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Oracle Turing machines

ϕ ∈ B := Σ∗ → Σ∗

F : ⊆ B → B, ϕ 7→ Mϕ

c ϕ(c)

ϕ

timeM(ϕ, a)

|ϕ|(n) := max
|a|≤n
|ϕ(a)|, |ϕ| : N→ N

Second-order polynomials...

Theorem

Closed under composition.

Corollary

Preserves polynomial-time
computability.
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Comments

Original definition: bounded recursion scheme.

Theorem (Cook, Kapron, Urquart)

Coincides with the lambda closure of the polytime functions and a
limited recursion operator.

Be carefull with resource bounded machines!

Theorem

The length function is not
polytime.

Can not evaluate running-
times.

Clockability.

Theorem (Kawamura, S.)

Clocking is impossible.
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Oracle polynomial-time

ci di

a Mϕ(a)

M

ϕ Mϕ

Theorem

Total operators have
step-counts.

t : N→ N is step-count

if

timeM(ϕ, a) ≤ t(mϕ,a),

where

mϕ,a := max{|a|, |di |}.

Lemma

Step-count condition holds in
each step.

because: total.

Theorem

M runs in time P  n 7→ P(ln, n) is step-count.
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Opt but not pt

Example

Consider the operator
F (ϕ)(a) := ϕ|a|(1).

Consider ϕ(a) := aa.
Then |F (ϕ)| ' 2|a|.
 F not polytime.
Essentially iteration operator.

a

ϕ

time(ϕ, a)

= O(m2
ϕ,a)

.
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length and lookahead revisions

ci di

a Mϕ(a)

M

ϕ Mϕ

Definition

finite length revision
(spt).

finite lookahead revision
(mpt).

In both cases

polynomial r.t.:

(l , n) 7→ (p ◦ l)r (p(n)) + p(n).

Lemma

Finite length revision  finite lookahead revision.

First query can not be bigger than p(|a|)... etc.

Have to modify machines.
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Examples

Examples

F (ϕ)(a) := max{|ϕ(b)| | b ⊆ a}

is polytime has finite
lookahead revision but no finite length revision.

Iteration: no finite lookahead revision but not polytime.

There is an operator F that is polytime but not mpt. First
define functionals Fi by

F0(ϕ) := ε and Fn+1(ϕ) := (ϕ ◦ ϕ)(Fn(ϕ))≤|ϕ(ε)|.

Then set
F (ϕ)(a) := F|a|(ϕ).

This operator is polytime but not mpt.
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R(ϕ, a, ψ, ci) := ϕ(ci ,R(ϕ, a, ψ, c)) if smaller than |ψ(ci)|.

Lemma (Kapron, S.)

R is mpt.

Theorem

The lambda closure of mpt are the feasible functionals.
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Conclusion.
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Thanks!

Thank you for listening!
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