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Introduction
Consider initial problems of Hamilton-Jacobi equations

(! + H(z,t,uz) =h in R%x (0,T] (h: const.),
v(z,0) =v%(z) on R? (W0 € Lip).

Hamilton-Jacobi equations are closely related to
1. Classical mechanics (v is a generating function of a symplectic

transform);
2. Optimal control theory (v is a cost function);

3. Inviscid fluids (vy is an entropy solution);

4. Hamiltonian systems (a characteristic curve ~* of v is an orbit
and graph(vy) is an invariant set);

5. C(lassical KAM theory, weak KAM theory:;

(HJ) must be considered in the class of weak sol. ‘“viscosity solutions”.

Aim. Obtain approximation techniques for the viscosity sol. of
(HJ) by which we can approximate all of v, vz, v*.




Two Approximation techniques:
e the vanishing viscosity method (VVM), i.e., add z/fuxg and v — 0+,
e the finite difference method (FDM), i.e., f (x) $+A“") f(z)

— Stochastic approach to VVM.
(Fleming '69) |Numerically inaccessible

— Stochastic approach to FDM under hyperbolic scaling.
(Soga [1]-[5]) | Numerically accessible

Why "stochastic” in FDM? — " Numerical viscosity”

Stochastic approach is different from the standard frameworks, yield-
iINng new results.

Soga ('14), Nonlinear Analysis.

Soga ('14), Mathematics of Computation.
Soga, submitted.

Soga, submitted.

Soga, preprint.
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Assumptions for H(x,t,p):
(H1) H(z,t,p) :RYx R xRY— R, C?, Hpp > 0, superlinear w.r.t. p.
(H2) The Legendre transf. L of H w.r.t. p satisfies |L_;| < a(|L|+1).

L(x,t,§) = sup{p-&— H(x,t,p)}.
pERd

(H3) AIll the derivatives of H up to the second order are bdd. on
R? x R x K for each K cC R<.

Under (H1)-(H3)

Convergence & error estimate for v,vz;,v* in FDM are not trivial,
where the standard framework seems hopeless.




Hyperbolic PDE
’U,t(x,t) + aux(w7t) — 07

u(x,0) = ug(x) on R.
= u(x,t) = ug(x — at).
Add a parabolic term
uy(x,t) + aul(z,t) = v2ul (x,t),

u’(x,0) = ug(x) on R.

1 _(a:—at—y)2
S W) = [ o w2 udy
1 2
= R\/QTrte Stug(z — at + vV2vy)dy.

u’ — u as v — 0 (vanishing viscosity method).



Stochastic interpretation

u(x,t) = ug(~y(0)), where
~v(s) = x — a(t — s): characteristic curve solving ODE

dv(s) = ads, v(t) = .

u”(z,t) = Elug(7”(0))], where
(s) =z —a(t—s)+V2uB(t — s): stochastic process solving SDE

dvY(s) = ads — /2udB(t — s), 7Y (t) = «.

v — ~ and u¥ — u as v — 0 (law of large numbers).
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Finite difference method from stochastic viewpoint

5@_:—11 ulfn-l-; 2 u]fn-|-2 —uk 0
At to——0 s =0 tm = uolem).
uptl = (% + S0 uk, + (1 —SNubys (V= At/Aw)
= <;+g/\>2 " 11+2( +— )(——— Mgy 1+(—— A)Q ur

= ...= ZP(wn)uO(aﬁn) = ZM(W’)UO(’YO%
n Y

P: binomial distribution on (2Ax)Z, if |aX| < 1, with

. 2
average = z,, 41 — atjy1, variance = (1 — a?A?)t; 4152,

u(vy): prob. density of sample path v of the corresponding random walk.

By hyperbolic scaling limit Ax, At — 0, A = At/Axz = O(1)
P—6(x—at), vy—v(s) =z —a(t—s) (law of large numbers).
Thus ub — u(z,t) as Az, At — 0 with A = O(1).



Preliminaries

Representation formulas for v and v,

t
_ : / 0
o= it [ LG8,y (9)ds 400 ((0))] e

If (x,t): regular point of v (i.e. Jvz(x,t)) and ~*: minimizer,

t
1) vela,t) = /O La(v*(s), 5,7 (s))ds + v2(+*(0)).

Each minimizer ~* is a backward characteristic curve.



Even grid, odd grid and discretization:

Ax, At > 0: discretization parameters.
Geven := {mAx|m € Z,m = even}, G,qq ‘= {mAx|m € Z,m = odd}.
G = | {((Geven)? x {tax}) U ((Goaa)® x {tax+11)}, th := kAL,

k>0

G = |J {((Goad)® x {t21}) U ((Geven)? x {tart1})}-
k>0
(xm, ty) = (:U}nl, e ,xﬁnd,tk) €g,g.
(Tm, tx), (Ty41,tx+1) for points of G,
(@15 tr), (@m, tgy1) for points of G with 1:=(1,...,1) € z%.
Consider the sets with the standard basis eq,...,eg Of RY,

Bﬂ_ = {o1e1+ - +togeqlo;=+1,0;==x1, j=1,...,d, j # i},

BZ_ = {0161+"'+0d6d|0i:_1>Jj::|:17 j:].,...,d, j#z},
B:={o1e1+ -+ ogeqlo;j==1, j=1,...,d} = BL UBL,

. _Ad T ._ + _ Ad-1
b:=tB=2% b:= B =241



For each zm € (Geven)?,

{(Tmtwtwen C (Godd)d forms the d-cube C,,, with the centre am,
{Tm4wl, epi, C (G, q)® form the two sides of C,, facing each other

and orthogonal to e;.
The same for each zm € (G gq)%.

Let v = vy | denote a function v: G > (zp41,t,) — v, €R.

Define spatial difference derivatives of Ufn+1 on G as

( )

(5—1 > vfn+w)—(5—1 > Ufn_l_w) >2;x, i=1,...,d,

weBiL weBY

(D?nvk)m :

I\

\

(Dgv®)m i = ((D20F)m, .. ., (DZ®)1,).
Define time difference derivatives of "’57,4—1 as

k+1 . k+1 —1
Dtvm+ = ’Um+ —b Z fum_|_w —t
weDB



p
Our discretization of (HJ) is

Dt?}frj_l + H(xmatk‘a (Diﬁvk)m) — h in ga
(HJ)A 0 .

Vg1 = vo(a:m_|_1).

Note that v%T1 is unknown and is determined by {Uﬁﬁw}weB-

N J
The diffusion effect of (HJ)A at each grid point within At is char-
acterized by Cn,.

Under hyperbolic scaling 0 < A\g < At/Ax, the propagation speed is
finite.




Inhomogeneous controlled random walks in G:

Consider backward random walks v within [0, ¢;41] which start from
zn al t;41 and move by wAzx, w € B in each backward time step At:

Y= {'Yk}k:l’,“' 1415 Yl =2, A= twAz
More precisely, we set the following for each (xp,t;41) € G and 0 < I:
I+1n .__ 5
X" = {em| (@mte) €0, |lom —zn <1 (= k) Az}, k<L

1n . [+1, =
G=Gitin.= | (inln x {ty41}) C G,
0<k<l]
£:G 3 (xm,tgr1) — &t € (@)1 @) 1DY A= At/Ax,
p:GX B3 (Tm,tpy1iw) = prt Hw) =711 = Mw - &) € [0,1],
v 40,1, 1+ 1} Dk Ak eX,l:Lll”, k= Akl 4 AR, w e B,

QUL the family of these ~.

{pk+1(w)}w€BZ a transition probability from (zm,tx4+1) to points be-
longing to {(zm + wAz,t;)},eB-
¢ control of v (« drift term in SDE).



Define the density of each path ~ &€ fol as

p(y) == H Pi,b—l(_vlk_pl)(wk_l_l)y
0<k<I
where whtl .= (4F — ~k+1) 2 AL
The density u(-) = u(-; €) yields a probability measure of €2, namely
prob(A) = Z w(vy; &) for A C Qg{H.
veA

The expectation with respect to this probability measure is denoted
by E,(.¢), i-e., for a random variable f : QLY LR

EolfMl= Y wHof().

~eQIH1Y

Asymptotics of the probability measure of 2 for A — O under hy-
perbolic scaling is studied in Soga [1], [5].



Main Results [5]
Consider the stochastic action functional for each (zn,t;41)

ERtl(e) = Eu(.;g)[ > L('Ykatk—lag,]:n(,yk))At + UO(VO)} + htj4 1.
O<k<l+1

-
Thm. For each T'> 0, )1 >0 s.t. if A= At/Azxz < A1 then

1. vg+1:irngg+1(§).
2. “inf" is attained by &* which is bounded by (d\1)~ 1.
3. ¢t = Hp(wm, ty, ¢ + (Dav®)m).

In particular, (Dgv*)y, = Lg(xm,tk,g*ﬁ{"l) and this is bounded.
N J




Let Ax, At — 0 under hyperbolic scaling 0 < A\g < A= At/Ax < \q.
va: linear interpolation of v _ ;.
ua: step function given by (Dzv*)m,
YA - linear interpolation of the minimizing random walk starting
at (zn,t;41) next to a point (x,t).

a 2
Thm. For A = (Ax, At) — 0,

4
L va(@t) = (@) = inf | [ {L((5), 57/ ()}ds+10(1(0))] +ht.
0]

2. |va(z,t) —v(x,t)| < B1VAx on T x [0,T].
3. va — ~* unif. in probability for each regular point (x,t).
4

If v0 is semiconcave, then
¢

un(z,1) — vp(z, t) = /O La(y*(5), 5,7*(5))ds + vO(v*(0)).

5. Except any “small” nbhd. of shocks (non-regular points of v),

u, — vg uniformly.
N Y

* Semiconcavity assumption can be removed for d = 1.




Applications

d = 1 with the periodic setting [3], [4]:
e Time global stability of vf  ; and (Dzv*)m with fixed Az, At.

e Long time behaviors of ”71314—1 and (Dzv*),, for k — oo.

e Existence of periodic sol. ?7fn—|—l and (Dzv*);, as well as the
effective Hamiltonian hA.

e Numerical methods of classical & weak KAM theory.

e Selection problems of Z2-periodic ViSCOSity solutions and entropy
solutions.

Future works

e Similar results to [3], [4] for d > 1.
e Diffusive scaling limit, i.e., Ax, At — 0 with A:pQ/At = O(1).
e [oward system of equations.



