A Calculable Model for a Cavity and a Atomic Beam

H. Tamura
Institute of Science and Engineering and
Graduate School of Natural Science and Technology Kanazawa University

Abstract

We consider a simple model for the physical system consists of a cavity and a beam of atoms which pass the cavity successively.

The Hamiltonian contains time-dependent (piecewise constant) term describing interaction between the cavity and the atom in the beam which is passing the cavity at the prescribed moment. We deal with the model in which the radiation field inside the cavity and each atoms of the beam is modeled by simple harmonic oscillators.

We calculate the time evolution of the density matrix of the system and the asymptotic behavior of the cavity, both in the Hamiltonian dynamics and the Markovian dynamics of Kossakowski-Lindblad-Davies type. We also discuss the entropies and evolution of the reduced density matrix for subsystems near the cavity.

This talk is based on the joint work with Prof. V.A. Zagrebnov. The detailed description of the subject will be given in the forth coming paper.[TZ]

1 The Model

Let a, a^{*} be the annihilation and the creation operators living in the one mode Fock space \mathscr{F} :

$$
\begin{gathered}
{\left[a, a^{*}\right]=1, \quad[a, a]=0, \quad\left[a^{*}, a^{*}\right]=0 .} \\
\mathscr{F}=\overline{\mathscr{F}_{\text {fin }}} \\
\mathscr{F}_{\text {fin }}=\text { algebraic span of }\left\{\Omega, a^{*} \Omega, \cdots, a^{* k} \Omega, \cdots\right\} .
\end{gathered}
$$

Let $\mathscr{H}_{n}(n=0,1, \cdots, N)$ be copies of \mathscr{F} for a arbitrary but finite $N \in \mathbb{N}$.
On the Hilbert space tensor product

$$
\mathscr{H}=\bigotimes_{n=0}^{N} \mathscr{H}_{n},
$$

we define the operators

$$
\begin{aligned}
b_{0}=a \otimes 1 \otimes \cdots \otimes 1, & b_{0}^{*}=a^{*} \otimes 1 \otimes \cdots \otimes 1, \\
b_{1}=1 \otimes a \otimes 1 \otimes \cdots \otimes 1, & b_{1}^{*}=1 \otimes a^{*} \otimes 1 \otimes \cdots \otimes 1, \\
b_{2}=1 \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1, & b_{2}^{*}=1 \otimes 1 \otimes a^{*} \otimes 1 \otimes \cdots \otimes 1,
\end{aligned}
$$

and so on. The operators $b_{j}, b_{j}^{*} \quad(j=0,1,2, \cdots, N)$ satisfy CCR

$$
\left[b_{i}, b_{j}^{*}\right]=\delta_{i j}, \quad\left[b_{i}, b_{j}\right]=\left[b_{i}^{*}, b_{j}^{*}\right]=0
$$

Remark: We regard \mathscr{H}_{0} as the state space for the photon inside the cavity and $\mathscr{H}_{n}(n=1,2, \cdots)$ for internal states of atoms. So, b_{0}^{*}, b_{0} are creation and annihilation operators of photon and b_{j}^{*}, b_{j} are raising and lowering operator of the level of the j-th atom.
Remark: We consider the case $N<\infty$, for simplicity.
Let H_{n} be the self-adjoint Hamiltonian in \mathscr{H} defined by

$$
H_{n}=E b_{0}^{*} b_{0}+\epsilon \sum_{k=1}^{N} b_{k}^{*} b_{k}+\eta b_{0}^{*} b_{n}+\eta b_{n}^{*} b_{0}, \quad(n=1,2, \cdots, N)
$$

where $E>0$ is the photon energy, $\epsilon>0$ the energy level spacing of the atoms and $\eta>0$ the interaction between the photon and atoms. We assume that η is small enough so that H_{n} is bounded below. (We understand that all operators like H_{n} are taken to be closed.) We regard that H_{n} is the Hamiltonian during the time interval $[(n-1) \tau, n \tau)$ when the n-th atom is passing inside the cavity.

2 Hamiltonian Dynamics

In this section, we consider the time evolution of the system governed by the time dependent (piecewise constant) Hamiltonian:

$$
H(t)=\sum_{n=1}^{N} \chi_{[(n-1) \tau, n \tau)}(t) H_{n} .
$$

The commutation relations

$$
\begin{gathered}
{\left[H_{n}, b_{0}\right]=-E b_{0}-\eta b_{n}, \quad\left[H_{n}, b_{j}\right]=-\epsilon b_{j}-\delta_{j n} \eta b_{0},} \\
{\left[H_{n}, b_{0}^{*}\right]=E b_{0}^{*}+\eta b_{n}^{*}, \quad\left[H_{n}, b_{j}^{*}\right]=\epsilon b_{j}^{*}+\delta_{j n} \eta b_{0}^{*}}
\end{gathered}
$$

hold for $j=1, \cdots, N$ and yield the following lemma.
Lemma 2.0.1 For $j=0,1,2, \cdots, N$ and $n=1,2, \cdots, N$,

$$
\begin{array}{ll}
e^{-i \tau H_{n}} b_{j} e^{i \tau H_{n}}=\sum_{k=0}^{N}\left(U_{n}\right)_{j k} b_{k}, & e^{-i \tau H_{n}} b_{j}^{*} e^{i \tau H_{n}}=\sum_{k=0}^{N} \overline{\left(U_{n}\right)_{j k}} b_{k}^{*}, \\
e^{i \tau H_{n}} b_{j} e^{-i \tau H_{n}}=\sum_{k=0}^{N}\left(U_{n}^{*}\right)_{j k} b_{k}, & e^{i \tau H_{n}} b_{j}^{*} e^{-i \tau H_{n}}=\sum_{k=0}^{N} \overline{\left(U_{n}^{*}\right)_{j k}} b_{k}^{*}
\end{array}
$$

hold. Here U_{n} and V_{n} are $(N+1) \times(N+1)$ matrices given by $U_{n}=e^{i \tau \epsilon} V_{n}$ and

$$
\left(V_{n}\right)_{j k}=\left\{\begin{array}{cl}
g z \delta_{k 0}+g w \delta_{k n} & (j=0) \\
-g \bar{w} \delta_{k 0}+g \bar{z} \delta_{k n} & (j=n) \\
\delta_{j k} & (\text { otherwise })
\end{array}\right.
$$

with

$$
\begin{gathered}
g=e^{i \tau(E-\epsilon) / 2}, \quad w=\frac{2 i \eta}{\sqrt{(E-\epsilon)^{2}+4 \eta^{2}}} \sin \tau \sqrt{\frac{(E-\epsilon)^{2}}{4}+\eta^{2}} \\
z=\cos \tau \sqrt{\frac{(E-\epsilon)^{2}}{4}+\eta^{2}}+\frac{i(E-\epsilon)}{\sqrt{(E-\epsilon)^{2}+4 \eta^{2}}} \sin \tau \sqrt{\frac{(E-\epsilon)^{2}}{4}+\eta^{2}} .
\end{gathered}
$$

Note that $|z|^{2}+|w|^{2}=1$ and that

$$
\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right)
$$

is a unitary matrix. And so are V_{n} 's and U_{n} 's.
e.g.

$$
\begin{aligned}
& U_{1}=e^{i \tau \epsilon} V_{1}=e^{i \tau \epsilon}\left(\begin{array}{cccccc}
g z & g w & 0 & 0 & 0 & \cdots \\
-g \bar{w} & g \bar{z} & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdots
\end{array}\right) \\
& U_{2}=e^{i \tau \epsilon} V_{2}=e^{i \tau \epsilon}\left(\begin{array}{cccccc}
g z & 0 & g w & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 0 & \cdots \\
-g \bar{w} & 0 & g \bar{z} & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & \cdots \\
\cdot & \cdot & \cdot & . & . & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdots
\end{array}\right) .
\end{aligned}
$$

2.1 Time evolution of Product states

For $y \in \mathbb{C}$,

$$
w(y)=e^{i\left(\bar{y} a+y a^{*}\right)}
$$

denotes the Weyl operator over \mathscr{F}. We consider the Weyl algebra $\mathscr{A}(\mathscr{F})$ over \mathscr{F} generated by $\{w(y)\}_{y \in \mathbb{C}}$ and the algebra $\mathscr{A}(\mathscr{H})$ over \mathscr{H} which is generated by

$$
\begin{equation*}
W(\zeta)=\bigotimes_{k=0}^{N} w\left(\zeta_{k}\right), \quad\left(\zeta=\left\{\zeta_{k}\right\}_{k=0}^{N}\right) \tag{2.1}
\end{equation*}
$$

Using sesquilinear form notation

$$
\langle\zeta, b\rangle=\sum_{j=0}^{N} \bar{\zeta}_{j} b_{j}, \quad\langle b, \zeta\rangle=\sum_{j=0}^{N} \zeta_{j} b_{j}^{*}
$$

$W(\zeta)$ can be written as

$$
W(\zeta)=\exp [i(\langle\zeta, b\rangle+\langle b, \zeta\rangle)]
$$

Let ρ_{k} be a normalized self-adjoint non-negative trace class operator on \mathscr{F} for $k=0,1,2, \cdots, N$. It can be regarded as a state on $\mathscr{A}(\mathscr{F})$. We use the notation

$$
C_{k}(y)=\operatorname{Tr}_{\mathscr{F}}\left[w(y) \rho_{k}\right] .
$$

Similarly, we consider the operator

$$
\rho=\bigotimes_{k=0}^{N} \rho_{k}
$$

as a state on $\mathscr{A}(\mathscr{H})$:

$$
\omega_{\rho}(W(\zeta))=\operatorname{Tr}_{\mathscr{H}}[W(\zeta) \rho]=\prod_{k=0}^{N} C_{k}\left(\zeta_{k}\right)
$$

Let us consider the time evolution of ρ by $H(t) \quad(0 \leqslant t \leqslant N \tau)$:

$$
\rho(N \tau):=e^{-i \tau H_{N}} \cdots e^{-i \tau H_{1}} \rho e^{i \tau H_{1}} \cdots e^{i \tau H_{N}} .
$$

Lemma 2.1.1

$$
\omega_{\rho(N \tau)}(W(\zeta))=\omega_{\rho}\left(W\left(U_{1} \cdots U_{N} \zeta\right)\right)=\prod_{k=0}^{N} C_{k}\left(\left(U_{1} \cdots U_{N} \zeta\right)_{k}\right)
$$

holds, where

$$
\left(U_{1} \cdots U_{N} \zeta\right)_{0}=e^{i N \tau \epsilon}\left((g z)^{N} \zeta_{0}+\sum_{j=1}^{N} g w(g z)^{j-1} \zeta_{j}\right)
$$

and

$$
\left(U_{1} \cdots U_{N} \zeta\right)_{k}=e^{i N \tau \epsilon}\left(-g \bar{w}(g z)^{N-k} \zeta_{0}+g \bar{z} \zeta_{k}-\sum_{j=k+1}^{N} g^{2}|w|^{2}(g z)^{j-k-1} \zeta_{j}\right)
$$

for $k>0$.

2.2 The product Gibbs state

For the product Gibbs state
$\rho=\bigotimes_{k=0}^{N} \rho_{k} \quad$ with $\quad \rho_{0}=e^{-\beta_{0} a^{*} a} / Z\left(\beta_{0}\right), \quad \rho_{j}=e^{-\beta a^{*} a} / Z(\beta) \quad(j=1, \cdots, N)$,
where $\beta, \beta_{0}>0$ and $Z(\beta)=\left(1-e^{-\beta}\right)^{-1}$, we have
Lemma 2.2.1 The state corresponding to the density matrix (2.3) satisfies
$\omega_{\rho}(W(\zeta))=\operatorname{Tr}_{\mathscr{H}}[W(\zeta) \rho]=\exp \left[-\frac{\left|\zeta_{0}\right|^{2}}{2}\left(\frac{1+e^{-\beta_{0}}}{1-e^{-\beta_{0}}}-\frac{1+e^{-\beta}}{1-e^{-\beta}}\right)-\frac{\langle\zeta, \zeta\rangle}{2} \frac{1+e^{-\beta}}{1-e^{-\beta}}\right]$
and

$$
S(\rho)=-\operatorname{Tr}_{\mathscr{H}}[\rho \log \rho]=N s(\beta)+s\left(\beta_{0}\right)
$$

where $s(\beta):=\beta\left(e^{\beta}-1\right)^{-1}-\log \left(1-e^{-\beta}\right)$.
The time evolution of the density matrix

$$
\rho(N \tau)=e^{-i \tau H_{N}} e^{-i \tau H_{N-1}} \cdots e^{-i \tau H_{1}} \rho e^{i \tau H_{1}} \cdots e^{i \tau H_{N}} .
$$

satisfies the following properties:
Lemma 2.2.2

$$
\begin{gathered}
\omega_{\rho(N \tau)}(W(\zeta))=\omega_{\rho}\left(W\left(U_{1} \cdots U_{N} \zeta\right)\right)= \\
\exp \left[-\frac{\left|\left(U_{1} \cdots U_{N} \zeta\right)_{0}\right|^{2}}{2}\left(\frac{1+e^{-\beta_{0}}}{1-e^{-\beta_{0}}}-\frac{1+e^{-\beta}}{1-e^{-\beta}}\right)-\frac{\langle\zeta, \zeta\rangle}{2} \frac{1+e^{-\beta}}{1-e^{-\beta}}\right]
\end{gathered}
$$

and

$$
S(\rho(N \tau))=N s(\beta)+s\left(\beta_{0}\right)=S(\rho) .
$$

The relative entropy of $\rho(N \tau)$ w.r.t. ρ is:
Lemma 2.2.3

$$
\begin{gathered}
S(\rho(N \tau) \mid \rho)=-\operatorname{Tr}[\rho(N \tau)(\log \rho(N \tau)-\log \rho)]=-\operatorname{Tr}[\rho(\log \rho-\log \rho(-N \tau))] \\
=-\frac{\left(\beta_{0}-\beta\right)\left(e^{\beta_{0}}-e^{\beta}\right)}{\left(e^{\beta_{0}}-1\right)\left(e^{\beta}-1\right)}\left(1-|z|^{2 N}\right) .
\end{gathered}
$$

Remark The relative entropy is non-positive generally. In this case, it decreases monotonically as $N \rightarrow \infty$ and converges to the limit:

$$
\lim _{N \rightarrow \infty} S(\rho(N \tau) \mid \rho)=-\frac{\left(\beta_{0}-\beta\right)\left(e^{\beta_{0}}-e^{\beta}\right)}{\left(e^{\beta_{0}}-1\right)\left(e^{\beta}-1\right)}
$$

2.3 Subsystems

In this section, we devide the system into 2 subsystems. At time $t=k \tau$, the objects are ordered as follows:
the first atom, \cdots, the k-th atom, the cavity, the $k+1$-th atom, \cdots, the N-th atom.
We regard the cavity and the n atoms ahead the cavity as the subsystem:

$$
\mathscr{H}=\mathscr{H}_{s} \bigotimes \mathscr{H}_{r},
$$

where

$$
\mathscr{H}_{s}=\mathscr{H}_{0} \bigotimes \bigotimes_{j=1}^{n} \mathscr{H}_{k-j+1}, \quad \mathscr{H}_{r}=\bigotimes_{j=1}^{k-n} \mathscr{H}_{j} \bigotimes \bigotimes_{j=n+1}^{N} \mathscr{H}_{j}
$$

We want to re-number the atoms in the subsystem:
For
take
to get

$$
\theta_{0} b_{0}^{*}+\bar{\theta}_{0} b_{0}+\sum_{j=1}^{n}\left(\theta_{j} b_{k-j+1}^{*}+\bar{\theta}_{j} b_{k-j+1}\right)=\sum_{j=0}^{N}\left(\zeta_{\theta, j}^{(k)} b_{j}^{*}+\bar{\zeta}_{\theta, j}^{(k)} b_{j}\right)
$$

And consider the Weil operator on \mathscr{H}_{s}

$$
\begin{aligned}
W_{s}(\theta) & =\exp \left[i\left(\theta_{0} b_{0}^{*}+\bar{\theta}_{0} b_{0}+\sum_{j=1}^{n}\left(\theta_{j} b_{k-j+1}^{*}+\bar{\theta}_{j} b_{k-j+1}\right)\right)\right] \\
& =\exp \left[i\left(\theta_{0} \tilde{b}_{0}^{*}+\bar{\theta}_{0} \tilde{b}_{0}+\sum_{j=1}^{n}\left(\theta_{j} \tilde{b}_{j}^{*}+\bar{\theta}_{j} \tilde{b}_{j}\right)\right)\right]
\end{aligned}
$$

where, $\tilde{b}_{0}=b_{0}, \tilde{b}_{j}=b_{k-j+1}$. (We used abused notations: e.g., b_{0} is not an operator in \mathscr{H}_{s} but in \mathscr{H}, while \tilde{b}_{0} in \mathscr{H}_{s}, etc.)

For the density matrix ρ, let ρ_{s} be the reduced density matrix of the sub-system i.e.,

$$
\begin{equation*}
\rho_{s}=\operatorname{Tr}_{\mathscr{H}_{r}} \rho . \tag{2.2}
\end{equation*}
$$

Then, we get

$$
\omega_{\rho_{s}}\left(W_{s}(\theta)\right)=\omega_{\rho}\left(W\left(\zeta_{\theta}\right)\right) .
$$

Now let us consider time evolution. The time evoluted density $\rho(k \tau)$ of the initial Gibbs state

$$
\begin{equation*}
\rho=\exp \left[-\beta_{0} b_{0}^{*} b_{0}-\beta \sum_{j=1}^{N} b_{j}^{*} b_{j}\right] /\left(Z\left(\beta_{0}\right) Z(\beta)^{N}\right) \tag{2.3}
\end{equation*}
$$

has the reduced density matrix given by

Lemma 2.3.1

$$
\begin{gathered}
\omega_{\rho(k \tau)_{s}}\left(W_{s}(\theta)\right)=\omega_{\rho(k \tau)}\left(W\left(\zeta_{\theta}\right)\right) \\
=\exp \left[-\frac{\left|\left(U_{1} \cdots U_{k} \zeta_{\theta}\right)_{0}\right|^{2}}{2}\left(\frac{1+e^{-\beta_{0}}}{1-e^{-\beta_{0}}}-\frac{1+e^{-\beta}}{1-e^{-\beta}}\right)-\frac{\langle\theta, \theta\rangle}{2} \frac{1+e^{-\beta}}{1-e^{-\beta}}\right],
\end{gathered}
$$

Now consider the limit $k \rightarrow \infty(N \rightarrow \infty)$ with n fixed. We get

Proposition 2.3.2 $\rho(k \tau)_{s}$ converge to $\rho^{(\beta)}$ and

$$
\lim _{k \rightarrow \infty} S\left(\rho(k \tau)_{s}\right)=S\left(\rho^{(\beta)}\right)
$$

where

$$
\rho^{(\beta)}=\exp \left[-\beta b_{0}^{*} b_{0}-\beta \sum_{j=1}^{n} b_{N-j+1}^{*} b_{N-j+1}\right] / Z(\beta)^{n+1}
$$

Remark The local entropy decreases or increases accordong to $\beta>\beta_{0}$ or $\beta<\beta_{0}$, respectively.

2.4 A scaling limit for product states

Here, we mention an asymptotic behavior of the state of the cavity under the influence of the beam where the state for the atoms is product of general type.

We assume that
(1) $\rho_{1}=\rho_{2}=\cdots=\rho_{N}$;
(2) $\operatorname{Tr}\left[a \rho_{1}\right]=\operatorname{Tr}\left[a^{2} \rho_{1}\right]=\operatorname{Tr}\left[a^{*} \rho_{1}\right]=\operatorname{Tr}\left[a^{* 2} \rho_{1}\right]=0$;
(3) $\operatorname{Tr}\left[\left(a^{*} a\right)^{2} \rho_{1}\right]<\infty$.

Proposition 2.4.1 Under the limit $\tau \rightarrow 0$ and $N \rightarrow \infty$ subject to $\tau^{2} N \rightarrow \infty$ and $\tau^{3} N \rightarrow 0\left(e . g\right.$., $\tau=O\left(N^{-0.4}\right)$),

$$
\lim \omega_{\rho(N \tau)_{s}}(w(\theta))=\lim \omega_{\rho(N \tau)}\left(W\left(\zeta_{\theta}\right)\right)=e^{-\operatorname{Tr}\left[\left(a^{*} a+a a^{*}\right) \rho_{1}\right]|\theta|^{2} / 2}
$$

holds for $\theta \in \mathbb{C}^{0+1}$.

3 Markovian Evolution

We consider here the evolution of the system under the Kossakowski-LindbladDavies equation, which yields a behavior the system in a large reservoir:

$$
\partial_{t} \rho(t)=L_{\sigma}(t)(\rho(t)), \rho=\left.\rho(t)\right|_{t=0} \in \mathfrak{C}_{1}(\mathscr{H}),
$$

where

$$
\begin{align*}
& L_{\sigma}(t)(\rho(t)):=-i[H(t), \rho(t)]+\sigma_{-} b_{0} \rho(t) b_{0}^{*}-\frac{\sigma_{-}}{2}\left\{b_{0}^{*} b_{0}, \rho(t)\right\} \\
& +\sigma_{+} b_{0}^{*} \rho(t) b_{0}-\frac{\sigma_{+}}{2}\left\{b_{0} b_{0}^{*}, \rho(t)\right\} . \tag{3.1}
\end{align*}
$$

To satisfy the complete positivity-preserving the parameters of non-Hamiltonian part of dynamics must satisfy inequality $\sigma_{\mp} \geqslant 0$. We also impose condition $\sigma_{+} \leqslant \sigma_{-}$for the boundedness of expectations in the state, see [NVZ].

We introduce the family $\left\{T_{t, t^{\prime}}\right\}_{0 \leq t^{\prime} \leq t}$ of trace-preserving and completepositive evolution mappings:

$$
\begin{equation*}
T_{t, 0}^{\sigma}: \rho \mapsto \rho_{\sigma}(t)=T_{t, 0}^{\sigma}(\rho(0)) \quad \text { with } T_{t, 0}^{\sigma}=T_{t, t^{\prime}}^{\sigma} T_{t^{\prime}, 0}^{\sigma}, \quad\left(0 \leqslant t^{\prime} \leqslant t\right) \tag{3.2}
\end{equation*}
$$

As in the Hamiltonian evolution, we consider tuned repeated interactions, when the Hamiltonian part of dynamics is piecewise constant. Then for $t \in[(k-1) \tau, k \tau)$, the generator has the form:

$$
\begin{align*}
& L_{\sigma, k}(\rho(t)):=-i\left[H_{k}, \rho(t)\right]+\sigma_{-} b_{0} \rho(t) b_{0}^{*}-\frac{\sigma_{-}}{2}\left\{b_{0}^{*} b_{0}, \rho(t)\right\} \\
& +\sigma_{+} b_{0}^{*} \rho(t) b_{0}-\frac{\sigma_{+}}{2}\left\{b_{0} b_{0}^{*}, \rho(t)\right\} \quad(k \geqslant 1) \tag{3.3}
\end{align*}
$$

The solution of the corresponding Cauchy problem

$$
\begin{equation*}
\partial_{t} \rho(t)=L_{\sigma}(t)(\rho(t)),\left.\rho(t)\right|_{t=0}=\rho_{0} \otimes \bigotimes_{k=1}^{N} \rho_{k}, \tag{3.4}
\end{equation*}
$$

has a form:

$$
\rho(N \tau)=T_{N \tau, 0}^{\sigma}(\rho(0))=e^{\tau L_{\sigma, N}} \ldots e^{\tau L_{\sigma, 2}} e^{\tau L_{\sigma, 1}}(\rho(0))
$$

Let us use the notation:

$$
\begin{equation*}
T_{k}^{\sigma}:=T_{k \tau,(k-1) \tau}^{\sigma}=e^{\tau L_{\sigma, k}} \tag{3.5}
\end{equation*}
$$

And we consider evolution of the Weyl operators, which is dual to the evolution of states

$$
\begin{equation*}
\operatorname{Tr}_{\mathscr{H}}\left[T_{N \tau, 0}^{\sigma}(\rho) W(\zeta)\right]=\operatorname{Tr}_{\mathscr{H}}\left[\rho T_{N \tau, 0}^{\sigma *}(W(\zeta))\right] \tag{3.6}
\end{equation*}
$$

Note that

$$
T_{N \tau, 0}^{\sigma}=e^{\tau L_{\sigma, N}} \ldots e^{\tau L_{\sigma, 2}} e^{\tau L_{\sigma, 1}}
$$

and its dual evolution

$$
\begin{equation*}
T_{N \tau, 0}^{\sigma *}=e^{\tau L_{\sigma, 1}^{*}} e^{\tau L_{\sigma, 2}^{*}} \ldots e^{\tau L_{\sigma, N}^{*}} \tag{3.7}
\end{equation*}
$$

3.1 Evolution of Open System

First we establish a formula for the one-step mappings in (3.7) of the Weyl operators.

Lemma 3.1.1 Let $k, l=0,1,2, \ldots, N$ and $n=1,2, \ldots, N$. Let vector $\zeta=$ $\left\{\zeta_{k}\right\}_{k=0}^{N} \in \mathbb{C}^{N+1}$ be as in (2.1). Then we obtain

$$
\begin{equation*}
T_{n}^{\sigma *}(W(\zeta)):=e^{t L_{\sigma, n}^{*}}(W(\zeta))=\Omega_{t}^{\sigma, n}(\zeta) W\left(U_{n}^{\sigma}(t) \zeta\right) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega_{t}^{\sigma, n}(\zeta)=\exp \left[-\frac{1}{4} \frac{\sigma_{+}+\sigma_{-}}{\sigma_{+}-\sigma_{-}}\left(\left\langle U_{n}^{\sigma}(t) \zeta, U_{n}^{\sigma}(t) \zeta\right\rangle-\langle\zeta, \zeta\rangle\right)\right], \tag{3.9}\\
& U_{n}^{\sigma}(t)=\exp \left[i t\left(Y_{n}-i \frac{\sigma_{+}-\sigma_{-}}{2} P_{0}\right)\right], \quad\left(P_{0}\right)_{k l}=\delta_{k 0} \delta_{l 0} . \tag{3.10}
\end{align*}
$$

Remark The main difference between the mapping for $\sigma_{\mp}=0$ and (3.8), (3.10) is that the energy parameter (Lemma 2.0.1) has the shift:

$$
E \rightarrow E_{\sigma}:=E-i \frac{\sigma_{+}-\sigma_{-}}{2}
$$

Note that $\operatorname{Im}\left(E_{\sigma}\right)>0$, if $\sigma_{+}<\sigma_{-}$.
Corollary 3.1.2

$$
\begin{gathered}
T_{N \tau, 0}^{\sigma}(W(\zeta))=\exp \left[-\frac{\sigma_{+}+\sigma_{-}}{4\left(\sigma_{+}-\sigma_{-}\right)}\left(\left\langle U_{1}^{\sigma}(\tau) \ldots U_{N}^{\sigma}(\tau) \zeta, U_{1}^{\sigma}(\tau) \ldots U_{N}^{\sigma}(\tau) \zeta\right\rangle-\langle\zeta, \zeta\rangle\right)\right] \\
\times W\left(U_{1}^{\sigma}(\tau) \ldots U_{N}^{\sigma}(\tau) \zeta\right)
\end{gathered}
$$

Combining the above Corollary and Lemma, we get the following theorem.
Theorem 3.1.3 Let $\rho=\rho(t=0)$ be initial condition which coincides with the Gibbs density matrix (??). Then we get

$$
\omega_{T_{N, 0}^{\sigma} \rho}(W(\zeta))=\exp \left[-\frac{1}{4}\left\langle\zeta, X^{\sigma}(N \tau) \zeta\right\rangle\right],
$$

where $X^{\sigma}(N \tau)$ is the $(N+1) \times(N+1)$ matrix given by

$$
\begin{aligned}
& X^{\sigma}(N \tau)=U_{N}^{\sigma}(\tau)^{*} \ldots U_{1}^{\sigma}(\tau)^{*}\left[\left(\frac{\sigma_{+}+\sigma_{-}}{\sigma_{+}-\sigma_{-}}+\frac{1+e^{-\beta}}{1-e^{-\beta}}\right) I+\left(\frac{1+e^{-\beta_{0}}}{1-e^{-\beta_{0}}}-\frac{1+e^{-\beta}}{1-e^{-\beta}}\right) P_{0}\right] \\
& \times U_{1}^{\sigma}(\tau) \ldots U_{N}^{\sigma}(\tau)-\frac{\sigma_{+}+\sigma_{-}}{\sigma_{+}-\sigma_{-}} I
\end{aligned}
$$

3.2 Limit of reduced density for the cavity

Hereafter, we use the notations:
$U_{n}^{\sigma}(t)=e^{i t \epsilon} V_{n}^{\sigma}(t)$ and

$$
\left(V_{n}^{\sigma}(t)\right)_{j k}= \begin{cases}g^{\sigma}(t) z^{\sigma}(t) \delta_{k 0}+g^{\sigma}(t) w^{\sigma}(t) \delta_{k n} & (j=0) \\ g^{\sigma}(t) w^{\sigma}(t) \delta_{k 0}+g^{\sigma}(t) z^{\sigma}(-t) \delta_{k n} & (j=n) \\ \delta_{j k} & (\text { otherwise })\end{cases}
$$

with

$$
\begin{align*}
& g^{\sigma}(t)=e^{i t\left(E_{\sigma}-\epsilon\right) / 2}, \quad w^{\sigma}(t)=\frac{2 i \eta}{\sqrt{\left(E_{\sigma}-\epsilon\right)^{2}+4 \eta^{2}}} \sin t \sqrt{\frac{\left(E_{\sigma}-\epsilon\right)^{2}}{4}+\eta^{2}}, \\
& z^{\sigma}(t)=\cos t \sqrt{\frac{\left(E_{\sigma}-\epsilon\right)^{2}}{4}+\eta^{2}}+\frac{i\left(E_{\sigma}-\epsilon\right)}{\sqrt{\left(E_{\sigma}-\epsilon\right)^{2}+4 \eta^{2}}} \sin t \sqrt{\frac{\left(E_{\sigma}-\epsilon\right)^{2}}{4}+\eta^{2}} . \tag{3.11}
\end{align*}
$$

Note the relation $z^{\sigma}(t) z^{\sigma}(-t)-w^{\sigma}(t)^{2}=1$ holds, but $z^{\sigma}(-t) \neq \frac{(3.12)}{z^{\sigma}(t)}$ for $\sigma+\neq \sigma$ -

We consider the system with initial product state (??)

$$
\begin{equation*}
\rho:=\bigotimes_{k=0}^{N} \rho_{k} \quad \text { with } \quad \rho_{1}=\rho_{2}=\cdots=\rho_{N} \tag{3.13}
\end{equation*}
$$

where ρ_{0}, ρ_{1} are density matrices on \mathscr{F}. We assume that ρ_{1} is gaude invariant. For fixed ρ_{1}, we define one step evolution of the cavity state ρ_{0} by

$$
\begin{equation*}
\mathcal{T}\left(\rho_{0}\right)=\left(T_{\tau, 0}^{\sigma} \rho\right)_{0}, \tag{3.14}
\end{equation*}
$$

where ρ is (3.13) and the subscript ($)_{0}$ in the righthand side represents the reduced density corresponding to the subsystem consists of the cavity only. The application of \mathcal{T} can be expressed explicitly by the use of the expectation of the Weyl operator:

$$
\begin{align*}
\omega_{\mathcal{T}\left(\rho_{0}\right)}(\hat{w}(\theta)) & =\exp \left[-\frac{|\theta|^{2}}{4} \frac{\sigma_{-}+\sigma_{;}}{\sigma_{-}-\sigma+}\left(1-\left|g^{\sigma}(\tau) z^{\sigma}(\tau)\right|^{2}-\left|g^{\sigma}(\tau) w^{\sigma}(\tau)\right|^{2}\right)\right] \\
& \times \omega_{\rho_{0}}\left(\hat{w}\left(e^{i \tau \epsilon} g^{\sigma}(\tau) z^{\sigma}(\tau) \theta\right) \omega_{\rho_{1}}\left(\hat{w}\left(e^{i \tau \epsilon} g^{\sigma}(\tau) w^{\sigma}(\tau) \theta\right)\right) .\right. \tag{3.15}
\end{align*}
$$

Then we get:

Proposition 3.2.1 Suppose that

$$
\begin{aligned}
E(\theta) & :=\prod_{k=0}^{\infty} \omega_{\rho_{1}}\left(\hat{w}\left(e^{i(k+1) \tau \epsilon} g^{\sigma}(\tau)^{(k+1)} z^{\sigma}(\tau)^{k} w^{\sigma}(\tau) \theta\right)\right) \\
& =\prod_{k=0}^{\infty} C_{1}\left(e^{i(k+1) \tau \epsilon} g^{\sigma}(\tau)^{(k+1)} z^{\sigma}(\tau)^{k} w^{\sigma}(\tau) \theta\right)
\end{aligned}
$$

is convergent and continuous for all $\theta \in \mathbb{C}$. Then there is a unique state ρ_{*} on $\mathscr{A}(\mathscr{F})$ which satisfies
(i) $\quad \mathcal{T}\left(\rho_{*}\right)=\rho_{*}$,
(ii) $\quad \forall \rho_{0} \in \mathfrak{C}_{1}(\mathscr{F}): \lim _{k \rightarrow \infty} \mathcal{T}^{k}\left(\rho_{0}\right)=\rho_{*}$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(T_{N \tau, 0}^{\sigma} \rho\right)_{s}=\left(T_{n \tau, 0}^{\sigma} \rho_{(*)}\right)_{s} \tag{iii}
\end{equation*}
$$

where in the third item, $\rho_{(*)}$ is (3.13) with $\rho_{0}=\rho_{*}$ and the subscript s stands for the reduced density to the subsystem consists of the cavity and the n atoms near the cavity, see (2.2).

Moreover ρ_{*} have the expectation

$$
\begin{equation*}
\omega_{\rho_{*}}(\hat{w}(\theta))=\exp \left[-\frac{|\theta|^{2}}{4} \frac{\sigma_{-}+\sigma_{;}}{\sigma_{-}-\sigma+}\left(1-\frac{\left|g^{\sigma}(\tau) w^{\sigma}(\tau)\right|^{2}}{1-\left|g^{\sigma}(\tau) z^{\sigma}(\tau)\right|^{2}}\right)\right] E(\theta) \tag{3.19}
\end{equation*}
$$

4 Summary

As a simple mathematical model for atomic beam passing through a cavity, we considered a system consists of harmonic oscillators.

We have studied the Hamiltonian evolution of the system by calculating the expectation values of Weyl operators, explicitly. For Gibbs initial states, we consider a relaxation phenomena of the sub-system arround the cavity. For initial product states, we saw the convergence to the Gibbsian density matrix in a certain scaling limit.

We also studied the Markovian evolution of the model. We gave a formula for the dual evolution of the Weyl operators, explicitly. For a certain initial product states, we gave the asysmptotic behavior of the states for subsystems around the cavity.

The detailed presentation of the subject and their proofs will be given in [TZ].

References

[AJP1] Open Quantum Systems I, The Hamiltonian Approach, S. Attal, A. Joye, C.-A. Pillet (Eds.), Lecture Notes in Mathematics 1880, Springer-Verlag, Berlin-Heidelberg 2006.
[AJPII] Open Quantum Systems II, The Markovian Approach, S. Attal, A. Joye, C.-A. Pillet (Eds.), Lecture Notes in Mathematics 1881, Springer-Verlag, Berlin-Heidelberg 2006.
[AJP3] Open Quantum Systems III, Recent Developements, S. Attal, A. Joye, C.-A. Pillet (Eds.), Lecture Notes in Mathematics 1882, Springer-Verlag, Berlin-Heidelberg 2006.
[BJM] L.Bruneau, A.Joye, and M.Merkli, Repeated interactions in open quantum systems, (May 14, 2013). Submitted to J.Math.Phys.
[NVZ] B. Nachtergaele, A. Vershynina, and V. A. Zagrebnov, Non-Equilibrium States of a Photon Cavity Pumped by an Atomic Beam, Annales Henri Poincaré (2013)
[TZ] H. Tamura and V.A.Zagrebnov, in preparation.

