [J ] :=
1

64π2V 2µ8
log

(∫
D[Φ] e−S[Φ]+V

∑
a,b∈N2 ΦabJba

∫
D[Φ] e−S[Φ]

)

Zµ2
bare

7→µ2

Z 7→(1+Y)

,

where S[φ] is given by (27) and fmn by (24). By ( )Zµ2
bare

7→µ2

Z 7→(1+Y)

we symbolise the

renormalisation of sec. 3.2.

Note that by construction the J-derivatives, and hence the Schwinger functions,
are fully symmetric in µx1, . . . , µxN . Applying the J-derivatives the the topo-
logical expansion (53) into J-cycles produces an fmn-cycle for each of the B

boundary components:

Sc(µx1, . . ., µxN ) = lim
V µ4→∞

1

64π2

∑

N1+···+NB=N

∑

q
β
i ∈N2

G|q11...q1N1
|...|qB1 ...qBNB

|

×
∑

σ∈SN

B∏

β=1

fq1q2(µxσ(N1+...+Nβ−1+1))· · ·fqNβ
q1(µxσ(N1+...+Nβ))

V µ4Nβ

.
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We compute the sum over the indices qβi ∈ N2 by Laplace-Fourier transform of
G. For that we temporarily assume that G has, for every boundary component, a
representation as Laplace transform in the total sum of index norms and Fourier
transform in differences of index norms. This transform will be reverted in the end
so that the analyticity assumption is not necessary (future analytic continuation
to Minkowski space would imply representation as Laplace transform):

G|q11...q1N1
|...|qB1 ...qBNB

|

=

∫

RB
+

d(t1, . . . , tB)

∫

RN−B

d(ω1
1, . . . , ω

1
N1−1, . . . , ω

B
1 , . . . , ω

B
NB−1)

× G(t1, ω1
1, . . . , ω

1
N1
| . . . |tB, ωB

1 , . . . , ω
B
NB

)

×
B∏

β=1

exp

(

− tβ
√

V µ4

Nβ∑

i=1

|qβi |+
i

√

V µ4

Nβ−1
∑

i=1

ω
β
i (|qβi | − |qβi+1|)

)

. (55)

Note that the 1-norms |qβi | = q
β
i,1+q

β
i,2 imply a factorisation of the exponential,

exp(. . . )=
∏

i

(
z
β
i (t

β, ~ωβ)
)qβi,1
(
z
β
i (t

β, ~ωβ)
)qβi,2 .

For every boundary component β = 1, . . . , B, we thus need to compute

∞∑

q1,...,qN′=0

fq1q2(µ~y1) · · ·fqN′q1(µ~yN ′)
√

V µ4N ′
z
q1
1 · · · zqN′

N ′

= 2N
′
∞∑

q1,...,qN′=0

e−
1
2
(r1+···+rN′ )

Lq2−q1
q1

(r1) · · ·Lq1−qN′
qN′ (rN ′)

√

V µ4N ′
(−z̃1)

q1 · · · (−z̃)
qN′

N ′ , (56)

where ri =
µ2|~yi|2√
4V µ4

and z̃j =
~yj−1

~yj
exp(− t−i(ωj−ωj−1)√

V µ4
), with ~yi ∈ C, ~y0 ≡ ~yN ′ and

ω0 = ωN ′ ≡ 0. One has

Lemma 11 ([GW13b]) For |z̃j | < 1, a cyclic product of Laguerre polynomials
(i.e. N ′ + j ≡ j) is summed to

∞∑

q1,...,qN′=0

N ′
∏

j=1

(−z̃j)
qj Lqj+1−qj

qj
(rj) =

exp

(

−
∑N ′

j,k=1 rj(−z̃k+j) · · · (−z̃N ′+j)

1− (−z̃1) · · · (−z̃N ′)

)

1− (−z̃1) · · · (−z̃N ′)
. (57)

The denominators in (57) become

1−(−z̃1) · · · (−z̃N ′)=1−(−1)N
′

exp
(

− N ′t
√

V µ4

)
V µ4→∞−→

{
N ′t√
V µ4

for N ′ even ,

2 for N ′ odd .

Together with the prefactor 1√
V µ4N ′

, the sum (56) converges for V µ4 → ∞ to

zero if N ′ is odd, whereas if N ′ is even the limit is non-zero and finite, depending
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only on t but no longer on ωj. Recombining the two N2-components we produce

factors
exp

(
− ‖µX‖2

2N ′t

)

(N ′t)2
=

∫

R4

dp

4π2µ4
e
−i〈 p

µ
,µX〉 exp

(

− N ′t‖p‖2
2µ2

)

for every even N ′.

Altogether we arrive at

lim
V µ4→∞

∑

q1,...,qN′∈N2

fq1q2(µx1) · · ·fqN′q1(µxN ′)

V µ4N ′ z
q1,1+q1,2
1 · · · zqN′ ,1+qN′,2

N ′

=







4N
′

N ′

∫

R4

dp

4π2µ4
e−i〈 p

µ
,µ(x1−x2+...+xN′−1−xN′ )〉 exp

(

− N ′t‖p‖2
2µ2

)

for N ′ even ,

0 for N ′ odd .

Integration of G(t1, ω1
1, . . . , ω

1
N1
| . . . |tB, ωB

1 , . . . , ω
B
NB

) against exp(−Nβt
β‖pβ‖2
2µ2 ) in

(55) returns to the original function G|q11...q1N1
|...|qB1 ...qBNB

|, but with

1. for each β, all |qβi | coincide (no ω-dependence),

2.
∑Nβ

i=1 |q
β
i |√

V µ4
=

Nβ

2µ2‖p‖2, hence |qβi |√
V µ4

V µ4→∞−→ (1+Y)q = |p|2
2µ2 in the limit to the

integral representation.

We have thus proved:

Theorem 12 The connected N-point Schwinger functions of the φ4
4-model on

extreme Moyal space θ → ∞ are given by

Sc(µx1, . . . , µxN)

=
1

64π2

∑

N1+...+NB=N

Nβ even

∑

σ∈SN

( B∏

β=1

4Nβ

Nβ

∫

R4

dpβ

4π2µ4
e
i
〈

pβ
µ
,
∑Nβ

i=1(−1)i−1µxσ(N1+...+Nβ−1+i)

〉)

×G ‖p1‖2
2µ2(1+Y)

, · · · , ‖p1‖2
2µ2(1+Y)

︸ ︷︷ ︸
N1

∣
∣...

∣
∣ ‖pB‖2
2µ2(1+Y)

, · · · , ‖pB‖2
2µ2(1+Y)

︸ ︷︷ ︸
NB

. (58)

Some comments:

• Only a restricted sector of the underlying matrix model contributes to po-
sition space: All strands of the same boundary component carry the same
matrix index.

• Schwinger functions are symmetric and invariant under the full Euclidean
group. This comes truly surprising since θ 6= 0 breaks both translation
invariance and manifest rotation invariance. The limit θ → ∞ was expected
to make this symmetry violation even worse!

• The most interesting sector is the case where every boundary component
has Nβ = 2 indices. It is described by the (2+ . . .+2)-point functions
G ‖p1‖

2

2µ2(1+Y)

‖p1‖
2

2µ2(1+Y)

∣
∣...

∣
∣ ‖pB‖2

2µ2(1+Y)

‖pB‖2

2µ2(1+Y)

.
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• This sector describes the propagation and interaction of B particles without
any momentum exchange. This is acceptable for a 2D-model. In four
dimensions, absence of momentum transfer is a sign of triviality.

• However, typical triviality proofs rely on clustering, analyticity in Mandel-
stam representation or absence of bound states. All this needs verification.

It is already clear that clustering is maximally violated. Looking for instance
at the (2+2)-sector, we have

lim
µa→∞

S2+2
c (µx1, µx2, µ(x3 + a), µ(x4 + a))

=

∫
dp dq

4π6µ4
G ‖p‖2

2µ2(1+Y)

‖p‖2

2µ2(1+Y)

∣
∣ ‖q‖2

2µ2(1+Y)

‖q‖2

2µ2(1+Y)

ei〈p,x1−x2〉+i〈q,x3−x4〉 (59)

independent of the distance between {x1, x2} on one hand and {x3, x4} on the
other hand. Absence of clustering means that the vacuum state (of a hypothetical
continuation to a Wightman theory) is not a pure state. Non-pure states can be
decomposed into pure states which describe different topological sectors.

Let us give an intuitive explanation why the limit θ → ∞ of extreme non-
commutativity is so close to an ordinary field theory expected for θ → 0. The
interaction term in momentum space

λ

4

∫

(R4)4

( 4∏

i=1

dpi

(2π)4

)

δ(p1 + · · ·+ p4) exp
(

i
∑

i<j

〈pi,Θpj〉
) 4∏

i=1

φ̂(pi)

leads to the Feynman rule λ exp
(
i
∑

i<j〈pi,Θpj〉
)
, plus momentum conservation.

For θ → ∞, this converges to zero almost everywhere by the Riemann-Lebesgue
lemma, unless pi, pj are linearly dependent. This case of linearly dependent mo-
menta might be protected for topological reasons, and these are precisely the
boundary components B > 1 which guarantee full Lebesgue measure!

4.2 Reflection positivity

Under conditions identified by Osterwalder-Schrader [OS73, OS75], Schwinger
functions [Sch59] of a Eulidean quantum field theory permit an analytical con-
tinuation to Wightman functions [Wig56, SW64] of a true relativistic quantum
field theory. In simplified terms, the reconstruction theorem of Osterwalder-
Schrader says:

Theorem 13 ([OS73, OS75]) If the Schwinger functions S(x1, . . . , xN ) satisfy

0. growth conditions,

1. Euclidean covariance,

2. reflection positivity: for each assignment N 7→ fN ∈ SN of test functions,

∑

M,N

∫

dx dy S(x1, . . . , xN , y1, . . . , yM)fN (xr
1, . . . , x

r
N )fM(y1, . . . , yM) ≥ 0 ,
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where (x0, x1, . . . xd−1)r := (−x0, x1, . . . xd−1),

3. permutation symmetry,

then the S(ξ1, . . . ξN−1)
∣
∣
ξ0i >0

, with ξi = xi−xi+1, are Laplace-Fourier transforms

of Wightman functions in a relativistic quantum field theory. If in addition the
S(x1, . . . , xN ) satisfy

4. clustering

then the Wightman functions satisfy clustering, too.

Representation as Laplace transform in ξ0 requires analyticity in Re(ξ0) > 0.
For the Schwinger 2-point function (58), such analyticity in ξ0 is a corollary of
analyticity of the function a 7→ Gaa in C \ ]−∞, 0]. We will show that analyticity
and reflection positivity boil down to Stieltjes functions, i.e. functions f : R+ → R

which have a representation as a Stieltjes transform (see [Wid38])

f(x) = c+

∫ ∞

0

d(ρ(t))

x+ t
, c = f(∞) ≥ 0 , (60)

where ρ is non-negative and non-decreasing. We prove:

Proposition 14 The Schwinger function Sc(µξ) =

∫

R4

dp

(2πµ)4
eipξG ‖p‖2

2µ2(1+Y)

‖p‖2

2µ2(1+Y)

identified in (58) is the analytic continuation of a Wightman 2-point function if
and only if a 7→ Gaa is Stieltjes.

Proof. This is verified by explicit calculation. If a 7→ Gaa is Stieltjes, we have in
terms of ω~p(t) :=

√

~p2 + 2µ2(1 + Y)t

Sc(µξ)
∣
∣
ξ0>0

=

∫

R3

d~p

(2πµ)3

∫ ∞

−∞

dp0

2πµ
eip

0ξ0+i~p·~ξ
∫ ∞

0

dρ(t)

t + (p0)2+~p2

2µ2(1+Y)

= 2µ(1+Y)

∫

R3

d~p ei~p·
~ξ

(2πµ)3

∫ ∞

0

dρ(t)

2ω~p(t)

∫ ∞

−∞

dp0

2πi

( eip
0ξ0

p0−iω~p(t)
− eip

0ξ0

p0+iω~p(t)

)

= 2µ(1+Y)

∫

R3

d~p e−ξ0ω~p(t)+i~p·~ξ

(2πµ)3

∫ ∞

0

dρ(t)

2ω~p(t)

=

∫ ∞

0

2(1 + Y) dρ(t)

µ4

∫ ∞

0

dq0
∫

R3

d~q Ŵt(q)e
−q0ξ0+i~q·~x , (61a)

Ŵt(q) :=
θ(q0)

(2π)3
δ
((q0)2 − ~q2 − 2µ2(1+Y)t

µ2

)

. (61b)

The step from the second to third line is the residue theorem. We observe that
Ŵt(q) is precisely the Källén-Lehmann spectral representation [Käl52, Leh54] of
a Wightman 2-point function. �

Remarkably, the Stieltjes property can be tested by purely real conditions:
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Theorem 15 (Widder [Wid38]) A function f : R+→R is Stieltjes iff it is
smooth, non-negative and satisfies Lk,t[f(•)] ≥ 0, where

Lk,t[f(•)] :=
(−t)k−1

ck

d2k−1

dt2k−1

(
tkf(t)

)
, c1 = 1, ck>1 = k!(k−2)! .

In that case, the measure is recovered by ρ′(t) = limk→∞Lk,t[f(•)] (weakly and
almost everywhere).

The perturbatively established anomalous dimension η = −2λ implies that a 7→
Gaa cannot be Stieltjes for λ > 0. The restriction to negative coupling constant
is reminiscent of the planar wrong-sign λφ4

4-model [tHo82, Riv83]. Recall that
our matrix model also reduces to the planar sector, but as result of the infinite
volume limit and not by hand. We nonetheless keep a non-trivial topology in
form of B ≥ 1 boundary components. Moreover, we have an exact solution for
S(x1, . . . , xN ), not only an existence proof.

Whether or not a 7→ Gaa is a Stieltjes function for λ < 0 is a highly interesting
question. A first idea can be obtained by computer simulations, see sec. 3.5. We
show in Figure 3 interpolation results for λ near the critical coupling constant.
We find clear evidence that a 7→ Gaa is not a Stieltjes function for λ < λc, where

1 2 3 4 5 6
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0.25

λ=−0.350

λ=−0.382
λ=−0.398

λ=−0.414
L2 1 2 3 4 5 6

-0.1

0.1

0.2

0.3 −0.350

−0.382 −0.398

−0.414 L3

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.1

0.0

0.1

0.2

0.3

−0.350

−0.382

−0.398
−0.414

L4 • based on interpolation of discrete
data, noisy for k ≥ 4

• Stieltjes property clearly violated
for λ < λc

Figure 3: Widder’s criteria Lk,a[G••] :=
(−a)k−1

k!(k−2)!
d2k−1

da2k−1 (a
kGaa) ≥ 0 for λ ≈ λc.

λc ≈ −0.396 locates the discontinuity of Y ′(λ). For λ ∈ [λc, 0] the results are not
conclusive (as k is too small). Since Gaa and Ga0 show a very similar behaviour
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(see e.g. Fig. 2), the functions Lk,t[G•0] (which are easy to compute) give some
indication about Lk,t[G••] (which we are interested in). From (43) one can prove
the following identity [GW14]:

(logGa0)
(ℓ)

(ℓ− 1)!
=

(−1)ℓ

(1+a)ℓ
+ (−1)ℓ sign(λ)HΛ

0

[

sin
(
ℓτa(•)

)(sin τa(•)
|λ|π•

)ℓ]

. (62)

The resulting integrated ‘mass densities’ ρ̃k(m
2) =

∫ m2

0
dt Lk,t[G•0] are shown

in Figure 4. We find clear evidence for a mass gap, limk→∞ ρ̃k(µ
2) = 0 for
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7

λπ = −1.15

ρ̃5

ρ̃16

critical behaviour:

ρ̃(µ2)=

{
0 µ ≤ m

(µ2−m2)−α µ ≥ m

close to step function

expected for λ = 0

Figure 4: ρ̃k(m
2) =

∫ m2

0
dt Lk,t[G•0] as approximation for the mass density of

a 7→ Gaa. In each row, the left picture is zoomed into small µ, showing evidence
for a mass gap. The right pictures show the global behaviour, close to a step
function for λ ր 0, close to criticality for λ ց λc.

0 ≤ µ2 ≤ m2. For λ ր 0 the integrated mass density approaches (as expected)
a step function, whereas for λ ց λc we notice a power-law behaviour typical for
critical phenomena. In particular, for λc < λ < 0 there is no further gap in the
support of ρ̃′, which signals scattering right away from m2 (not only from the
two-particle threshold on). We interpret this as scattering of a massive particle
with an infrared cloud. This scattering would be a remnant of the underlying
non-trivial matrix model before the projection to diagonal matrices.
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4.3 Summary

We have shown that the φ4
4-model on noncommutative Moyal space, considered

in the limit θ → ∞ of extreme noncommutativity, is an exactly solvable and non-
trivial matrix model. Euclidean symmetry is violated in the beginning, but we
identified a limit which projects to diagonal matrices where Euclidean symmetry
is restored. One would not expect such that such a brutal projection can respect
any quantum field theory axioms. Surprisingly, the first consistency checks, pos-
itivity of the lowest Widder criteria Lk,t[G••], are passed for the only interesting
interval [λc, 0] of the coupling constant!

If these miracles continue and all Osterwalder-Schrader axioms (except for
clustering) hold, we would get a relativistic quantum field theory in four di-
mensions. This theory is somewhat strange as ‘particles’ keep their momenta
in interaction processes. Nevertheless, the theory is not completely trivial. We
find scattering remnants from the noncommutative geometrical (i.e. matricial)
substructure. Only the external matrix indices are put ‘on-shell’, internally all
degrees of freedom contribute.

We have seen that clustering is maximally violated. The interaction is insens-
itive to positions in different boundary components. In particular, ‘particles’ are
never asymptotically free.

A Schwinger-Dyson equations for B = 2

We find for the (1+1)- and (2+2)-point functions

G|a|c| = − λ

Ea+Ea

(
1

V

∑

p∈I

(

G|ap|G|a|c| −
G|p|c|−G|a|c|
Ep−Ea

)

− G|cc|−G|ac|
Ec−Ea

) }

(63a)

− λ

V 2(Ea+Ea)

(

3G|a|a|G|a|c| +G|a|cac| +G|c|aaa| +
1

V

∑

n∈I
G|a|c|an|

) }

(63b)

− λ

V 4(Ea+Ea)
G|a|a|a|c| ,

}

(63c)

G|ab|cd|

= − λ

Ea+Eb

(
1

V

∑

p∈I

((
G|ap|G|ab|cd|+G|ab|G|ap|cd|

)
− G|pb|cd|−G|ab|cd|

Ep − Ea

)

+G|ab|
(
G|cacd|+G|dadc|

)
− G|cbcd|−G|cbad|

Ec −Ea

− G|dbdc|−G|dbac|
Ed −Ea

)







(64a)

− λ

V 2(Ea + Eb)

(

G|a|a|G|ab|cd| +GabG|a|a|cd| +
1

V

∑

n∈I
G|an|ab|cd|

+G|cd|aaab|+G|cd|baba|+G|ab|cacd|+G|ab|cddad| −
G|b|a|cd|−G|b|b|cd|

Eb −Ea

)







(64b)

− λ

V 4(Ea + Eb)
G|a|a|ab|cd| .

}

(64c)

33



These are basic functions which are not simplified by reality. As before, (63a)
and (64a) preserve the genus, whereas g 7→ g+1 in (63b)+(64b) and g 7→ g+2 in
(63c)+(64c). The higher (N1+N2)-point functions with one Ni ≥ 3 simplify by
reality to universal recursion formulae. For Ni odd we have

G|b0...b2l|c1...cN−2l−1|

= −λ

N−2l−1∑

k=1

G|c1...ck−1b0b1...b2lckck+1...cN−2l−1|−G|c1...ck−1ckb1...b2lb0ck+1...cN−2l−1|
(Eb1 −Eb2l)(Eb0 − Eck)

− λ

l∑

j=1

G|b0b1...b2j−2|c1...cN−2l−1|G|b2j−1b2j ...b2l|−G|b2j−1b1...b2j−2|c1...cN−2l−1|G|b0b2j ...b2l|
(Eb1 − Eb2l)(Eb0 − Eb2j−1

)

− λ

l∑

j=1

G|b0b1...b2j−1|G|b2jb2j+1...b2l|c1...cN−2l−1|−G|b2jb1...b2j−1|G|b0b2j+1...b2l|c1...cN−2l−1|
(Eb1 − Eb2l)(Eb0 − Eb2j )

− λ

V 2

2l∑

k=1

G|b0b1...bk−1|bkbk+1...b2l|c1...cN−2l−1|−G|bkb1...bk−1|b0bk+1...b2l|c1...cN−2l−1|
(Eb1 − Eb2l)(Eb0 − Ebk)

. (65)

The last line increases the genus and is absent in G
(0)
|b0b1...b2l|c1...cN−2l−1|. For Ni even

one finds

G|ab1...b2l−1|c1...cN−2l|

= −λ

l−1∑

j=1

G|b1...b2j−1a|c1...cN−2l|G|b2jb2j+1...b2l−1|−G|b1...b2j−1b2j |c1...cN−2l|G|ab2j+1...b2l−1|
(Eb1 − Eb2l−1

)(Ea − Eb2j )

− λ

l−1∑

j=1

G|b1...b2j−1a|G|b2jb2j+1...b2l−1|c1...cN−2l|−G|b1...b2j−1b2j |G|ab2j+1...b2l−1|c1...cN−2l|
(Eb1 − Eb2l−1

)(Ea − Eb2j )

− λ

N−2l∑

k=1

G|c1...ck−1ab1...b2l−1ckck+1...cN−2l|−G|c1...ck−1ckb1...b2l−1ack+1...cN−2l|
(Eb1 − Eb2l−1

)(Ea − Eck)

− λ

V 2

2l−1∑

k=1

G|b1...bk−1a|bkbk+1...b2l−1|c1...cN−2l|−G|b1...bk−1bk|abk+1...b2l−1|c1...cN−2l|
(Eb1 −Eb2l−1

)(Ea −Ebk)
. (66)

Again, the last line increases the genus and is absent in G
(0)
|b0b1...b2l−1|c1...CN−2l|.
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