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Introduction

Consider initial problems of Hamilton-Jacobi equations

(HJ)

{
vt + H(x, t, vx) = h in Rd × (0, T ] (h: const.),

v(x,0) = v0(x) on Rd (v0 ∈ Lip).

Hamilton-Jacobi equations are closely related to
1. Classical mechanics (v is a generating function of a symplectic

transform);
2. Optimal control theory (v is a cost function);
3. Inviscid fluids (vx is an entropy solution);
4. Hamiltonian systems (a characteristic curve γ∗ of v is an orbit

and graph(vx) is an invariant set);
5. Classical KAM theory, weak KAM theory;

...

(HJ) must be considered in the class of weak sol. “viscosity solutions”.� �
Aim. Obtain approximation techniques for the viscosity sol. of

(HJ) by which we can approximate all of v, vx, γ∗.� �



Two Approximation techniques:
• the vanishing viscosity method (VVM), i.e., add νvxx and ν → 0+,
• the finite difference method (FDM), i.e., f ′(x) ∼ f(x+∆x)−f(x)

∆x .

→ Stochastic approach to VVM.
(Fleming ’69) Numerically inaccessible

→ Stochastic approach to FDM under hyperbolic scaling.
(Soga [1]-[5]) Numerically accessible

Why ”stochastic” in FDM? → ”Numerical viscosity”

Stochastic approach is different from the standard frameworks, yield-
ing new results.

————————————————————-
[1] Soga (’14), Nonlinear Analysis.
[2] Soga (’14), Mathematics of Computation.
[3] Soga, submitted.
[4] Soga, submitted.
[5] Soga, preprint.



Assumptions for H(x, t, p):

(H1) H(x, t, p) : Rd × R × Rd → R, C2, Hpp > 0, superlinear w.r.t. p.

(H2) The Legendre transf. L of H w.r.t. p satisfies |Lxj| ≤ α(|L|+1).

L(x, t, ξ) = sup
p∈Rd

{p · ξ − H(x, t, p)}.

(H3) All the derivatives of H up to the second order are bdd. on

Rd × R × K for each K ⊂⊂ Rd.

Under (H1)-(H3)� �
Convergence & error estimate for v, vx, γ∗ in FDM are not trivial,

where the standard framework seems hopeless.� �



Hyperbolic PDE ut(x, t) + aux(x, t) = 0,

u(x,0) = u0(x) on R.

⇒ u(x, t) = u0(x − at).

Add a parabolic term uν
t (x, t) + auν

x(x, t) = ν2uν
xx(x, t),

uν(x,0) = u0(x) on R.

⇒ uν(x, t) =

∫
R

1

2ν
√

πt
e
−(x−at−y)2

4ν2t u0(y)dy

=

∫
R

1√
2πt

e−
y2

2t u0(x − at +
√

2νy)dy.

uν → u as ν → 0 (vanishing viscosity method).



Stochastic interpretation

u(x, t) = u0(γ(0)), where

γ(s) = x − a(t − s): characteristic curve solving ODE

dγ(s) = a ds, γ(t) = x.

uν(x, t) = E[u0(γ
ν(0))], where

γν(s) = x − a(t − s) +
√

2νB(t − s): stochastic process solving SDE

dγν(s) = a ds −
√

2νdB(t − s), γν(t) = x.

γν → γ and uν → u as ν → 0 (law of large numbers).
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Finite difference method from stochastic viewpoint
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= · · · =
∑
n

P (xn)u0(xn) =
∑
γ

µ(γ)u0(γ
0),

P : binomial distribution on (2∆x)Z, if |aλ| < 1, with

average = xm+1 − atk+1, variance = (1 − a2λ2)tl+1
∆x2

∆t ,
µ(γ): prob. density of sample path γ of the corresponding random walk.

By hyperbolic scaling limit ∆x,∆t → 0, λ = ∆t/∆x = O(1)

P ⇀ δ(x − at), γ → γ(s) = x − a(t − s) (law of large numbers).

Thus uk
m → u(x, t) as ∆x,∆t → 0 with λ = O(1).



Preliminaries

Representation formulas for v and vx:

v(x, t) = inf
γ∈AC,γ(t)=x

[ ∫ t

0
L(γ(s), s, γ′(s))ds + v0(γ(0))

]
+ ht.

If (x, t): regular point of v (i.e. ∃ vx(x, t)) and γ∗: minimizer,

(1) vx(x, t) =

∫ t

0
Lx(γ

∗(s), s, γ∗′(s))ds + v0
x(γ

∗(0)).

Each minimizer γ∗ is a backward characteristic curve.



Even grid, odd grid and discretization:

∆x,∆t > 0: discretization parameters.

Geven := {m∆x |m ∈ Z, m = even}, Godd := {m∆x |m ∈ Z, m = odd}.
G :=

∪
k≥0

{
((Geven)

d × {t2k}) ∪ ((Godd)
d × {t2k+1})

}
, tk := k∆t,

G̃ :=
∪

k≥0

{
((Godd)

d × {t2k}) ∪ ((Geven)
d × {t2k+1})

}
.

(xm, tk) = (x1
m1

, . . . , xd
md

, tk) ∈ G, G̃.

(xm, tk), (xm+1, tk+1) for points of G,

(xm+1, tk), (xm, tk+1) for points of G̃ with 1 := (1, . . . ,1) ∈ Zd.

Consider the sets with the standard basis e1, . . . , ed of Rd,

Bi
+ := {σ1e1 + · · · + σded |σi = +1, σj = ±1, j = 1, . . . , d, j 6= i},

Bi
− := {σ1e1 + · · · + σded |σi = −1, σj = ±1, j = 1, . . . , d, j 6= i},

B := {σ1e1 + · · · + σded |σj = ±1, j = 1, . . . , d} = Bi
+ ∪ Bi

−,

b := ]B = 2d, b̄ := ]B±
i = 2d−1.



For each xm ∈ (Geven)d,
{xm+ω}ω∈B ⊂ (Godd)

d forms the d-cube Cm with the centre xm,
{xm+ω}ω∈Bi

±
⊂ (Godd)

d form the two sides of Cm, facing each other

and orthogonal to ei.
The same for each xm ∈ (Godd)

d.

Let v = vk
m+1 denote a function v : G̃ 3 (xm+1, tk) 7→ vk

m+1 ∈ R.

Define spatial difference derivatives of vk
m+1 on G as

(Di
xvk)m :=


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∑
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+

vk
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)
−
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−
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1

2∆x
, i = 1, . . . , d,

(Dxvk)m :=
(
(D1

xvk)m, . . . , (Dd
xvk)m

)
.

Define time difference derivatives of vk
m+1 as

Dtv
k+1
m :=

vk+1
m − b−1

∑
ω∈B

vk
m+ω

 1

∆t
.



� �
Our discretization of (HJ) is

(HJ)∆

{
Dtv

k+1
m + H(xm, tk, (Dxvk)m) = h in G̃,

v0
m+1 = v0(xm+1).

Note that vk+1
m is unknown and is determined by {vk

m+ω}ω∈B.
� �
The diffusion effect of (HJ)∆ at each grid point within ∆t is char-

acterized by Cm.

Under hyperbolic scaling 0 < λ0 ≤ ∆t/∆x, the propagation speed is

finite.

minimizer



Inhomogeneous controlled random walks in G̃:

Consider backward random walks γ within [0, tl+1] which start from
xn at tl+1 and move by ω∆x, ω ∈ B in each backward time step ∆t:

γ = {γk}k=l′,··· ,l+1, γl+1 = xn, γk = γk+1 + ω∆x.

More precisely, we set the following for each (xn, tl+1) ∈ G̃ and 0 ≤ l:

X
l+1,n
k+1 := {xm | (xm, tk+1) ∈ G̃, ‖ xm − xn ‖≤‖ 1 ‖ (l − k)∆x}, k ≤ l,

G = Gl+1,n :=
∪

0≤k≤l

(
X

l+1,n
k+1 × {tk+1}

)
⊂ G̃,

ξ : G 3 (xm, tk+1) 7→ ξk+1
m ∈ ([−(dλ)−1, (dλ)−1])d, λ = ∆t/∆x,

ρ : G × B 3 (xm, tk+1;ω) 7→ ρk+1
m (ω) := b−1(1 − λ(ω · ξk+1

m )) ∈ [0,1],

γ : {0,1, . . . , l + 1} 3 k 7→ γk ∈ X
l+1,n
k+1 , γk = γk+1 + ω∆x, ω ∈ B,

Ωl+1
n : the family of these γ.

{ρk+1
m (ω)}ω∈B: a transition probability from (xm, tk+1) to points be-

longing to {(xm + ω∆x, tk)}ω∈B.

ξ: control of γ (↔ drift term in SDE).



Define the density of each path γ ∈ Ωl+1
n as

µ(γ) :=
∏

0≤k≤l

ρk+1
m(γk+1)

(ωk+1),

where ωk+1 := (γk − γk+1)/2∆x.

The density µ(·) = µ(·; ξ) yields a probability measure of Ω, namely

prob(A) =
∑
γ∈A

µ(γ; ξ) for A ⊂ Ωl+1
n .

The expectation with respect to this probability measure is denoted

by Eµ(·;ξ), i.e., for a random variable f : Ωl+1,l′ → R

Eµ(·;ξ)[f(γ)] :=
∑

γ∈Ωl+1,l′
µ(γ; ξ)f(γ).

Asymptotics of the probability measure of Ω for ∆ → 0 under hy-

perbolic scaling is studied in Soga [1], [5].



Main Results [5]

Consider the stochastic action functional for each (xn, tl+1)

El+1
n (ξ) := Eµ(·;ξ)

[ ∑
0<k≤l+1

L(γk, tk−1, ξk
m(γk)

)∆t + v0(γ0)
]
+ htl+1.

� �
Thm. For each T > 0, ∃λ1 > 0 s.t. if λ = ∆t/∆x < λ1 then

1. vl+1
n = inf

ξ
El+1

n (ξ).

2. “inf” is attained by ξ∗ which is bounded by (dλ1)
−1.

3. ξ∗k+1
m = Hp(xm, tk, c + (Dxvk)m).

In particular, (Dxvk)m = Lξ(xm, tk, ξ∗k+1
m ) and this is bounded.� �



Let ∆x,∆t → 0 under hyperbolic scaling 0 < λ0 ≤ λ = ∆t/∆x < λ1.

v∆: linear interpolation of vk
m+1,

u∆: step function given by (Dxvk)m,

γ∆: linear interpolation of the minimizing random walk starting

at (xn, tl+1) next to a point (x, t).
� �
Thm. For ∆ = (∆x,∆t) → 0,

1. v∆(x, t) → v(x, t) = inf
γ

[ ∫ t

0
{L(γ(s), s, γ′(s))}ds+v0(γ(0))

]
+ht.

2. |v∆(x, t) − v(x, t)| ≤ β1
√

∆x on T × [0, T ].

3. γ∆ → γ∗ unif. in probability for each regular point (x, t).

4. If v0 is semiconcave, then

u∆(x, t) → vx(x, t) =

∫ t

0
Lx(γ

∗(s), s, γ∗′(s))ds + v0
x(γ

∗(0)).

5. Except any “small” nbhd. of shocks (non-regular points of v)，
u∆ → vx uniformly.� �

∗ Semiconcavity assumption can be removed for d = 1.



Applications

d = 1 with the periodic setting [3], [4]:

• Time global stability of vk
m+1 and (Dxvk)m with fixed ∆x,∆t.

• Long time behaviors of vk
m+1 and (Dxvk)m for k → ∞.

• Existence of periodic sol. v̄k
m+1 and (Dxv̄k)m as well as the

effective Hamiltonian h̄∆.

• Numerical methods of classical & weak KAM theory.

• Selection problems of Z2-periodic viscosity solutions and entropy

solutions.

Future works

• Similar results to [3], [4] for d > 1.

• Diffusive scaling limit, i.e., ∆x,∆t → 0 with ∆x2/∆t = O(1).

• Toward system of equations.


