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ABSTRACT

We consider a simple model for the physical system consists of a cavity
and a beam of atoms which pass the cavity successively.

The Hamiltonian contains time-dependent (piecewise constant) term de-
scribing interaction between the cavity and the atom in the beam which is
passing the cavity at the prescribed moment. We deal with the model in
which the radiation field inside the cavity and each atoms of the beam is
modeled by simple harmonic oscillators.

We calculate the time evolution of the density matrix of the system and
the asymptotic behavior of the cavity, both in the Hamiltonian dynamics and
the Markovian dynamics of Kossakowski-Lindblad-Davies type. We also dis-
cuss the entropies and evolution of the reduced density matrix for subsystems
near the cavity.

This talk is based on the joint work with Prof. V.A. Zagrebnov. The de-
tailed description of the subject will be given in the forth coming paper.[TZ]



1 The Model

Let a,a* be the annihilation and the creation operators living in the one
mode Fock space .Z#:

la,a*] =1, [a,a] =0, [a*,a"]=0.
F = F
Fan = algebraic span of {Q,a*Q, -+ ,a™Q,--- ).

Let %, (n =0,1,--- ,N) be copies of .# for a arbitrary but finite N € N.
On the Hilbert space tensor product

N
A = Q) Ao
n=0

we define the operators
bh=a®1®---®1, bh=ad01l0 -1,
h=1a®1®R---®1, V=10a"®1®- -1,
bh=101Ra®1®---®1, b, =1®10d®1®---®1,
and so on. The operators b;, b5 (j =0,1,2,---, N) satisfy CCR

R

(03, 05] = 045,  [bs,bj] = [b],b5] = 0.

j i 7]
Remark : We regard .74 as the state space for the photon inside the cavity
and J%, (n = 1,2, ---) for internal states of atoms. So, b, by are creation and
annihilation operators of photon and b}, b; are raising and lowering operator
of the level of the j-th atom.

Remark : We consider the case N < oo , for simplicity.

Let H, be the self-adjoint Hamiltonian in 5 defined by

N
H, = Ebjbo + € > bibg + nbyby + nbjbo,  (n=1,2,---,N)
k=1

where £ > 0 is the photon energy, ¢ > 0 the energy level spacing of the
atoms and 7 > 0 the interaction between the photon and atoms. We assume
that 7 is small enough so that H, is bounded below. (We understand that
all operators like H, are taken to be closed.) We regard that H, is the
Hamiltonian during the time interval [(n — 1)7,n7) when the n-th atom is
passing inside the cavity.



2 Hamiltonian Dynamics

In this section, we consider the time evolution of the system governed by the
time dependent (piecewise constant) Hamiltonian:

N
H(t) - Z X[(nfl)‘r,nT) (t)Hn
n=1

The commutation relations
[Hy,bo) = —Eby — nby,, [Hy,bj] = —€bj — d;,,mbo,
[H,,by] = Eb; +nb;,, [Hp, b;‘] = b} + djunby
hold for j = 1,--- , N and yield the following lemma.

Lemma 2.0.1 For j=0,1,2,--- ,N andn=1,2,--- | N,

N N
—iTH, iTH, —iTHp % iTH, *
e bje = E (Un)jcbr, e bie = E (Un) jiby,
k=0 k=0
N N
iTHy,, —iTH, __ *\ iTHy 1% —iTH, ok
e™rbe = g (U)jkbe, €7 mbie = E (U3 kby
k=0 k=0

hold. Here U, and V, are (N + 1) x (N + 1) matrices given by U, = ¢V,
and

9z 0o + gw g (J=0)
(Va)jk = § —gW 0ro + GZ Ok (j =n)

J; (otherwise)

with
2 E —¢)?
g= em—(Efe)/27 W — & sin T ( €) .
V(E = )2 +dip? 4
E—ep (B — E— e
Z =COST ( 2 +n?+ i 2 sin T ( 2 + n?
4 V(E —€)? + 4n? 4



Note that |z|* + |w|? = 1 and that

(5o ®)

is a unitary matrix. And so are V,,’s and U,,’s.

e.g.
gz gw 0 0 O

—gw gz 0 0 0

0 0 100

U =™V, =" 0 0 010
0 0 001

gz 0 gw 0 O

0 1 0 00

—qw 0 gz 0 0

Uy=e"™Vo=¢"| 0 0 0 1 0
0 0 0 01

2.1 Time evolution of Product states

For y € C, .
w(y) = giwatya”)

denotes the Weyl operator over .#. We consider the Weyl algebra o7 ()
over .# generated by {w(y)}yec and the algebra &7 () over ¢ which is
generated by

W) =QuG), (€= {GH). (2.1)

N - N
€0y =D Gb (b)) =D Gbl,
J=0



W () can be written as

W () = expli({¢, b) + (b, ()]

Let p be a normalized self-adjoint non-negative trace class operator on
F for k =0,1,2,--- ,N. It can be regarded as a state on o/ (%#). We use
the notation

Cr(y) = Trz[w(y)pxl-

Similarly, we consider the operator

as a state on & (J):

wpo(W(Q)) = Tr[W(C)p] = H C(Cr)-

Let us consider the time evolution of p by H(t) (0 <t < N7):

p(NT) — e*’LTHN . efz‘rHlperrHl L. GZTHN.

Lemma 2.1.1
wonr) (W Q) = wp(W(Uy - - - Un()) H C(( - UnO)k)

holds, where

N
(Ur---UnQ)o = €™ ((92)" G + Y gw(g2)'¢))
j=1

and
N
(U -~ UnQ = €N (= gio(92)N o + 926 — Y w92y *7'¢)
j=k+1
for k> 0.



2.2 The product Gibbs state

For the product Gibbs state
N

pP = ®pk with Lo :efﬁoa*a/Z(ﬁo)’ IOJ :eiﬁa*a/z(ﬁ) (J = 17 7N)7
k=0

where 3, 3y > 0 and Z(83) = (1 — e ), we have
Lemma 2.2.1 The state corresponding to the density matriz (2.3) satisfies

’C0|2<1+€_ﬁo_1+€_ﬂ>_<C>C> 14e”
2 \l—efo 1—¢h 2 1—eP

wo(W(Q)) = Trr W (C)p) = exp |

and
S(p) = —Trrlplog o] = Ns(8) + ()
where s(3) := B(e? — 1)~ —log(1 — e P).

The time evolution of the density matrix
p(NT) = e~ iHN g=iTHN-1 | o=irHh poirH  girHy
satisfies the following properties:
Lemma 2.2.2
wonr) (W(C)) = w,(W(Uy -+ - Un()) =

|(U1"'UNC)0|2<1+€_’6° 3 1+€_B> (GO L+ef
2 l1—ebfo 1 —¢eh 2 1—e Bl

exp | —

and

S(p(NT)) = Ns(B) + s(6o) = S(p)-
The relative entropy of p(N7) w.r.t. p is:
Lemma 2.2.3

S(p(NT)|p) = =Tr[p(N7)(log p(NT) — log p)] = —Tr[p(log p — log p(—NT))]
(ﬂ() — 6)(660 — eﬁ) (1 _ |Z|2N>

(P — 1)@ — 1) |

Remark The relative entropy is non-positive generally. In this case, it
decreases monotonically as N — oo and converges to the limit:

_ efo _ B
i SVl =~ =)




2.3 Subsystems

In this section, we devide the system into 2 subsystems. At time ¢ = k7, the
objects are ordered as follows:

the first atom, - - - | the k-th atom, the cavity, the k + 1-th atom, - -- , the N-th atom.

We regard the cavity and the n atoms ahead the cavity as the subsystem:

"= AR
where
n k—n N
K= BQR s H-QRAR R
j=1 j=1 j=n+1
We want to re-number the atoms in the subsystem:
For take
00 «— 0 -th
0, 0 «— 1-th
01
0= |eCrt, .
‘ 0 — k —n -th
0 0, | —k—n+1-th
" On_1 | — k—n+2-th
- c o

0, —k—1-th

(91 «— k -th
0 — k+1-th
0 «— N -th



to get

N

Ooby + Oobo + (03551 + Oibi—jin) = 3 (07 + CEb)).

J=1 J=0

And consider the Weil operator on .77

Wa(0) = exp [i(0obf + Bobo+ > _ (05541 + Oibi—ji))]

=1

= exp [i(eogs + Bobo + Z(ejN; + éjl;j)”’

Jj=1

where, bo = bo, Bj = by—j+1. (We used abused notations: e.g., by is not an
operator in %% but in .5, while b, in JZ, etc. )

For the density matrix p, let p, be the reduced density matrix of the
sub-system i.e.,

ps = 1rz.p. (2.2)
Then, we get
wps<W8(9)) = wp(W(CG))-

Now let us consider time evolution. The time evoluted density p(kT) of
the initial Gibbs state

N
p=exp | — Bobibo — B _bib;]/(Z(5)Z(B)Y), (2.3)
j=1
has the reduced density matrix given by
Lemma 2.3.1
Wp(kr), (Ws(0)) = wprr) (W (Co))
o |<U1ngg)0|2 1+6_ﬁ0 1+€_’6 <9,0>1—|—6_B
_eXp[_ 2 (1—6*50_1—e*ﬁ)_ 2 1—676]7

Now consider the limit k& — co(/N — oo) with n fixed. We get



Proposition 2.3.2 p(k7), converge to p® and

lim S(p(k)s) = S(p"”),

k—oo
where

)]

P = exp [ — Bbgby — szv jrbn—j1] /Z(B)"

Remark The local entropy decreases or increases accordong to 3 > [y or
B < By, respectively.

2.4 A scaling limit for product states

Here, we mention an asymptotic behavior of the state of the cavity under
the influence of the beam where the state for the atoms is product of general

type.
We assume that
(1) PL=pP2 =" = PN;

(2) Tr[ap:] = Tr[a®pi] = Tr[a*p1] = Tr[a*p1] = 0;
(3) Tr[(a”a)®p1] < o0

Proposition 2.4.1 Under the limit 7 — 0 and N — oo subject to 72N — oo
and 73N — 0 (e.g., 7= O(N701)),

lim w7y, (w(0)) = Imwyvey (W (E)) = e~ Trl(e*ataa*)pi]|0] /2

holds for 6 € C+L,

3 Markovian Evolution

We consider here the evolution of the system under the Kossakowski-Lindblad-
Davies equation, which yields a behavior the system in a large reservoir:

Aip(t) = Lo () (p(1)) , p=p(t)|,_, € C:1(H),

where

Lo (§)(p(t)) = —ilH(®), p(t)] + 0 bo p(t) b = - {bibo. p(t)}
o By pl(t) bo — - {bobi p(1)}. (3.1)



To satisfy the complete positivity-preserving the parameters of non-Hamiltonian
part of dynamics must satisfy inequality o > 0. We also impose condition
o4 < o_ for the boundedness of expectations in the state, see [NVZ].

We introduce the family {7}, }o<y<: of trace-preserving and complete-
positive evolution mappings:

Tgo Lp = poe(t) = ﬂ?o(ﬂ(o)) with Tgo = T;ft,Tt’Tt(’j,Oa (0 < t' < t). (3.2)

As in the Hamiltonian evolution, we consider tuned repeated interactions,
when the Hamiltonian part of dynamics is piecewise constant. Then for
t € [(k— 1)1, k7), the generator has the form:

Loa(p(t)) = =il H p(t)] + 0 bo p(t) b = S {bibo. p()}
0 b p(t) bo = S-{bobi, p(D)} (k> 1), (3.3)

The solution of the corresponding Cauchy problem

0ep(t) = Lo (t)(p(1)  p(t)],_g = Po ® ® Pr, (3.4)

has a form:
P(NT) = T, o(p(0)) = €70 .. emErzeminn (p(0).
Let us use the notation:
T} = Tf (o1)r = €77 (3.5)

And we consider evolution of the Weyl operators, which is dual to the evo-
lution of states

Tee (15,0 (0)W(O)] = Tearlp T320(W Q). (3.6)

Note that

7—Lo',N eTLo',QeTLo',l
and its dual evolution

* * *
T3 =etoreloz | eThon (3.7)



3.1 Evolution of Open System

First we establish a formula for the one-step mappings in (3.7) of the Weyl
operators.

Lemma 3.1.1 Let k,1 =0,1,2,...,N andn =1,2,...,N. Let vector ( =
{1y € CNT be as in (2.1). Then we obtain

W) = VO) = OWWI00) . (39

where
07" (¢) = exp| — 5 e a(ACIA DS 19)] INCY)
U (t) = exp[z’t(Yn ks 5 7- P0>] . (Po)w = 0wb0. (3.10)

Remark The main difference between the mapping for oz = 0 and (3.8),
(3.10) is that the energy parameter (Lemma 2.0.1) has the shift:

E - E,=FE—i2t_%

Note that Im(E,) > 0,if o, < o_.
Corollary 3.1.2

T3, o(W(Q) = exp| —-

oo (W70 VR GUP () UR() )= (6,))

x W(UY(1)...Ug(7) Q).
Combining the above Corollary and Lemma, we get the following theorem.

Theorem 3.1.3 Let p = p(t = 0) be initial condition which coincides with
the Gibbs density matriz (7?). Then we get

o, o W(Q)) = exp [ = 16 X7(N7)0)],

where X°(NT) is the (N + 1) x (N + 1) matriz given by

a+—|—a+1—|—e_ﬁ) <1+e‘50 1—|—e‘ﬁ)P0]

X7(Nr) = Ug(r)* . U7 (o) | T

o,—0o_ 1l—eP

O'+—|—O',

1.

xUY(7)...UR(T) —

Oy —0_

11



3.2 Limit of reduced density for the cavity

Hereafter, we use the notations:
U?(t) = e"V?(t) and

9° (t)27(t) ko + g% (£)w (t) Okn (=0
(V7 (8))ir = § 97 ()w (t) 60 + 97 ()27 (=) O~ (j = 1)
dik (otherwise)

with

, 2in E, —¢€

o _ it(Es—e€)/2 o : 2
! (t) —° ’ ‘ <t) - \/<EU - 6)2 + 4772 Slnt\/ 4 "

(3.11)

EO' —€)? ) EO' - . Ea —€)?
27(t) :cost\/u—knhl— i ) smt\/u—i-n?
4 V(Ey —€)? + 41 4

(3.12)
Note the relation 27(t)27(—t) — w°(t)> = 1 holds, but 27(—t) # 27(t) for
o+ # o—.

We consider the system with initial product state (?77?)

N

p=QQp with p=py=---=py, (3.13)
k=0

where pg, p1 are density matrices on .%. We assume that p; is gaude invariant.
For fixed p;, we define one step evolution of the cavity state py by

T(po) = (TZ00)o, (3.14)

where p is (3.13) and the subscript ( )o in the righthand side represents the
reduced density corresponding to the subsystem consists of the cavity only.
The application of 7 can be expressed explicitly by the use of the expectation
of the Weyl operator:

@) = o [ - B0 (oo () — g (e (7))
Xwp, (W(e™ g7 (1)27(T)0)w,, (W(e™ g7 (T)w? (7)8)). (3.15)

Then we get:

12



Proposition 3.2.1 Suppose that

E(9) := [ [wp (o(e @7 g7 (1) * 027 (1) w7 (7)6))

_ H o) (ei(k-i—l)Tega(T)(k—i—l)zo(T)kwa(T)g)
k=0

1s convergent and continuous for all @ € C. Then there is a unique state p,
on o (F) which satisfies

(i T(p.) = e, (3.16)
(id) Ypo € €(F) < lim TH(po) = ., (3.17)
(iii) T (T5.00)s = (T, 000 (3.18)

where in the third item, p(. is (8.13) with po = p, and the subscript s stands
for the reduced density to the subsystem consists of the cavity and the n atoms
near the cavity, see (2.2).

Moreover p, have the expectation

01> o_ + 0. 7(Tw(1)]?
. (10(60)) = oxp [ - %U_ _+0’+ (1-+ ‘_g Iéa)(T)z(" ()T|)|2>} E®©). (3.19)

4 Summary

As a simple mathematical model for atomic beam passing through a cavity,
we considered a system consists of harmonic oscillators.

We have studied the Hamiltonian evolution of the system by calculating
the expectation values of Weyl operators, explicitly. For Gibbs initial states,
we consider a relaxation phenomena of the sub-system arround the cavity.
For initial product states, we saw the convergence to the Gibbsian density
matrix in a certain scaling limit.

We also studied the Markovian evolution of the model. We gave a formula
for the dual evolution of the Weyl operators, explicitly. For a certain initial
product states, we gave the asysmptotic behavior of the states for subsystems
around the cavity.

The detailed presentation of the subject and their proofs will be given in

TZ).
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