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Integrable Hamiltonian system

e Hamiltonian system :

de o0H dpj OH ,
it~ O, (¢, p), = o0, (¢,p) (G=1,...,k) (1)

where ¢ = (q1,...,q1),p = (p1,...,pr), H : R?* = R,

e Hamiltonian system () is integrable <= there are k first integrals
Fi(=H), Fs,...,Fy such that dFYy,...,dF} are linearly indepen-
dent a.e. and that {F;, F;} =0foranyi,j=1,...,k.

e |Loosely speaking, the Liouville-Arnold theorem states that for an
integrable Hamiltonian system, there are canonical variables (called

action-angle variables)

(0,1) € TF x U(C R¥) — (¢,p) € R**

such that the Hamiltonian depends only on 1.



Integrable Hamiltonian system
Let H(I)((0,I) € T® x U(C R¥)) be an integrable Hamiltonian. The

canonical equations are

d0 _oH dl __oH
dt oI’ dt 00

Since %—Ig = 0, I is a constant along any solution: I = Iy. Therefore

OH

T

Ip)t + 6.
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Perturbed system

Perturbed system:

He(l, 9) — ho(]) + €h1(],(9;8).

Twist condition:
det(Hess(ho(1))) # 0.

KAM theory: under the twist condition, if w = (w1,...,wg) = S

Is Diophantine:

37 > 0,3y >k — 1,Y(ly,...,lx) € ZF\{0}

k
> lws| =yl 4 ]) T
j=1

the invariant torus with the frequency w survives for small € > 0.



Example (Isosceles three-body problem)
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Bl 1 The isosceles 3-body problem ] 2 The Poincaré map

Ref: M. Shibayama, RIMS Kékyiiroku Bessatsu, B13 (2009), 141-155.



Example (Kepler-type problem)

Kepler-type problem:

1
Hy = ~|p]* — —— q,p € RY).
14 PE ( )

(The original Kepler problem is the case @ = 1.)

This Hamiltonian is integrable.

For « #% 1 and d = 2, the twist condition is safisfied and hence KAM
theorem can be applied. For the perturbed system H., there are quasi-
periodic solutions with Diophantine frequency.

In the case a = 1, the Hamiltonian can be represented

1

H=——.
2712

So the twist condition is not satisfied.



Example(Solar system)

Traditional problem is to show that almost all of quasi-periodic solutuions

in the solar system survive. Its Hamiltonian is

where I = (111, e ajdn) - Rd”,e = (911, e 76’dn) e T4, This does
not satisfies the twist condition (very degenerate !). Arnold (1963) solved

it for the case d = 2,n = 2. J. Féjoz (2004, Ergod. Th. & Dynam. Sys.)
solved it for the case d = 3, n > 2.



Our problem

Consider a Hamiltonian

H(q,p) = %W +V(g) (p,geRY)

where V' € C?(RV\{0},R) (V ~ —r5).
Fix the energy H(q,p) = h.
We call ¢(t) a generalized periodic solution with period T if

1. ¢ € C(R,R¥Y) and T-periodic,

2. D={teR|q(t) =0} has zero measure,

3. ¢ € C*(R\D,RY) satisfies the canonical equations and the energy
relation in R\ D

Our goal is to show the existence of periodic solutions with prescribed

energy for a perturabed system of Kepler-type problem.



T heorem

Let N > 2 and V € C*(RV\{0},R). Assume that there are 0 < a1 < az2,0 <
a1 < o < ag < 2 such that

gﬁ < —V(g) < W’ —1V(q) < VV(g)-q < —asV(q)
VV(g) =0 (lgl = o0),  |gI°VV(q),lq|*V*V(g) — 0 (¢ — 0)

Then for any h < 0, there is a generalized periodic solution with energy h. Let
T > 0 be the minimal period. The number of collision is estimated as follows:

#1t €10,T) | q(t) = 0} < f(a1, a2, , 01, az).

Here
1 o
rasa?(2—a)a (2—|—Oé2)22+0‘
f(Cl,l,a,Q,Oé,Oél,OéQ) 1 L 2+a 2—«
20at a1(2+ a) 2 (2 — ag) 2o B(%vﬁ_aa)

and B is the Beta function.



Corollary

Assume the same properties as in the theorem. For any « € (1,2), there
is 0 > 0 satisfying the following: if a1 < as < (1+9)a1,0 < as —ag <
d, then the obtained solution has no collision, and hence is a classical

solution.
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History of the prescribed-energy problem

The existence problem of a periodic solution on the energy surface:
Sh={(¢,p) | H = h}.

e Weinstein(1978): Sy, is compact and convex

e Rabinowitz (1978): S} is compact and star-shaped

o Viterbo(1987): Sp is a compact contact manifold (variational
proof)

e Hofer & Zehnder(1987): S;, is a compact contact manifold (geo-
metric proof)

e Hofer(1993): S}, is diffeomorphic to S°.

e Tanaka (1993): natural Hamiltonian H = £|p|?>+V(q) with singu-
lar potential like ﬁ fort <a<2(N=3), l<a<2(N>4).

e Our result extends his resut to the case 1 < a < 2(N > 2).



Proof
The prescribed-energy problem is represented by the variational problem

with respect to the functional

umzéﬂl

du

- dT/O h —V(u(T))dr.

By letting

2
%fol |Elz_ﬂ dr

T:\ﬁh—wmm

for a critical point u(7) of I, q(t) = w(t/T) is a solution with energy h.
The domain A of I is defined by

E = {u(r) € Higo(R,R™);u(1 + 1) = u(7)}

A ={u(r) € E;u(r) # 0 for all 7}.



Proof

Consider the case of N = 2. We take pr(7) defined by

pr(T) = R(cos2nT,sin 277).

Take small Ry > 0 and large R;. Let

Q = {n € C([Ro, R1],A) | n(Ro) = pry,n(F1) = pr, }.

We can get a generalized solution attaining

— inf I(n(R)).
¢= nf max . (n(R))



Proof (estimate of the minimax value)

From the inequality

i
we get
1 1 dpRQ 1
Ipr)== | |“LE| dr | h—V(pr)d
or) =3 [ |FE] ar [ h=Vipryir
1 2 1
SE/ 4oR dT/h+ 2 _dr
2 Jg | dT 0 |:0R’a
2

=217 (hR® + a2 R ).

2 2—«

The maximum of 27%(hR* + a2 R*~%) on R € [Ro, R1] is m’aas (352
Therefore the minimax values is no more than this value:

2 2— 2— o
¢ < mlaal ( _2;;) o, (2)



Proof (estimate of collision paths)

Assume ~(t) is a generalized solution with collisions at 0 < 71 < 71 < -+ < 7 < 1.
We can assume 71 = 0. Let 71" be the period. Let 0 =17 <1 < --- < T} < T be
the collision times, 1. e. T; = 7;T', and let T}, 1 =T.

=3 [

1 T 2 T
= —/ dt/ h— V(vy)dt
2/, |dt .

1 Fy T 2 ko rTiva
-~ (221/T dt) (ZlfT h—vw)dt>

For the obtained generalized solution, we get

1 1o
2 /0 dt
Here A7, is the Lagrangian action functional for the Kepler-type problem:

To 1 . aq
ATO = / §|q|2 + ——dt.
0

jal*

dry

dT
dry

2 1
dT/ h—V(y)dr
0

d

~
dt

d~y a1

2 Ts
dt = / h— V(y)dt > Ar, .
0

2 4+ oo



Proof (estimate of collision paths)

For generalized solutions, the energy value is related to the period as follow:

To

V(y)dt >
] (7) 2 T o

We know the exact value of the minimizer for the collision paths:

2 — a9 2 — a9

—hllpy > — ‘ATO'

2

. 2+a2@i2ao‘+2 1 1 1., 22 2=«
1anTO — 20} (B(i’_ + 5)) at+2ThH 2+,
—Qa Lotz o

By putting them together, we can estimate the value for the collision path:

2

a’ 2—ao 2-ao 24+ o 24+« 2a.¢ 1 1 1 2— o
> 1 o o 2 (B(=,= +=)*(~h)" & k* (3
- (2—|—oz2)2(2+ozg> (2—()4) a? ( (2 e 2)) (=h) 3)

From (2) and (3), we estimate the number of collisions:

k S f(axl,CLQ,Oé,Oél,OéQ)-

This completes the proof.



Thank you very much.



