

Rigorous numerics of global orbits for fast-slow systems

Kaname Matsue
The Institute of Statistical Mathematics
Coop-with-Math Program (MEXT)

2015. 2.23 - 2.24

Dynamical Systems in Mathematical Physics @RIMS, Kyoto



# Fast-slow system

$$\dot{x} = f(x, y, \epsilon)$$

$$\dot{y} = \epsilon g(x, y, \epsilon), \quad 0 \le \epsilon \ll 1$$

$$x \in \mathbb{R}^n : \text{fast, } y \in \mathbb{R}^k : \text{slow, } t \in \mathbb{R} : \text{time}$$

#### ex. FitzHugh-Nagumo

$$u_{t} = \delta u_{xx} + f(u) - \lambda$$

$$\dot{v} = \delta^{-1}(\theta v - f(u) + \lambda)$$

$$\dot{\lambda} = \epsilon \theta^{-1}(u - \gamma \lambda)$$

$$u(x, t) \mapsto u(x - \theta t)$$

Multiscale Problems in e.g. Materials Science, Life Science.

# Fast-slow system

## ex. FitzHugh-Nagumo

$$\begin{split} \dot{u} &= v \\ \dot{v} &= \delta^{-1}(\theta v - f(u) + \lambda) \\ \dot{\lambda} &= \epsilon \theta^{-1} u \text{ f: cubic nonlinearity} \end{split}$$

 $\varepsilon = 0$ : {(u,v, $\lambda$ )| v = 0,  $\theta$  v-f(u)+ $\lambda$  = 0} is a family of equilibria (nullcline)

 $\varepsilon > 0$ : (0,0,0) is the only equilibrium.



Fast dynamics
Slow dynamics

heteroclinic orbits and critical manifolds by nullclines

ε>0 : Sufficiently Small homoclinic orbits

# Fast-slow system

# ex. FitzHugh-Nagumo

$$\begin{split} \dot{u} &= v \\ \dot{v} &= \delta^{-1}(\theta v - f(u) + \lambda) \\ \dot{\lambda} &= \epsilon \theta^{-1} u \text{ f: cubic nonlinearity} \end{split}$$

$$\varepsilon = 0$$
: {(u,v, $\lambda$ )| v = 0,  $\theta$  v-f(u)+ $\lambda$  = 0} is a family of equilibria (nullcline)  $\varepsilon > 0$ : (0,0,0) is the only equilibrium.



heteroclinic orbits and critical manifolds by nullclines



 $\varepsilon$  >0 : Given

homoclinic orbits?

**Goal :** Produce the validation method for the existence of global orbits for **given**  $\varepsilon$  **as the continuation of singular limit orbits** for fast-slow systems.

$$\dot{x} = f(x, y, \epsilon)$$

$$\dot{y} = \epsilon g(x, y, \epsilon), \quad 0 \le \epsilon \ll 1$$
1. 2. 3.

- 1. Slow Dynamics
- 2. Fast Dynamics
- 3. Matching

**Key**: Solve each scaled problem independently and match them.

# Preceding works (examples)

## Connecting Orbits + Rigorous Numerics

D. Wilczak, Found. Comput. Math. (2006), 495--535. Rigorous numerics of horseshoes, Shi'lnikov orbits and N-pulse solutions via covering relations

J. Mireles-James, J.P. Lessard, J.B. van der Berg and K.

Mischaikow, SIAM J. Math. Anal. 43(2011), 1557--1594.

Rigorous numerics of connecting orbits via Radii Polynomials +

**Parametrization** 

# Singular Perturbation + Rigorous Numerics

M. Gameiro, T. Gedeon, W. Kalies, H. Kokubu, K. Mischaikow and H. Oka, J., Dyn., Diff., Eq., 19 (2007), 623--654.

Singularly perturbed Conley index  $\rightarrow$  horseshoes in fast-slow systems ("sufficiently close  $\varepsilon$ ")

Examples of interval arithmetics libraries: INTLAB, PROFIL, CAPD

- 1. Slow Dynamics
- 2. Fast Dynamics
- 3. Matching: "Covering-Exchange"
- 4. m-cones
- 5. Towards Validation -- overview (FitzHugh-Nagumo)



# 1. Slow Dynamics

- 2. Fast Dynamics
- 3. Matching: "Covering-Exchange"
- 4. m-cones
- 5. Towards Validation -- overview (FitzHugh-Nagumo)

## Slow manifold

$$\varepsilon = 0$$

$$\dot{x}=f(x,y,0)$$
 $\dot{y}=0$ 
 $W^s(M_0)$ 
 $M_0\subset\{f(x,y,0)=0\}$ 
(invariant)

$$\epsilon \in (0, \epsilon_0]$$

$$\dot{x} = f(x, y, \epsilon)$$
 $\dot{y} = \epsilon g(x, y, \epsilon)$ 

$$W^{s}(M_{\epsilon})$$

$$W^{u}(M_{\epsilon})$$

(locally invariant)

## Slow manifold

$$\epsilon \in (0, \epsilon_0]$$

$$\dot{x} = f(x, y, \epsilon)$$
$$\dot{y} = \epsilon g(x, y, \epsilon)$$



**Expression of Stable** and Unstable Manifolds

$$\lim_{t \to -\infty} x(t; \lambda) = p,$$

$$\lim_{t \to +\infty} x(t; \lambda) = q.$$

How can we verify the infinitetime behavior mathematically with finitely many memories?

Where is the slow manifold ? Is it really perturbed from  $M_0$ ? Which is the direction of (un)stable manifolds?

# $M_0$ $M_\epsilon$

## Validation of slow manifolds

## Invariant Manifold Theorem [Fenichel, 1979]

If the critical manifold  $M_0$  is **normally hyperbolic** at  $\varepsilon$  =0, then for sufficiently small  $\varepsilon$ ,  $W^u(M_\epsilon)$  and  $W^s(M_\epsilon)$  can be defined by graphs of smooth functions  $b=h_u(a,y,\epsilon)$  and  $a=h_s(b,y,\epsilon)$ , respectively (a : fast unstable var., b : fast stable var.).



Diagonalize at a point

$$\dot{a} = Aa + F_1(a, b, y, \epsilon)$$

$$\dot{b} = Bb + F_2(a, b, y, \epsilon)$$
  $F_1, F_2 = o(|a|, |b|)$ 

$$\dot{y} = \epsilon g(a, b, y, \epsilon)$$

$$K \subset \mathbb{R}^k$$
: cpt, convex

$$B = B_1 \times B_2 \subset \mathbb{R}^n : \text{cpt, convex}$$
 s.t.

$$f(x, y, \epsilon) \cdot \nu_{\partial B_1} > 0 \text{ on } \partial B_1 \times B_2 \times K \times [0, \epsilon_0],$$

$$f(x, y, \epsilon) \cdot \nu_{\partial B_2} < 0 \text{ on } B_1 \times \partial B_2 \times K \times [0, \epsilon_0]$$



 $\operatorname{Spec}(A) \subset \{\operatorname{Re}\lambda > 0\}, \ \operatorname{Spec}(B) \subset \{\operatorname{Re}\lambda < 0\}$ 

(Fast-saddle-type Block. a : unstable coord., b : stable coord.)

## Validation of slow manifolds

$$K \subset \mathbb{R}^k: \mathrm{cpt}, \mathrm{convex}$$
  $\dot{a} = Aa + F_1(a, b, y, \epsilon)$   $B = B_1 \times B_2 \subset \mathbb{R}^n: \mathrm{cpt}, \mathrm{convex}$   $\dot{b} = Bb + F_2(a, b, y, \epsilon)$   $\dot{y} = \epsilon g(a, b, y, \epsilon)$ 

**Thm.** [M. cf. Jones (1995) Theorem 4]

Define Maximal 
$$\sigma_{\mathbb{A}_1}^s: \mathbb{A}_1(z) = \left(\frac{\partial F_1}{\partial a}(z)\right), \ \sigma_{\mathbb{A}_2}^s: \ \mathbb{A}_2(z) = \left(\frac{\partial F_1}{\partial b}(z) \quad \frac{\partial F_1}{\partial y}(z) \quad \frac{\partial F_1}{\partial \eta}(z)\right),$$
 Singular Values of matrices: 
$$\sigma_{\mathbb{B}_1}^s: \mathbb{B}_1(z) = \left(\frac{\partial F_2}{\partial a}(z)\right), \ \sigma_{\mathbb{B}_2}^s: \ \mathbb{B}_2(z) = \left(\frac{\partial F_2}{\partial b}(z) \quad \frac{\partial F_2}{\partial y}(z) \quad \frac{\partial F_2}{\partial \eta}(z)\right)$$
 
$$\sigma_{g_1}^s: g_1(z) = \left(\frac{\partial g}{\partial a}(z)\right), \ \sigma_{g_2}^s: \ g_2(z) = \left(\frac{\partial g}{\partial b}(z) \quad \frac{\partial g}{\partial y}(z) \quad \frac{\partial g}{\partial y}(z)\right)$$

Assume the following inequalities (stable cone conditions):

$$\inf \operatorname{Spec}(A) - \left(\sup \sigma_{\mathbb{A}_1}^s + \sup \sigma_{\mathbb{A}_2}^s\right) > 0,$$

$$\inf \operatorname{Spec}(A) + \inf |\operatorname{Spec}(B)|$$

$$- \left\{\sup \sigma_{\mathbb{A}_1}^s + \sup \sigma_{\mathbb{A}_2}^s + \sup \sigma_{\mathbb{B}_1}^s + \sup \sigma_{\mathbb{B}_2}^s + \epsilon_0 \left(\sup \sigma_{g_1}^s + \sup \sigma_{g_2}^s\right)\right\} > 0,$$

Then for all  $\epsilon \in [0, \epsilon_0]$   $W^s(M_{\epsilon}) \cap (B \times K)$  can be represented by the graph of a Lipschitz function on  $B_2 \times K$ . The similar statement holds for  $W^u(M_{\epsilon}) \cap (B \times K)$ . The slow manifold  $M_\epsilon$  is the k-dimensional submanifold in B imes K can be represented by their intersection. In particular,  $M_0$  is normally hyperbolic.

## Validation of slow manifolds

#### Fast-saddle-type blocks

Slow manifold exists somewhere in the block.

The size of this block corresponds to the rigorous error between approximate and rigorous slow manifolds.

#### Cone conditions

(Un)stable manifolds of slow manifolds have graph representations on (un)stable coordinates in blocks.

Exit contains a point of unstable manifolds. Entrance contains a point of stable manifolds.



Rigorous bound of manifolds can be explicitly estimated via rigorous numerics!

Requirements: inner product and singular values.

# Towards rigorous numerics

# Key. Fast-saddle-type block, Cone condition

Blocks: Zgliczynski-Mischaikow (FoCM, 2001)

Cone condition, construction of Lyapunov functions:

Ref.: Zgliczynski (2009), M. (NOLTA, 2013)



Lyapunov function + Implicit Function Theorem → normal hyperbolicity





1. Slow Dynamics

# 2. Fast Dynamics

- 3. Matching: "Covering-Exchange"
- 4. m-cones
- 5. Towards Validation -- overview (FitzHugh-Nagumo)

#### Def. [h-sets, Zgliczynski-Gidea (2002)]

h-set is the 4-tuple of the following:

$$N\subset\mathbb{R}^n$$
 : A compact set

$$u(N), s(N) \in \mathbb{Z}_{>0} \text{ s.t. } u(N) + s(N) = n$$

$$c_N: \mathbb{R}^n \to \mathbb{R}^{u(N)} imes \mathbb{R}^{s(N)}$$
: A homeomorphism s.t.

$$c_N(N) = \overline{B_{u(N)}} \times \overline{B_{s(N)}}.$$

 $\mathbf{V}$  u(N)-dim. unit closed ball centered at the origin, radius 1

$$N_c := \overline{B_{u(N)}} \times \overline{B_{s(N)}},$$

$$N_c^- := \partial \overline{B_{u(N)}} \times \overline{B_{s(N)}},$$

$$N_c^+ := \overline{B_{u(N)}} \times \partial \overline{B_{s(N)}},$$

$$N^- := c_N^{-1}(N_c^-), \quad N^+ := c_N^{-1}(N_c^+).$$



Ex.: 
$$u(N)=1$$
,  $s(N)=2$ 



Ex.: 
$$u(N)=2$$
,  $s(N)=1$ 

## Def. [Covering Relation, Zgliczynski-Gidea (2002)]

$$N,M: h\text{-sets}, \ f:N \to \mathbb{R}^{\dim M} \quad u(N) = u(M)$$
 Define  $N \stackrel{f}{\Longrightarrow} M$  (N f-covers M) by



$$h_0 = f_c, \quad f_c := c_M \circ f \circ c_N^{-1},$$

$$h([0,1], N_c^-) \cap M_c = \emptyset,$$

$$h([0,1], N_c) \cap M_c^+ = \emptyset,$$

2. There is a linear map  $A: \mathbb{R}^u \to \mathbb{R}^u$  such that

$$h_1(p,q) = (A(p),0),$$

$$A(\partial B_u(0,1)) \subset \mathbb{R}^u \setminus \overline{B_u}(0,1)$$



Ex.: u=1

M



Ex.: u=2

#### Thm. [Zgliczynski-Gidea (2002), Wilczak (2006) etc.]

Let  $\{M_k\}_{k=1}^n$ : sequence of h-sets,  $u(M_1) = u(M_2) = \cdots = u(M_k)$   $f_k: M_k \to \mathbb{R}^{\dim M_{k+1}}: \text{continuous}$  Assume  $M_1 \stackrel{f_1}{\Longrightarrow} M_2 \stackrel{f_2}{\Longrightarrow} \cdots \stackrel{f_{k-1}}{\Longrightarrow} M_k$ .

Then

$$\exists x \in M_1 \text{ s.t. } f_i \circ \cdots \circ f_1(x) \in \text{int} M_{i+1}, \quad i = 1, \cdots, k-1.$$



#### Thm. [Zgliczynski-Gidea (2002), Wilczak (2006) etc.]

Let  $\{M_k\}_{k=1}^n$ : sequence of h-sets,  $u(M_1) = u(M_2) = \cdots = u(M_k)$   $f_k: M_k \to \mathbb{R}^{\dim M_{k+1}}: \text{continuous}$  Assume  $M_1 \stackrel{f_1}{\Longrightarrow} M_2 \stackrel{f_2}{\Longrightarrow} \cdots \stackrel{f_{k-1}}{\Longrightarrow} M_k$ .

Then

$$\exists x \in M_1 \text{ s.t. } f_i \circ \cdots \circ f_1(x) \in \text{int} M_{i+1}, \quad i = 1, \cdots, k-1.$$





# "Matching"



Is there a point **in a neighborhood** of heteroclinic orbits, **near** slow manifolds and another fast jump?



Mathematically known:

Exchange Lemma (Jones-Kopell 1994, etc.)



- 1. Slow Dynamics
- 2. Fast Dynamics

# 3. Matching: "Covering-Exchange"

- 4. m-cones
- 5. Towards Validation -- overview (FitzHugh-Nagumo)

# Covering-Exchange property

$$\dot{x} = f(x, y, \epsilon)$$

$$\dot{y} = \epsilon g(x, y, \epsilon), \quad 0 \le \epsilon \ll 1$$

$$x \in \mathbb{R}^n : \text{fast, } y \in \mathbb{R}^k : \text{slow, } t \in \mathbb{R} : \text{time}$$

From now on assume the following:

$$\dot{y} = \epsilon g(x,y,\epsilon)$$
 can be represented by

$$y = (w, \theta_1, \dots, \theta_{k-1}) \in \mathbb{R}^k,$$
$$\dot{w} = \epsilon g_1(x, y, \epsilon),$$
$$\dot{\theta}_i = 0.$$

# Covering-Exchange property

# Def. (Covering-Exchange)





$$N \subset \mathbb{R}^{u+s+k} : h\text{-set}, \ M \subset \mathbb{R}^{u+s+k} : (u+s+k)\text{-dim}. \ h\text{-set}$$

We say that N satisfies the covering-exchange property (CE) with respect to M for  $(*)_{\epsilon}$  if

- 1. M is a fast-saddle-type block.
- 2. M satisfies stable and unstable cone conditions.
- 3. For  $q \in \{\pm 1\}$   $q \cdot g_1(x, y, \epsilon) > 0 \text{ in } M.$
- 4. Letting  $\varphi_{\epsilon}$  be the flow of  $(*)_{\epsilon}$ , for some T > 0  $N \stackrel{\varphi_{\epsilon}(T,\cdot)}{\Longrightarrow} M.$

We say the pair (N,M) a covering-exchange pair.

# Covering-Exchange property

# Dynamics of Covering-Exchange pairs

- 1. M is a fast-saddle-type block.
- 2. M satisfies stable and unstable cone conditions.
- 3. For  $q \in \{\pm 1\}$   $q \cdot g_1(x, y, \epsilon) > 0$  in M.
- 4. Letting  $\varphi_{\epsilon}$  be the flow of  $(*)_{\epsilon}$ , for some T > 0,  $N \stackrel{\varphi_{\epsilon}(T,\cdot)}{\Longrightarrow} M$ .





Topologically describes orbits colored by red.

# Fast-exit face and admissibility



# Def. (Fast-exit face)

Define a **fast-exit face** of a fast-saddle-type block M by

$$M^a:=c_M^{-1}\left(\{a\} imes\overline{B_s} imes(w^-,w^+) imes\prod_{i=2}^k[-1,1]
ight),\quad a\in\partial B_u.$$
 where  $M_c=\overline{B_u} imes\overline{B_s} imes[-1,1] imes\prod_{i=2}^k[-1,1]$ 

## Def. (admissibility)

 $M\subset M$ : h-set satisfying 1~3 of (CE) and  $M_0\subset M$ : a fast-exit face are said to be **admissible in M** if

$$M_0 \cap \tilde{M} = \emptyset, \quad u(M_0) = u(\tilde{M}),$$

The  $u(M_0)$  -component of  $M_0$  contains w-coordinate.

If 
$$q=+1$$
,  $\inf \pi_w(M_0)_c - \sup \pi_w(M)_c > 0$ .

If 
$$q = -1$$
,  $\inf \pi_w(\tilde{M})_c - \sup \pi_w(M_0)_c > 0$ .

## Singular limit connecting orbits and their continuation

#### Thm. [M. cf. Jones (1995)]

For the fast-slow system  $(*)_{\epsilon}$  assume that, for given  $\epsilon_0 > 0$  and  $\rho \in \mathbb{N}$  there is an  $\epsilon$  (  $\in [0, \epsilon_0]$  )-parameter family of the following sets :

 $\mathcal{S}_{\epsilon}^{j}$ : (j=0,···,  $\rho$ ) fast-saddle-type block which forms a covering-exchange pair with  $\mathcal{F}_{\epsilon}^{j-1}$  ( $\mathcal{F}_{\epsilon}^{\rho}$  if j = 0).

 $\tilde{\mathcal{S}}^{j}_{\epsilon}$ : (j=0,···,  $\rho$ ) fast-saddle-type block which forms a covering-exchange pair with  $\mathcal{F}^{j-1}_{\epsilon}$  and the pair  $(\tilde{\mathcal{S}}^{j}_{\epsilon},\mathcal{F}^{j}_{\epsilon})$  forms an admissible pair in  $\mathcal{S}^{j}_{\epsilon}$ .

 $\mathcal{F}^j_\epsilon$  : (j=0,…, ho) a fast-exit face of  $\mathcal{S}^j_\epsilon$  .

Then for all  $\epsilon \in (0,\epsilon_0]$  there is a periodic orbit for  $(*)_\epsilon$  which passes all  $\mathcal{S}^j_\epsilon$  .

## Singular limit connecting orbits and their continuation

#### Thm. [M. cf. Jones (1995)]

For the fast-slow system  $(*)_{\epsilon}$  assume that, for given  $\epsilon_0 > 0$  and  $\rho \in \mathbb{N}$  there is an  $\epsilon$  ( $\in [0, \epsilon_0]$ )-parameter family of the following sets:

 $\mathcal{S}^{j}_{\epsilon}$ : (j=0,···,  $\rho$ ) fast-saddle-type block (j=1,···,  $\rho$ -1) fast-saddle-type block which forms a CE pair with  $\mathcal{F}^{j-1}_{\epsilon}$ . (i=0, $\rho$ ) invariant sets  $S_{\epsilon,u}, S_{\epsilon,s}$  are contained there, respectively.

 $ilde{\mathcal{S}}^j_{\epsilon}$ : (j=0,···,  $\rho$ ) fast-saddle-type block (j=1,···,  $\rho$ ) fast-saddle-type block which forms a CE pair with  $\mathcal{F}^{j-1}_{\epsilon}$  and the pair  $( ilde{\mathcal{S}}^j_{\epsilon},\mathcal{F}^j_{\epsilon})$  forms an admissible pair in  $\mathcal{S}^j_{\epsilon}$ .

 $\mathcal{F}^{j}_{\epsilon}$ : (j=0,···,  $\rho$ -1) a fast-exit face of  $\mathcal{S}^{j}_{\epsilon}$  (j=0) there is an intersection with  $W^{u}(S_{\epsilon,u})$ .

Then for all  $\epsilon \in (0, \epsilon_0]$  there is a heteroclinic orbit for  $(*)_\epsilon$  connecting  $S_{\epsilon,u}$  and  $S_{\epsilon,s}$  which passes all  $\mathcal{S}^j_\epsilon$ .

## Singular limit connecting orbits and their continuation

Idea of the proof (in the case of Periodic orbits)

$$\Pi := (\tilde{\mathcal{S}}_{\epsilon}^{0})_{c} \times (\mathcal{F}_{\epsilon}^{0})_{c} \times (\tilde{\mathcal{S}}_{\epsilon}^{1})_{c} \times (\mathcal{F}_{\epsilon}^{1})_{c} \times \cdots \times (\tilde{\mathcal{S}}_{\epsilon}^{\rho})_{c} \times (\mathcal{F}_{\epsilon}^{\rho})_{c}$$

$$\subset \mathbb{R}^{d_{s}^{0}} \times \mathbb{R}^{d_{f}^{0}} \times \mathbb{R}^{d_{s}^{1}} \times \mathbb{R}^{d_{s}^{1}} \times \mathbb{R}^{d_{f}^{1}} \times \cdots \times \mathbb{R}^{d_{s}^{\rho}} \times \mathbb{R}^{d_{f}^{\rho}}.$$

ightarrow Prove that the mapping degree  $\deg(F_\epsilon,\Pi,0)$  of the map below can be defined and is nonzero :

$$F_{\epsilon} \begin{pmatrix} (p_s^0, q_s^0) \\ (p_f^0, q_f^0) \\ (p_f^0, q_f^0) \\ (p_s^1, q_s^1) \\ (p_f^1, q_f^1) \\ \vdots \\ (p_f^\rho, q_f^\rho) \\ (p_f^\rho, q_f^\rho) \end{pmatrix} := \begin{pmatrix} (p_f^0, q_f^0) - \pi^0 \circ (P_\epsilon^0)_c (p_s^0, q_s^0) \\ (p_f^1, q_f^1) - (\varphi_\epsilon(T^0, \cdot))_c (p_f^0, q_f^0, (\pi^0)^c \circ (P_\epsilon^0)_c (p_s^0, q_s^0)) \\ (p_f^1, q_f^1) - \pi^1 \circ (P_\epsilon^1)_c (p_s^1, q_s^1) \\ (p_s^2, q_s^2) - (\varphi_\epsilon(T^1, \cdot))_c (p_f^1, q_f^1, (\pi^1)^c \circ (P_\epsilon^1)_c (p_s^1, q_s^1)) \\ \vdots \\ (p_f^\rho, q_f^\rho) - \pi^\rho \circ (P_\epsilon^\rho)_c (p_s^\rho, q_s^\rho) \\ (p_s^0, q_s^0) - (\varphi_\epsilon(T^\rho, \cdot))_c (p_f^\rho, q_f^\rho, (\pi^\rho)^c \circ (P_\epsilon^\rho)_c (p_s^\rho, q_s^\rho)) \end{pmatrix}.$$

Components involving (un)stable manifolds are added in the case of heteroclinic orbits.

# Towards rigorous numerics

# Key. Covering-Exchange

Blocks and Cone conditions: Already stated.

**Covering Relation**: Already stated.

Sign of vector fields: Easy!

Fast-exit face + Admissibility : Easy !

#### Nothing new for rigorous numerics!



**Practical Computations** 

$$\begin{split} \dot{u} &= v \\ \dot{v} &= 0.2(\theta v - f(u) + \lambda) \\ \dot{\lambda} &= \epsilon \theta^{-1} u \\ &\qquad \qquad f(u) = u(u - 0.2)(1 - u), \\ &\qquad \qquad \theta \in [0.947, 0.948], \ \epsilon \in [0, 10^{-5}] \end{split}$$







Total orbit : dt = 0.001,  $t = 0 \sim 190$ 

- · Blocks are chosen small in order to get a good estimate of manifolds.
- Rigorous numerics encloses the error of global orbits in each step and become bigger and bigger!

Left: Enclosure of orbits is already larger than the block!

Validations without any ideas are so crazy!



- 1. Slow Dynamics
- 2. Fast Dynamics
- 3. Matching: "Covering-Exchange"

# 4. m-cones

Towards Validation -- overview (FitzHugh-Nagumo)

#### m-cones

Extend (un)stable manifolds making sharp cones.

cone: |x| > |y|



#### Isolating blocks

- Very small in general.
- Where the unstable manifold extends? (cone: orange domain)
- Flow moves very slowly near fixed points
- → increase of computation costs.

m-cone:





#### Cones, m-cones

- Unstable manifold is contained in cones
- → Be cones sharper and raise the accuracy of the unstable manifold.
- Away from equilibria.
- · isolation is preserved.

#### m-cones

# Cone condition for fast-slow system.

Thm. [M. cf. Jones (1995) Theorem 4]

Define **Maximal Singular Values**of matrices:

$$\sigma_{\mathbb{A}_{1}}^{s}: \mathbb{A}_{1}(z) = \left(\frac{\partial F_{1}}{\partial a}(z)\right), \ \sigma_{\mathbb{A}_{2}}^{s}: \ \mathbb{A}_{2}(z) = \left(\frac{\partial F_{1}}{\partial b}(z) \quad \frac{\partial F_{1}}{\partial y}(z) \quad \frac{\partial F_{1}}{\partial \eta}(z)\right),$$

$$\sigma_{\mathbb{B}_{1}}^{s}: \mathbb{B}_{1}(z) = \left(\frac{\partial F_{2}}{\partial a}(z)\right), \ \sigma_{\mathbb{B}_{2}}^{s}: \ \mathbb{B}_{2}(z) = \left(\frac{\partial F_{2}}{\partial b}(z) \quad \frac{\partial F_{2}}{\partial y}(z) \quad \frac{\partial F_{2}}{\partial \eta}(z)\right)$$

$$\sigma_{g_{1}}^{s}: g_{1}(z) = \left(\frac{\partial g}{\partial a}(z)\right), \ \sigma_{g_{2}}^{s}: \ g_{2}(z) = \left(\frac{\partial g}{\partial b}(z) \quad \frac{\partial g}{\partial y}(z) \quad \frac{\partial g}{\partial y}(z)\right)$$

Assume the following inequalities (stable cone conditions) :

$$\inf \operatorname{Spec}(A) - \left(\sup \sigma_{\mathbb{A}_1}^s + \sup \sigma_{\mathbb{A}_2}^s\right) > 0,$$

$$\inf \operatorname{Spec}(A) + \inf |\operatorname{Spec}(B)|$$

$$- \left\{\sup \sigma_{\mathbb{A}_1}^s + \sup \sigma_{\mathbb{A}_2}^s + \sup \sigma_{\mathbb{B}_1}^s + \sup \sigma_{\mathbb{B}_2}^s + \epsilon_0 \left(\sup \sigma_{g_1}^s + \sup \sigma_{g_2}^s\right)\right\} > 0,$$

Then for all  $\epsilon \in [0, \epsilon_0]$   $W^s(M_\epsilon) \cap (B \times K)$  can be represented by the graph of a Lipschitz function on  $B_2 \times K$ . The similar statement holds for  $W^u(M_\epsilon) \cap (B \times K)$ . The slow manifold  $M_\epsilon$  is the k-dimensional submanifold in  $B \times K$  can be represented by their intersection. In particular,  $M_0$  is normally hyperbolic.

#### m-cones

# Stable m-cone condition for fast-slow system.

# Thm. [M., cf. M.-Yamamoto]

Let B, K as above.

Define **Maximal Singular Values** 

of matrices:

$$\sigma_{\mathbb{A}_1}^{s,m} : \mathbb{A}_1(z) = \left(\frac{\partial F_1}{\partial a}(z)\right), \ \sigma_{\mathbb{A}_2}^{s,m} : \ \mathbb{A}_2(z) = \underline{m}^{-1} \left(\frac{\partial F_1}{\partial b}(z) \quad \frac{\partial F_1}{\partial y}(z) \quad \frac{\partial F_1}{\partial \eta}(z)\right),$$

$$\sigma_{\mathbb{B}_1}^{s,m}: \mathbb{B}_1(z) = \underline{m} \left( \frac{\partial F_2}{\partial a}(z) \right), \ \sigma_{\mathbb{B}_2}^{s,m}: \ \mathbb{B}_2(z) = \left( \frac{\partial F_2}{\partial b}(z) \quad \frac{\partial F_2}{\partial y}(z) \quad \frac{\partial F_2}{\partial \eta}(z) \right),$$

$$\sigma_{g_1}^{s,m}: g_1(z) = \underline{m} \left( \frac{\partial g}{\partial a}(z) \right), \ \sigma_{g_2}^{s,m}: \ g_2(z) = \left( \frac{\partial g}{\partial b}(z) \quad \frac{\partial g}{\partial y}(z) \quad \frac{\partial g}{\partial \eta}(z) \right).$$

Assume the following inequalities (stable m-cone conditions) :

$$\begin{split} \inf \operatorname{Spec}(A) - \left(\sup \sigma_{\mathbb{A}_1}^{s,m} + \sup \sigma_{\mathbb{A}_2}^{s,m}\right) &> 0, \\ \inf \operatorname{Spec}(A) + \inf |\operatorname{Spec}(B)| \\ - \left\{\sup \sigma_{\mathbb{A}_1}^{s,m} + \sup \sigma_{\mathbb{A}_2}^{s,m} + \sup \sigma_{\mathbb{B}_1}^{s,m} + \sup \sigma_{\mathbb{B}_2}^{s,m} + \sigma \left(\sup \sigma_{g_1}^{s,m} + \sup \sigma_{g_2}^{s,m}\right)\right\} &> 0, \end{split}$$

Then the function  $M(t):=|\Delta a(t)|^2-m^2|\Delta\zeta(t)|^2$   $(\zeta=(b,y))$  satisfies :

M'(t) > 0. holds on the set M(t) = 0 as long as orbits stay B×K.

#### with m-cones ...

$$\dot{u} = v$$

$$\dot{v} = 0.2(\theta v - f(u) + \lambda)$$

$$\dot{\lambda} = \epsilon \theta^{-1} u$$

$$f(u) = u(u - 0.2)(1 - u),$$

$$\theta \in [0.947, 0.948], \ \epsilon \in [0, 10^{-5}]$$







Total orbit : dt = 0.001,  $t = 0 \sim 190$ 

- Unstable m-cone: orbits leaves a neighborhood of slow manifolds in a short time.
- → prevent error accumulations
- Stable m-cone: blocks for verifying covering relations become larger.

Verifications become dramatically easy !!

- 1. Slow Dynamics
- 2. Fast Dynamics
- 3. Matching: "Covering-Exchange"
- 4. m-cones
- 5. Towards Validation -- overview (FitzHugh-Nagumo)

$$\dot{u} = v$$

$$\dot{v} = 0.2(\theta v - f(u) + \lambda)$$

$$\dot{\lambda} = \epsilon \theta^{-1} u \qquad f(u) = u(u - 0.2)(1 - u),$$

$$\theta \in [0.947, 0.948], \ \epsilon \in [0, 10^{-5}]$$



#### Computation environment

Library: CAPD (http://capd.ii.uj.edu.pl) 3.0

CPU: 1.6GHz Intel Core i5 (Macbook Air 2011 model)

Memory: 4GB 1333 MHz DDR3

#### 1st branch

We can construct fast-saddle-type blocks satisfying cone conditions for  $\lambda \in [-0.0005, 0.1]$  around green branch.

#### 2. 3rd branch

We can construct fast-saddle-type blocks satisfying cone conditions for  $\lambda \in [-0.0005, 0.1]$  around blue branch.

$$\dot{u} = v$$

$$\dot{v} = 0.2(\theta v - f(u) + \lambda)$$

$$\dot{\lambda} = \epsilon \theta^{-1} u$$

$$f(u) = u(u - 0.2)(1 - u),$$

$$\theta \in [0.947, 0.948], \ \epsilon \in [0, 10^{-5}]$$
Total orbit : dt = 0.001, t = 0 ~ 190

3. Fast trajectory from  $(u, v, \lambda) \approx (0, 0, 0)$ 



$$\dot{u} = v 
\dot{v} = 0.2(\theta v - f(u) + \lambda) 
\dot{\lambda} = \epsilon \theta^{-1} u$$

$$f(u) = u(u - 0.2)(1 - u), 
\theta \in [0.947, 0.948], \ \epsilon \in [0, 10^{-5}]$$

Total orbit : dt = 0.001,  $t = 0 \sim 190$ 

# 4. Fast trajectory from $(u, v, \lambda) \approx (0.8, 0, 0.0955)$



$$\dot{u} = v$$

$$\dot{v} = 0.2(\theta v - f(u) + \lambda)$$

$$\dot{\lambda} = \epsilon \theta^{-1} u$$

$$f(u) = u(u - 0.2)(1 - u),$$

$$\theta \in [0.947, 0.948], \ \epsilon \in [0, 10^{-5}]$$



# Computer Assisted Result [M.]

There exist the following trajectories of the FitzHugh-Nagumo system:

- 1.  $\epsilon=0$ : A singular homoclinic orbit consisting of two components of nullcline and two heteroclinic orbits connecting them.
- 2.  $\epsilon \in (0, 10^{-5}]$ : homoclinic orbit of  $(u, v, \lambda) = (0, 0, 0)$  as the continuation of the singular orbit obtained in 1.



# Conclusion

• Slow Dynamics: proposed a sufficient condition for validating slow manifolds and dynamics around them.

• **Matching**: topologically described the matching of dynamics in different time scales.

→ Sample validation of singular perturbation problem.

Periodic, Heteroclinic: computing.

#### **Further directions:**

- Other examples (multi-slow variables)
- Slow manifolds containing non-hyperbolic points like fold points
- Transversality (via Exterior Algebra)

Ex.: Double-pulse in the FitzHugh-Nagumo sys. Guchenheimer-Kuehn, SIADS(2009) →



-0.1

0.15

> 0.05

-0.05