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Fast-slow system

= f(z,y,e€)

X ) e .
(*) y=€g(x,y,€), 0<exk1

xER”:fast,yE]Rk:slow,tER:time

ex. FitzHugh-Nagumo .
u ="

U = Olge + f(u) = A —> 0 =010 — f(u)+ \)

Av = e(u —7A) )\ = 69_1(u — YA)
u(z,t) — u(x — 0t)

Multiscale Problems in e.g. Materials Science, Life Science.



Fast-slow system
ex. FitzHugh-Nagumo

U =
Py (Ov ~ fu) + ) e=0:{(uv,A)|v=0, Bv-f(u+A =0} is
a family of equilibria (nullcline)

A= e lu f : cubic nonllnearlty e > 0 :(0,0,0) is the only equilibrium.

s.t. f(O) = (1) =

A A
A A Fast dynamics
fixed points » «_:/ ’\Slow dynamics
\
u .
' 3
v =0

V
heteroclinic orbits and €>0: SUﬁ|C|ent|y Small

critical manifolds by nullclines homoclinic orbits



Fast-slow system
ex. FitzHugh-Nagumo

U = v
Py (9@ ~ fu) + ) e=0:{(uv,A)|v=0, Bv-f(u+A =0} is
a family of equilibria (nullcline)
A= e lu f : cubic nonllnearlty e > 0 :(0,0,0) is the only equilibrium.
s.t. f(O) = (1) =
A A
A A Fast dynamics
fixed points / Slow dynamlCS
\
u .
v =0

heteroclinic orbits and >0 : Given

critical manifolds by nullclines homoclinic orbits ?



Goal : Produce the validation method for the existence of
global orbits for given € as the continuation of singular
limit orbits for fast-slow systems.

z = f(z,y,¢€)
y=¢cg(z,y,€e), 0<ex 1

1. 2.
Q0 2= %

1. Slow Dynamics
. Key : Solve each scaled
2. Fast Dynamics Yoo
problem independently

3. Matching and match them.



Preceding works (examples)

Connecting Orbits + Rigorous Numerics
D. Wilczak, Found. Comput. Math. (2006), 495--535.

Rigorous numerics of horseshoes, Shi'lnikov orbits and N-pulse solutions via
covering relations
J. Mireles-James, J.P. Lessard, J.B. van der Berg and K.

Mischalkow, SIAM J. Math. Anal. 43(2011), 1557--1594.

Rigorous numerics of connecting orbits via Radii Polynomials +
Parametrization

Singular Perturbation + Rigorous Numerics

M. Gameiro, T. Gedeon, W. Kalies, H. Kokubu, K. Mischaikow
and H. Oka, J., Dyn,, Diff., Eq., 19 (2007), 623--654.

Singularly perturbed Conley index — horseshoes in fast-slow systems
(“sufficiently close € ")

Examples of interval arithmetics libraries : INTLAB, PROFIL, CAPD



1. Slow Dynamics

2. Fast Dynamics

3. Matching : "Covering-Exchange”

4. m-cones

5. Towards Validation -- overview
(FitzZHugh-Nagumo)



1. Slow Dynamics




Slow m

=0

&= f(x,y,0)

W#(My)

W*(Mpy)

\
My C {f(z,y,0) = 0}

(invariant)

anifold

e € (0, €]

T = f(x,y,¢)
y = eg(z,y,€)

(locally invariant)



Slow manifold

e € (0, €]
i = f(z,y,¢) Expression of Stable
J = eg(z,y,€) and Unstable Manifolds
lim x(t; \) = p,
{— — 00
lim x(t: \) = q.
{— 400 ( 7 ) q

ow can we verify the infinite-
time behavior mathematically

with finitely many memories ?

Where is the slow manifold ?
Is it really perturbed from A/, ?
Which is the direction of (un)stable
manifolds ?

(locally invariant)



Validation of slow manifolds

Invariant Manifold Theorem [Fenichel, 1979]

If the critical manifold M,is normally hyperbolic at € =0,
then for sufficiently small &, W*(Mc)and W*(M,) can be
defined by graphs of smooth functions b = h,(a,y,€) and
a = hs(b,y, €), respectively (a : fast unstable var,, b : fast
stable var.).

->

Diagonalize at
a point

K Cc R :
B = By x By, C R" : cpt, convex s.t

a = Aa+ Fi(a,b,y,e€) Spec(A) € {Re > 0}, Spec(B) C {ReA < 0}

b= Bb+ F>(a,b,y,€) F,, Fy = o(lal,|b]) A b
fl) — 69(@7 b7y7 6)

cpt, convex ﬁf}f * ¢¢¢-|_;

>

f(xa%E)‘VaBl >()OI1(931><BQ><f(><[0760]7 < = g

<4 =F.
f(@,y,€) - vop, <0 on By x 9By x K x |0, €] M4

=

(Fast-saddle-type Block. a : unstable coord., b : stable coord.)



Validation of slow manifolds

K c R : cpt, convex a = Aa+ Fi(a,b,y,¢)
B = By x By C R" : ¢pt, convex b= Bb+ Fy(a,b,y,e)
Thm. [M cf. Jones (1995) Theorem 4] y = eg(a,b,y,e)

. : . OF . OF OF OF
Define Maximal o2, ()= (5,0). o )= (0 30 570,
|ngu dar values . 6F2 < 6F2 8F2 8F2
of matrices : o8, : Bi(2) = ( 9a * )) T8, ¢ Balz) = ( 7 ) 6—y(z) 877(2))
dg d0g d0g dg

01 = (20)). 055 a0 = () 20 20a)

Assume the following inequalities (stable cone conditions)
inf Spec(A) — (supo}, +supoyi,) >0,
inf Spec(A) + inf |Spec(B)|

—{supaA +sup oy, + sup o, +supop, + € (Supa +sup0 )}>O

Then for all e € [0,¢9] W?*(M,.) N (B x K) can be represented by the graph of a
Lipschitz function on 55 X K . The similar statement holds for W*(M,) N (B x K).
The slow manifold M, is the k-dimensional submanifold in B x K can be

represented by their intersection. In particular, My is normally hyperbolic.



Validation of slow manifoldsA

Fast-saddle-type blocks

Slow manifold exists somewhere in the
block.

The size of this block corresponds to the
rigorous error between approximate and
rigorous slow manifolds.

Cone conditions

(Un)stable manifolds of slow manifolds have
graph representations on (un)stable
coordinates in blocks.

Exit contains a point of unstable manifolds.
Entrance contains a point of stable manifolds.

:_|.¢H

<
<

14

:_|.¢H

<

<
4

Rigorous bound of manifolds can be

explicitly estimated via rigorous humerics !
Requirements : inner product and singular values.



Towards rigorous humerics

Key. Fast-saddle-type block, Cone condition

Blocks : Zgliczynski-Mischaikow (FoCM, 2001)
Cone condition, construction of Lyapunov functions -
Ref. : Zgliczynski (2009), M. (NOLTA, 201 3)

\

Lyapunov function + Implicit Function Theorem — normal hyperbolicity

A
A A

SOV MMM
/ .7 L i
W M




2. Fast Dynamics



Covering relations

Def. [h-sets, Zgliczynski-Gidea (2002)]
h-set is the 4-tuple of the following :

N C R™ : A compact set
u(N),s(N) € Z>g s.t. u(N)+s(N)=n

ey R — R*WY) » RS(N) 1 A homeomorphism s.t.

cn(N) = Byvy X Bs). Ex. : u(N)=1, s(N)=2

\ u(N')-dim. unit closed ball
centered at the origin, radius 1

N, := By(n) X By,
N := 0Byn) X By, -
N} := Byn) X OBg(n),

N~ :=cy (N;), NT:=cy' (N).

C

Ex. : u(N)=2, s(N)=1



Covering relations
Def. [Covering Relation, Zgliczynski-Gidea (2002)]

N, M : h-sets, f: N — R4mM w(N) = u(M)
Define N :f> M (N f-covers M) by

1. There is a homotopy A : [0,1] x N, — RY™M such that
ho = fe, fei=cuofocy,
A((0,1], Noo) N M. = 0,

h(l0,1], Ne) N Mcj_ =0,

2. There is alinear map A : R* — R" such that

hi(p,q) = (A(p),0),
A(0B,(0,1)) c R*\ B,(0,1)

Ex. :u=2



Covering relations

Thm. [Zgliczynski-Gidea (2002), Wilczak (2006) etc.]

Let { My} _, : sequence of h-sets, w(M;) =u(My) = --- = u(M})
fr: M — RA™ Mit1 - continuous

Assume MléMzgfk:}le .

Then
ElZEEMlS.t. in---Of1($)EiﬂtMi+1, ’Lzl,,k’—l

My




Covering relations

Thm. [Zgliczynski-Gidea (2002), Wilczak (2006) etc.]

Let {My}._, : sequence of h-sets, w(M;) =u(My) = --- = u(M})
fr: M — RA™ Mit1 - continuous

Assume MlgMQQ‘fk:}le .

Then
E|Q?€M18.t. in---Ofl(Q?)GiﬂtMi+1, Z:].,,]C—].




Towards rigorous humerics

ODE Solver : Lohner method.
cf. Zgliczynski (2002)
U Covering Relation : Zgliczynski-Gidea (2002),
Wilczak (2006), Zgliczynski (2009).

other
Solve ODE fast-saddle-type
block
- with the red face ¢
as the initial data
T =
A =
‘ “Computation of
fast-saddle-type ] )
block unstable manifold

Covering relations
for verifying orbits



>0

“Matching”

Is there a point in a neighborhood of
heteroclinic orbits, near slow manifolds and
another fast jump ?

Moving Time = O(1/¢€)

=0 >0

W*(M.)

WS(MO) WS(MG)

Mathematically known :
Exchange Lemma (Jones-Kopell 1994, etc.)



3. Matching : “Covering-Exchange”



Covering-Exchange property

(*) CB — f($7y7€)
© g=eglz,ye), 0<ex1

xER”:fast,yE]Rk:slow,tER:time

From now on assume the following :

y = €g(x,y,€) can be represented by

Yy — (w7(917°°' 791{3—1) ~ Rkv
w:egl(a:',y,e),

9; = 0.



Covering-Exchange property

Def. (Covering-Exchange)

N C R¥PSTF - hoset, M C RUT5TF . (y + s + k)-dim. h-set

>0
We say that N satisfies the covering-exchange

property (CE) with respect to M for (). if

1. M is a fast-saddle-type block.

WU (M,) W (M) 2. M satisfies stable and unstable cone conditions.

A 3. For q € {£1}
5 q-g1(x,y,e) >0in M.

«} 4. Letting Q¢ be the flow of (*)¢, for some T >0

X o |
_« «;7( N <L)
790€(T,N)
«

We say the pair (N,M) a covering-exchange pair.

r 1



Covering-Exchange property

Dynamics of Covering-Exchange pairs
1. M is a fast-saddle-type block.

2. M satisfies stable and unstable cone conditions. \ &
. \
3. For g€ {£1} q-q1(x,y,€) >0 in M. A
€ T7° v
4. Letting ¢ be the flow of (*)., for some T >0, N P Ie)

It comes
from N.

sufficiently
long time...

Topologically describes orbits colored by red.



Fast-exit face and admissibility

Def. (Fast-exit face)

Define a fast-exit face of a fast-saddle-type
block M by

k

M® = c,; ({a} X By x (w™,w") x H[—l, 1]) , a € 0B,.
)

where M. =B, x B, x [-1,1] x | [[-1,1]
=2
Def. (admissibility)
M C M : h-set satisfying 1~3 of (CE) and My C M : a
fast-exit face are said to be admissible in M if

~

MoNM =0, u(My)=u(M),

The u(My) -component of M, contains
w-coordinate.

If g=+1, inf 7, (Mp). — sup Ww(M)C > 0.
If g= -1, inf 7y, (M), — sup my (Mp)e > 0.




Singular limit connecting orbits and their continuation

Thm. [M. cf. Jones (1995)]

For the fast-slow system (*)e assume that, for given ¢y > 0 and p € N there
is an € ( € |0, eg] )-parameter family of the following sets :

SJ (j=0,---, p) fast-saddle-type block which forms a covering-
exchange pair with 77— ( F? if j = 0).

S7 (j=0,---, p) fast-saddle-type block which forms a covering-
exchange pair with F? ' and the pair (S’g’,fg’) forms an

admissible pair in Sg.
}

|
F? 1 (j=0,, o) a fast-exit face of S’ . I . ——
* - I
e

.

Then for all € € (0, o] there is a periodic orbit for (*). which passes all S? .



Singular limit connecting orbits and their continuation

Thm. [M. cf. Jones (1995)]

For the fast-slow system (*)e assume that, for given ¢y > 0 and p € N there
is an € ( € |0, eg] )-parameter family of the following sets :

S7 - (j=0,:-, p) fast-saddle-type block

(j=1,---, p-1) fast-saddle-type block which forms a CE pair

with F7~1

(i=0, o) invariant sets Sc ., S¢.s are contained there, respectively.
SJ (j—O ., o) fast-saddle-type block

(j=1,---, o) fast-saddle-type block which forms a CE pair with 7/~
and the pair (S?, F?) forms an admissible pair in Sg o

F? 1 (j=0,--, p-1) a fast-exit face of Sg' | I "‘*"I
(j=0) there is an intersection with W*(Sc¢ ). l ; ,

‘—’.——/
== $

Then for all € € (0, €] there is a heteroclinic orbit for (x). connecting Se ., and
Se s which passes all S?



Singular limit connecting orbits and their continuation

Idea of the proof (in the case of Periodic orbits)

:(Sg)cx(fg)cx(gel)cx(fel)cx---x(gf)cx(ff)c
C]Rdg ><]R{d(i)” dei de} % - x R x RY .

— Prove that the mapping degree deg(F¢,II,0) of the map below can
be defined and is honzero :

((ps,qs)\ ( (p%,q3) — 7 o (P2)e(pY, 44) \
(P, %) (Pt ql) — (0e(T9, )%, 4%, (7)o (P2)c(p?, 42))
(ps,qs) (P}, qf)—7T1 ( 1)e (psaqs)

F (p}e,Q}) — | 0. 42) = (T, )P}, a5, (') 0 (P1)e(pl, q2))

(v, a?) <p§aq§>—wpo<Pp> (02, q?)

05,45 \02%42) — (0T, ))e(0?, ¢, (7°)° 0 (P2)(p, q2)) )

Components involving (un)stable manifolds are added in the case
of heteroclinic orbits.



Towards rigorous humerics

Key. Covering-Exchange

Blocks and Cone conditions : Already stated.
Covering Relation : Already stated.

Sign of vector fields : Easy !

Fast-exit face + Admissibility : Easy !

Nothing new for rigorous numerics !

A

\ [«
\




Practical Computations
U=V A
v =0.2(0v— f(u) + )
A =€t u flu) = u(u — 0.2)(1 — ),
0 € [0.947,0.948], € € [0,107°] V

Total orbit : dt = 0.001,t=0~ 190

A € [—0.00242308,0.00242308]
01 , ' ' ' ' - Blocks are chosen small in order to
get a good estimate of manifolds.

0.08

006 | 1+ Rigorous numerics encloses the
error of global orbits in each step and
| / | become bigger and bigger !
N =190 Left : Enclosure of orbits is already
) 1 larger than the block !
X / J

L 1 1 1 1
0 0.2 0.4 0.6 08 / 1 1.2

Validations without any ideas are so
fast-saddle-type block crazy !



4. m-cones



mM-Cones

-xtend (un)stable manifolds making sharp cones.

cone : |z| > |y / m-cone : ||z| > mly
e LR R AN
«— — “— — E
?
- — - - ——
Y1 L N
BEAN BRRRE S S
Isolating blocks Cones, m-cones
- Very small in general. - Unstable manifold is contained in
- Where the unstable manifold cones
extends ? (cone : orange domain) — Be cones sharper and raise the
- Flow moves very slowly near fixed accuracy of the unstable manifold.
points - Away from equilibria.

— increase of computation costs. - Isolation is preserved.



mM-Cones

Cone condition for fast-slow system.

Thm. [M. cf. Jones (1995) Theorem 4]

: : OF' F 8F OF
Define Maximal o}, : Ai(z) = < aal( )) , Opy (8 - (2) 8771(2)> :
SinguIa.r Values B (8F2( )) . (F 8F2 ) @( ))
of matrices : OB, - P12 da » IBs - 0 on :

0 (9
012 = (522)) s o, aalo) = (a§< ) 2 )
Assume the following inequalities (stable cone conditions)
inf Spec(A) — (supo}, +supoyi,) >0,
inf Spec(A) + inf |Spec(B)|

—{SU.pO'A +sup oy, + sup o, +supop, + € (Supa +sup0 )}>O

Then for all e € [0,¢9] W?*(M,.) N (B x K) can be represented by the graph of a
Lipschitz function on 55 X K . The similar statement holds for W*(M,) N (B x K).
The slow manifold M, is the k-dimensional submanifold in B x K can be
represented by their intersection. In particular, My is normally hyperbolic.



mM-Cones

Stable m-cone condition for fast-slow system.

Thm. [M., cf. M.-Yamamoto]

Let B, K as above.
Define Maximal ST AL (2) = (%(@) L oe s Ao(2) =m” (aanl( ) ?(z) %@)) ,
Singular Values S IF OF ’ IF !
of matrices : o5, Bi(z) = m (8—;<Z)> omy ¢ Bale) = ( 2 2 2 )

5 D 5, B A
0 . 3, %, 3,
i) =m (§2). o s ) = () 20 Gha)
Assume the following inequalities (stable m-cone conditions)
inf Spec(A) — (sup O'A + sup O'A ) > 0,
inf Spec(A) + inf |Spec(B)|
— {Sup UA + sup UA + sup OB "+ sup OB "+ o (Sup aé’lm + sup agém)} > 0,
Then the function M (t) := |Aa(t)]* — m?*|AC(¢)]? (¢ = (b,y)) satisfies :
M'(t) > 0. holds on the set M (t) = 0 as long as orbits stay BxK.



with m-cones ...
U ="v A
v =0.2(0v— f(u) + )
A=ty f(u) = ulu —0.2)(1 —u),
0 € [0.947,0.948], € € [0,107°]

\Y

A € [~0.00242308, 0.00242308) Total orbit : dt = 0.001,t=0 ~ 190

0.1

- Unstable m-cone : orbits leaves a
| neighborhood of slow manifolds in a
short time.

{ — prevent error accumulations

0.08 -
0.06

0.04 -

- Stable m-cone : blocks for verifying
covering relations become larger.

0.02

<
0 \ 02 04

unstable 13-cone stable 3-cone

Verifications become
dramatically easy !!




5. Towards Validation -- overview
(FitzZHugh-Nagumo)



Homoclinic orbits of the FitzHugh-Nagumo system -- overview

A

U = v 1
0 =0.2(0v — f(u) + )
A= e 1y flu) =u(u—0.2)(1 —u),
0 € [0.947,0.948], € € [0,1077] |

Computation environment
Library : CAPD ( http://capd.ii.uj.edu.pl ) 3.0
CPU : 1.6GHz Intel Core i5 (Macbook Air 2011 model)
Memory : 4GB 1333 MHz DDR3

1. 1st branch

We can construct fast-saddle-type blocks satisfying cone conditions for
A\ € [—0.0005, 0.1] around green branch.

2 3rd branch

We can construct fast-saddle-type blocks satisfying cone conditions for
A\ € [—0.0005, 0.1] around blue branch.


http://capd.ii.uj.edu.pl
http://capd.ii.uj.edu.pl

Homoclinic orbits of the FitzHugh-Nagumo system -- overview

U= AA
0 =0.2(0v — f(u) + )
A=l 1y flu) =u(u—0.2)(1 —u),

0 € [0.947,0.948], € € [0,107°]
Total orbit : dt = 0.001,t=0~ 190

3. Fast trajectory from (u,v, ) =~ (0,0, 0)

0.1 1 v v v ' 0.1 y v v . . 0.1 1 v . v .
0.08 } | 0.08 1 0.08 + W ””””/////’////////
////,,,, ////
%,
0.08 | 008 ’1,’ i 0.08 |
2, t=190
7
0.04 } 0.04 ’/ { 0.0¢ }
2
7,
t=190 %
a2 | == ] ot / el
o.02 o002 t .I 90 é f .02
of 0 1 @
L . N ___ stable3-cone | PN pocks . 7¢
0 0.2 04 06 08 1 08 1 1.2 0 0.2 04 06 08 1

unstable 13-cone
A € [—0.00242308,0.00242308] )\ = —(0.00242308 A = +0.00242308



Homoclinic orbits of the FitzHugh-Nagumo system -- overview

A

U= $
0 =0.2(0v — f(u) + )
A=l 1y flu) =u(u—0.2)(1 —u),

u

0 € [0.947,0.948], € € [0,107°]
Total orbit: dt = 0.001,t=0~ 190
4. Fast trajectory from (u,v,\) ~ (0.8,0,0.0955)

blocks

0.04 } Y 0 '
02 -t= 'I 90 - 002 + 02
o O/ O «
0 . “ 0 . “ 0 . T
004 } 0 { 004}
0086 t - 0 1 008} f
- 008 +
N " M 04 N X

® K 2 3 o

|
.-

stable 3-cone

o
= 3 3 % 2 o

0

oo e e Unstable 12-céne
A € 10.0929167,0.0980833] A = 0.0929167 A = 0.0980833



Homoclinic orbits of the FitzHugh-Nagumo system -- overview

U = v ;

0= 0.2(0v — f(u) + \) -

A=ty flu) =u(u—0.2)(1 —u), ; ! A l
0 € [0.947,0.948], € € [0,107°] r l |

Computer Assisted Result [M.] K

There exist the following trajectories of the FitzHugh-
Nagumo system :

l.e=0:A singular homoclinic orbit consisting of two
components of nullcline and two heteroclinic orbits
connecting them. v

2. € C (07 10—5] : homoclinic orbit of (u,v,A) = (0,0,0) \
as the continuation of the singular orbit obtained in 1.




Conclusion

- Slow Dynamics : proposed a sufficient condition for 1
validating slow manifolds and dynamics around them.
- Matching : topologically described the matching of dynamics
in different time scales. )
v A
A

— Sample validation of singular perturbation problem.
Periodic, Heteroclinic : computing.

\ «
\ / \
Further directions : g

- Other examples ( multi-slow variables )

- Slow manifolds containing non-hyperbolic points like fold points

e=0.001, p=0, 5=0.20491

- Transversality ( via Exterior Algebra )

Ex. : Double-pulse in the FitzHugh-Nagumo sys.
Guchenheimer-Kuehn, SIADS(2009) —




