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1 Ising percolation

We consider the percolation problem for Ising model on the two-dimensional

square lattice Z2. For β < βc and h ∈ R, there exists a unique Gibbs measure

µβ,h. The (+)-cluster containing the origin is denoted by C+
0 . For each β > 0, the

critical external field is defined by

hc(β) := inf{h : µβ,h(#C+
0 = ∞) > 0}.

It is known that hc(β) > 0 whenever β < βc, and µβ,hc(β)(#C0 = ∞) = 0. (See

e.g. Higuchi (1997).)

Let S(n) = [−n, n]2 and Sc(n) = Z2 \ S(n). Our main result is the following:

Theorem 1. Let β < βc. For every cylinder event E, the limits

lim
n→∞

µβ,hc(β)

(
E
∣∣O Ã Sc(n)

)
and lim

h↘hc(β)
µβ,h

(
E

∣∣#C+
0 = ∞

)
exist and are equal. If we denote their common value by ν(E), then ν extends

uniquely to a probability measure on Ω, and

ν

(
there exists exactly one infinite (+)-cluster C̃+

0 ,

and C̃+
0 contains the origin O

)
= 1.

The measure ν is called the incipient infinite cluster (IIC) measure in the sense of

Kesten (1986). The expectation with respect to ν is denoted by Eν . The following

theorem is obtained by a similar method as in Higuchi, Takei and Zhang (2012).
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Theorem 2. For any t = 1,

Eν

[
{#(C̃+

0 ∩ S(n))}t
]
³ {n2µβ,hc(β)(O Ã S(n))}t,

where f(n) ³ g(n) means that C1g(n) ≤ f(n) ≤ C2g(n).

Our proof also works for Ising model on the two-dimensional triangular lattice

with β < βc, where h = hc(β) ≡ 0 (see Grimmett and Janson (2009)).

2 Idea of the proof of Theorem 1

We list the basic facts:

• In the high temperature case β < βc, µβ,h has a good mixing property.

• The Markov property: For any A measurable inside S(k),

µβ,h (A | {ω(x) : x ∈ Sc(k)}) = µβ,h (A | {ω(x) : x ∈ ∂S(k)}) ,

where ∂S(k) = S(k + 1) \ S(k).
• The FKG inequality: If both A and B are increasing, then

µβ,h(A ∩B) ≥ µβ,h(A)µβ,h(B).

• For any k ≥ 1 and any ε > 0, there exists m > k such that

µβ,h

(
∃ (+)-circuit

around S(k) in S(m)

)
> 1− ε for all h ≥ hc(β).

Hereafter we adopt an abbreviation µ = µβ,hc(β). We fix a cylinder event E,

which depends only on the spins in S(n0): We look at µ
(
E ∩ {O +↔ Sc(n)}

)
with

n0 < n.
I n0 < ∃ñ1 < ∃n1 < n such that

µ
(
E ∩ {O +↔ Sc(n)}

)
³ µ

(
E ∩

{
∃ innermost (+)-circuit C1

in A(n1) := S(n1) \ S(ñ1)

}
∩ {O +↔ C1} ∩ {C1

+↔ Sc(n)}
)

The Markov property separates inside C1 and outside C1:

=
∑

C1⊂A(n1)

µ
(
E ∩ {C1 = C1} ∩ {O +↔ C1}

)
µ
(
C1

+↔ Sc(n)
∣∣C1 is +

)
.

I Let γ(C1, n) := µ
(
C1

+↔ Sc(n)
∣∣C1 is +

)
. We have

µ
(
E ∩ {O +↔ Sc(n)}

)
µ
(
O

+↔ Sc(n)
) ³

∑
C1⊂A(n1)

µ
(
E ∩ {C1 = C1} ∩ {O +↔ C1}

)
γ(C1, n)∑

C̃1⊂A(n1)
µ
(
{C1 = C̃1} ∩ {O +↔ C̃1}

)
γ(C̃1, n)

.
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So we want to show the existence of lim
n→∞

γ(C ′, n)

γ(C, n)
for C,C ′ ⊂ A(n1).

I In the same way as above, we can show: n1 < ∃ñ2 < ∃n2 < n such that

γ(C1, n) = µ
(
C1

+↔ Sc(n)
∣∣C1 is +

)
³

∑
C2⊂A(n2)

µ
(
{C2 = C2} ∩ {C1

+↔ C2}
)
γ(C2, n).

I Iterating this, we have the following: For n0 < ñ1 < n1 < ñ2 < n2 < · · · < ñk < nk <
n, we put

γ(Ci, n) := µ
(
Ci

+↔ Sc(n)
∣∣Ci is +

)
,

Mi(Ci, Ci+1) := µ
(
{Ci = Ci} ∩ {Ci

+↔ Ci+1}
)
,

where Ci is the innermost (+)-circuit in A(ni) := S(ni) \ S(ñi). For a suitable choice of
the sequence n0 < ñ1 < n1 < ñ2 < n2 < · · · < ñk < nk < n, we have

γ(C1, n) ³
∑

C2,...,Ck+1

M1(C1, C2) · · ·Mk(Ck, Ck+1)γ(Ck+1, n)

=:

(
k∏

i=1

Mi

)
(C1, Ck+1)γ(Ck+1, n).

I A result of Hopf (1963) implies: If there exists λ > 1 such that for any i ≥ 1,
Ci, C

′
i ∈ A(ni), and Di+1, D

′
i+1 ∈ A(ni+1),

Mi(Ci, Di+1)Mi(C
′
i, D

′
i+1)

Mi(Ci, D′
i+1)Mi(C ′

i, Di+1)
≤ λ, (#)

then

lim
k→∞

(
∏k

i=1Mi)(C1, Ck+1)

(
∏k

i=1Mi)(C ′
1, Ck+1)

= α(C1, C
′
1),

uniformly in Ck+1; whence

lim
n→∞

γ(C ′, n)

γ(C, n)
= α(C1, C

′
1).

This shows the convergence of µ
(
E | O +↔ Sc(n)

)
as n → ∞.

I (#) is the key inequality; it is true if for some λ1 > 1,

(λ1)
−1Ni(Ci)Li(Di+1) 5 Mi(Ci, Di+1) 5 λ1Ni(Ci)Li(Di+1).

For Ising percolation, this is the most delicate part. We have to choose further subse-
quence carefully, to use the mixing property. Details are found in Higuchi, Kinoshita,
Takei, and Zhang (2013).
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