
Kyoto, 13 February 2023 Rigorous Function Calculi – 1 / 48

Rigorous Function Calculi

Theory, Practice and Problems

Pieter Collins

Department of Advanced Computing Sciences

Maastricht University

pieter.collins@maastrichtuniversity.nl

Computing with Infinite Data (CID)

Kyoto, 13 Febrary 2023

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Marie Skłodowska-Curie grant agreement No 731143.

Introduction

Introduction

• Outline

Motivation

Theory

Practice

Problems

Conclusions

Kyoto, 13 February 2023 Rigorous Function Calculi – 2 / 48

Outline

Introduction

• Outline

Motivation

Theory

Practice

Problems

Conclusions

Kyoto, 13 February 2023 Rigorous Function Calculi – 3 / 48

• Motivation — Dynamic Systems

• Theory — Computable Analysis

• Practice — Rigorous Numerics

• Problems — To work on together!

• Concluding Remarks

Motivation — Dynamic Systems

Introduction

Motivation

• Function calculus

• Applications

• Hybrid systems

• Function calculus in CID

• Other tools

• A quick look

Theory

Practice

Problems

Conclusions

Kyoto, 13 February 2023 Rigorous Function Calculi – 4 / 48

What is function calculus?

Kyoto, 13 February 2023 Rigorous Function Calculi – 5 / 48

A function calculus is a computational toolbox for working with functions on

continuous spaces.

Many different function spaces: continuous, smooth, measurable, Sobolev,

piecewise, etc.

We would like to be able to work with functions in a natural, rigorous, and efficient

way!

Rigour is especially important in mathematical proofs, verification of safety-critical

systems, and long chains of reasoning.

Why function calculus?

Kyoto, 13 February 2023 Rigorous Function Calculi – 6 / 48

Many problems in applied mathematics are formulated in terms of functions:

• Trajectories and flow tubes of ordinary differential equations.

• Trajectory sets of trajectories for differential inclusions.

• Probability densities of stochastic systems.

• State spaces and solutions of partial differential equations.

• Feedback for control systems.

• Crossing times for hybrid systems.

• Parametrised families of solutions.

• Reachable and safe sets.

Verification of hybrid systems

Kyoto, 13 February 2023 Rigorous Function Calculi – 7 / 48

A problem requiring many different function calculus operations is verification of

hybrid systems. A hybrid system is a dynamic system in which

the continuous state in location qi follows a differential equation ẋ = fi(x),

until some guard condition gij(x) > 0 becomes true,

at which time the state jumps to x′ = rij(x) in location qj .

The safety verification problem is to determine whether, given a set X0 of initial

states, and a set S of safe states, the evolution starting in X0 remains in S.

Function calculus for hybrid systems

Kyoto, 13 February 2023 Rigorous Function Calculi – 8 / 48

For application to verification of hybrid dynamic systems, our function calculus

should therefore at the least support:

• Solution of ordinary differential equations φ̇(x, t) = f(φ(x, t)).

• Solution of single-equation implicit function problems g(φ(x, τ(x))) = 0.

• Composition of functions r ◦ φ ◦ (idx, τ)

• Constrained feasibility ψ(D) ∩ C ?
= ∅.

• Over approximation of the range f(D).

These operations must be implemented rigorously and efficiently.

Function Calculus in CID

Kyoto, 13 February 2023 Rigorous Function Calculi – 9 / 48

Frameworks for function calculi in EU project “Computing with Infinite Data”:

• ARIADNE (Collins, Geretti, Villa et al.) for verification of hybrid systems (C++).

http://www.ariadne-cps.org/

• AERN tool (Konec̆ný et al.) for effective real computation (Haskell).

http://michalkonecny.github.io/aern/ site/

• iRRAM package (Müller, Brauße) for real number arithmetic (C++).

http://irram.uni-trier.de/

• ERC language (Ziegler, Park et al.) for exact real computation.

Other Function Calculus Approaches

Kyoto, 13 February 2023 Rigorous Function Calculi – 10 / 48

Other tools for rigorous numerics:

• Cosy Infinity (Berz & Makino)

• CAPD Library (Mrozek, Zgliczynski, Wilczak et al.)

• Flow* (Chen, Abraham et al.)

• VNode (Nedialkov et al.)

• CORA (Althoff et al.)

• JuliaReach (Benet et al.)

• Ellipsoidal calculus (Kurzhanski & Valyi)

• Set-valued viability (Cardaliaguet, Quincampoix & Saint-Pierre)

• Taylor-ellipsoid models (Houska, Villanueva & Chachuat)

• AWA (Lohner)

• DynIBEX (Chabert, Jaulin; Chapoutot,Alexandre dit Sandretto et al.)

A quick look at ARIADNE (in C++)

Kyoto, 13 February 2023 Rigorous Function Calculi – 11 / 48

/ / F i l e c o m p u t e a r e a l . c p p

/ / B u i l d u s i n g : c l a n g ++ c o m p u t e a r e a l . c p p − l a r i a d n e − o c o m p u t

#include <ariadne/ariadne .hpp >

using namespace Ariadne;

#define PRINT (expr) { std::cout <<#expr <<": " <<(expr)<<"\n"; }

int main () {

auto r = 6* atan (1/ sqrt(3_q));

/ / D e f i n e a r e a l num ber .

/ / The ’ q ’ c o n v e r t s t o an A r i a d n e R a t i o n a l

PRINT(r);

PRINT(r.compute(Accuracy (123 _bits)));

/ / Compute w i t h a maximum e r r o r o f 1 / 2 ˆ 1 2 3

PRINT(r.compute(Effort (123)));

/ / Compute e . g . u s i n g 123 b i t s o f p r e c i s i o n .

PRINT(r.compute(Effort (123)). get(precision (75)));

/ / Compute , and r e t u r n w i t h l e s s p r e c i s i o n

}

A quick look at ARIADNE (in Python)

Kyoto, 13 February 2023 Rigorous Function Calculi – 12 / 48

F i l e c o m p u t e a r e a l . py

from ariadne import *

if __name__ ==’__main__ ’:

r = 6* atan (1/ sqrt (3))

D e f i n e a r e a l num ber .

s q r t (. . .) c o n v e r t s t o an A r i a d n e R e a l

print(r)

print(r.compute(Accuracy (bips =123)))

Compute w i t h a maximum e r r o r o f 1 / 2 ˆ 1 2 3

print(r.compute(Effort (123)))

Compute e . g . u s i n g 123 b i t s o f p r e c i s i o n .

print(r.compute(Effort (123)). get(precision (75)))

Compute , and r e t u r n w i t h l e s s p r e c i s i o n

Theory — Computable Analysis

Introduction

Motivation

Theory

• Effective information

• Validated information

• Concrete objects

• Computable analysis

• Computable functions

• Continuous functions

• Discontinuous functions

• Measurable functions

Practice

Problems

Conclusions

Kyoto, 13 February 2023 Rigorous Function Calculi – 13 / 48

Effective and symbolic information

Kyoto, 13 February 2023 Rigorous Function Calculi – 14 / 48

Objects from uncountable spaces need an infinite amount of data to represent

exactly.

e.g. Real numbers can be specified by their decimal expansion,

such as π = 3.14159 · · · .

There may be more natural descriptions of an object, but they can all be encoded

as a sequence over some alphabet Σ.

Effective and symbolic information

Kyoto, 13 February 2023 Rigorous Function Calculi – 14 / 48

Objects from uncountable spaces need an infinite amount of data to represent

exactly.

e.g. Real numbers can be specified by their decimal expansion,

such as π = 3.14159 · · · .

There may be more natural descriptions of an object, but they can all be encoded

as a sequence over some alphabet Σ.

It’s slightly problematic to specify an infinite amount of information in practice...

Effective and symbolic information

Kyoto, 13 February 2023 Rigorous Function Calculi – 14 / 48

Objects from uncountable spaces need an infinite amount of data to represent

exactly.

e.g. Real numbers can be specified by their decimal expansion,

such as π = 3.14159 · · · .

There may be more natural descriptions of an object, but they can all be encoded

as a sequence over some alphabet Σ.

It’s slightly problematic to specify an infinite amount of information in practice...

An object is computable if it is possible to compute a complete description from a

finite amount of information.

e.g. π = 4 limn→∞

∑n
k=0

(−1)k

2k+1 = 4atan(1).

Validated and approximate information

Kyoto, 13 February 2023 Rigorous Function Calculi – 15 / 48

Since we generally don’t want to wait forever for our computations to terminate, we

work with finite-precision approximations.

Classical numerical packages work with floating-point numbers and do not control

the errors.

• e.g. In double-precision, π ∼= 3.141592653589793.

A common approximation is π ≈ 22/7 ∼= 3.142857142857143.

Results of predicates on approximate objects could be wrong, so should not be

used!.

Instead, we provide an error bound, or lower and upper bounds.

e.g. Given π = 3.14159 · · · , we know π ∈ [3.14159:3.14160].

Such information is validated, and guaranteed to be correct.

Obtain rigorous results by working with validated objects throught.

(Approximate objects can still be useful for preconditioning rigorous algorithms.)

Algebraic and concrete objects

Kyoto, 13 February 2023 Rigorous Function Calculi – 16 / 48

Algbraic objects from countable spaces like Z,Q, and the dyadic numbers Q2 can

be described with a finite amout of data, support exact operations, and can be

decidably compared and tested for equality.

Working with these numbers directly is inefficient, as memory allocation is

expensive, and representations get large.

• e.g. f(x) = 23
6 x(1− x), f4(12) = 29529021591697849/30814043149172736.

It is fastest to work with builtin objects of a fixed size, like double.

“Multiple-sized” objects, such as floating-point numbers provided by the MPFR

library can be allocated efficiently and have reasonable performance.

However, fixed-size types are finite and cannot support exact arithmetic.

Instead, arithmetic is rounded, either upwards, downwards or to the nearest

representable value.

Using outward-rounded arithmetic preserves bounds for quantities.

e.g. If x ∈ [x :x] and y ∈ [y :y] then x− y ∈ [x−↓ y : x−↑ y].

Computable analysis

Kyoto, 13 February 2023 Rigorous Function Calculi – 17 / 48

Encode objects from continuous spaces by streams of data.

• A representation of a space X using alphabet Σ is a partial surjective function

δ : Σω 7→ X satisfying additional admissibility properties.

• A δ-name of x ∈ X is a sequence p such that δ(p) = x.

Representations δ1, δ2 of X are equivalent if for any x ∈ X a δ2-name of x can

be computed from any valid δ1-name, and vice-versa.

A type X = (X, [δ]) is a space with an equivalence class of representations.

A representation δ of X induces the quotient topology on X , so any type also is a

topological space.

An operation f : X → Y is computable if there is a Turing-computable function

µ : Σω 7→ Σω such that given any valid name p ∈ dom(δX), we have

δY (µ(p)) = f(δX(p)).

Computable functions

Kyoto, 13 February 2023 Rigorous Function Calculi – 18 / 48

One of the fundamental results of computable analysis is that:

Any computable function f : X → Y is continuous .

Note that “computable” means that f can be effectively evaluated. It may still be

possible to give a complete description of f .

• e.g. Let h(x) = 0 for x < 0 and h(x) = 1 for x > 1. Then h is

uncomputable! What is the value of h(−1 + 3× 0.3333 · · ·)?
There is a standard way of encoding continuous functions f : X → Y such that:

• The corresponding represenation γδX ,δY : Σω 7→ C(X;Y) is admissible,

• f has a computable name if, and only if, it is a computable function, and

• The evaluation map ε(f, x) : C(X;Y)×X → Y taking (f, x) 7→ f(x) is

computable.

Hence given types X, Y, there is a natural type of continuous functions X → Y,

also denoted C(X;Y) or YX.

Continuous function types

Kyoto, 13 February 2023 Rigorous Function Calculi – 19 / 48

There are many important subtypes of (continuous) functions.

Functions f : X → Y are defined by:

• Evaluation ε(f, x) = f(x).

Combining evaluations yields:

• Composition [f ◦ g](x) = f(g(x)).

Continuous real functions on compact domains D have a natural uniform norm

• Norm ||f ||
∞,D = supx∈D |f(x)|.

By the Weierstrass Approximation Theorem, can uniformly approximate a

continuous function on a bounded domain by a polynomial

• Polynomial f̃D,ǫ = {f | ‖f − f̃‖∞,D 6 ǫ.

Differentiation is uncomputable! Need to specify derivative information separately:

• Differential f (6n)(x) = 〈f(x), f ′(x), f ′′(x), . . . , f (n)(x)〉.
Often functions are defined by a formula involving elementary operations.

• Formula f(x) generated by 1, x,+,−,×,÷, |·|, exp, log, sin, cos, atan.

Discontinuous function types

Kyoto, 13 February 2023 Rigorous Function Calculi – 20 / 48

Multivalued functions take values in (e.g. compact) sets, defined by:

• Evaluation F : X → K(Y).

Compact-valued functions are naturally upper-semicontinuous.

Piecewise-continuous functions f |Ai
= fi based on topological partition

{Ai | i ∈ I} for closed Ai with interior Ui = Ai \
⋃

j 6=iAj .

• Semicontinuous compact-set evaluation: F (x) = {fi(x) | x ∈ Ai} ∈ K(Y).

• Singleton evaluation in the interior of a continuity domain: f(x) = fi(x) if x ∈ Ui.

Integrable function spaces Lp defined as the effective (Cauchy) completion of

polynomial/continuous/piecewise-continuous functions under the p-norms.

• Norms ‖f‖p,D =
(∫

D f(x)
p dx

)1/p
.

Sobolev-spaces W k,p of functions whose k-th derivative is p-integrable defined in

terms of integrable functions and weak derivative or antiderivatives.

Measurable functions from (X,µ) to Y defined by:

• Preimage f−1 : O(Y) → M<(X,µ)

Measurable function type

Kyoto, 13 February 2023 Rigorous Function Calculi – 21 / 48

Fix a measure µ on X , defined as a valuation on open sets µ : O(X) → R+
<.

Define the µ-lower-measurable sets as limits of sequences (Un) satisfying

∀m > n, µ(Um ∩ Un) > µ(Un)− 2−n.

The limit U∞ satisfies µ(Un \ U∞) 6 2−n

Intersection, countable union and Cartesian product are computable operations.

The type of measurable functions from (X,µ) to (Y, τ) is the type of maps

f−1 : O(Y) → M<(X,µ) such that

V1 ⊂ V2 =⇒ f−1(V1) ⊂ f−1(V2)

Denote µ-measurable functions from X to Y by f : X µ Y .

Clearly, if f : Y → Z is continuous, and g : X µ Y is µ-measurable, then the

composition f ◦ g : X µ Z can be computed.

If f : X µ Y and g : X µ Z the product f × g : X µ Y ×Z is computable

if X,Y are countably-based spaces, since (f × g)−1(U × V) = f−1(U) ∩ g−1(V).

Practice — Rigorous Numerics

Introduction

Motivation

Theory

Practice

• Numbers and logic

• Function types

• Function models

• Algebraic equations

• Differential equations

• Function sets

• Hybrid systems

Problems

Conclusions

Kyoto, 13 February 2023 Rigorous Function Calculi – 22 / 48

Numbers and Logic

Kyoto, 13 February 2023 Rigorous Function Calculi – 23 / 48

ARIADNE supports Integer, Dyadic and Rational classes:

w=Dyadic (5,3u) # w i s 5 / 2 ˆ 3

The Real number class can be defined by a symbolic formula:

r=Real (6* atan (1/ sqrt (3)))

1

Bounds on a real number can be extracted with a given precision:

x=Bounds [FloatMP](r.get(precision (128)))

Comparing real numbers is undecidable, so must return a Kleenean object:

k=Kleenean (sin(r)>0)

This can be checked using a given amount of computational “effort”:

v=k.check(Effort (2))

The result can be converted to a boolean if reaquired:

b=possibly (v)

Function types

Kyoto, 13 February 2023 Rigorous Function Calculi – 24 / 48

ARIADNE currently supports functions on Euclidean space, distinguishing Scalar

and Vector arguments and results. Function types are tagged by the information

provided, which can be Effective, Validated or Approximate.

a=Dyadic ("1.875"); b=Decimal("0.3")

x= EffectiveVectorMultivariateFunction .identity (2)

h= EffectiveVectorMultivariateFunction ([a-x[0]*x[0]-b*x[1],x[0]])

Functions can be evaluated on (vectors of) concrete numbers:

v=Vector [FloatDP](["0.5" ,1],dp)

h(v)

evaluate (h,v)

Automatic differentiation is used to compute the derivatives at a point:

h.jacobian (v)

jacobian (h,v)

h.differential (v,3)

Function models

Kyoto, 13 February 2023 Rigorous Function Calculi – 25 / 48

Most concrete function approximations are only valid over bounded domains.

A powerful rigorous calculus for continuous functions Rn → R is based around

the Makino & Berz’s Taylor models: approximations ‖f − p ◦ s−1‖∞ 6 e. where

s is a scaling function, p is a polynomial and e is an error bound.

ba

s−1

−1 +10

e

f(x)

p(z)

x z

Standard functions operations, including evaluation, arithmetic, composition, and

antidifferentiation, are available for Taylor models.

The efficiency of Taylor models relies on sweeping terms of p with small

coefficients into the error e.

Taylor models can be computed using a Taylor series with remainder term:

p(z) =
∑n−1

k=0
1
k!f

(k)(0) zk; e = rad
(
1
n! [f

(n)]([−1,+1])
)
.

Function models

Kyoto, 13 February 2023 Rigorous Function Calculi – 26 / 48

Compute a polynomial approximation of h over a finite domain.

dom = BoxDomainType ([[0 ,1] ,[dy_ (0.5) , dy_ (1.5)]])

th = ValidatedVectorMultivariateTaylorFunctionModelDP (

dom ,h,ThresholdSweeper (dp ,1e -4));

Pre-compose this by the original h to obtain the second iterate.

thh = compose(h,th);

Evaluate at the orignal x.

evaluate (thh ,v);

h(h(v));

Compute the norm and range:

thh.range ()

norm(thh)

Algebraic equations

Kyoto, 13 February 2023 Rigorous Function Calculi – 27 / 48

Solve a parametrised system of algebraic equations g(x, h(x)) = 0.

Requires an computational implementation of the implicit function theorem: a

solution exists on a neighbourhood of x0 if D2g(x0, y0) is nonsingular.

ARIADNE has iterative solvers based on the interval Newton operator

ĥ′(x) = N [g, ĥ, h](x) = h(x)−D2f(x, ĥ(x))
−1 g(x, h(x))

and the Krawcykz operator is

K[g, ĥ, h](x) = h(x)−M(x) g(x, h(x))+(I−M(x)Ĵ(x))(ĥ(x)−h(x))
where Ĵ(x) = D2f(x, ĥ(x)) and M(x) ≈ D2f(x, h(x))

−1.

Algebraic equations

Kyoto, 13 February 2023 Rigorous Function Calculi – 28 / 48

Set g(x, y) = 4 + x− y2:

x=RealVariable ("x"); y=RealVariable ("y")

g=make_function ([x,y],4+x-y*y)

Look for solutions over [−1:+1] with values also in [−1:+1]:
xdom=BoxDomainType ([[-1 ,+1]])

yrng=IntervalDomainType ([+1 ,+3])

Compute the solution h to the scalar equation g(x, h(x)) = 0.

solver =IntervalNewtonSolver (1e-8 ,6);

h=solver .implicit (g, xdom ,yrng);

Solution is y =
√
4 + x = 2 + x/4− x2/64 + · · · .

Differential equations

Kyoto, 13 February 2023 Rigorous Function Calculi – 29 / 48

The flow φ of ẋ = f(x, a) can be computed for t ∈ [0, h] using the Picard operator:

φ(x, t, a) = x+
∫ t
0f(φ(x, τ, a), a)dτ.

Use an initial bound for the flow over a domain D, typically a box B such that

D + hf(B) ⊂ B.

Alternatively, compute Taylor expansion of φ(x, t), which satisfies the recurrence:

∂φ|α|+k+1

∂xα∂tk+1
=
∂(f ◦ φ)|α|+k

∂xα∂tk

Then taking cα,k = ∂|α|+kφ

∂xα∂tk

∣∣∣
xc,t0

and Cα,k = ∂|α|+kφ

∂xαtk

∣∣∣
B×[0,h]

, we have

φ̂(x, t) =
∑

|α|6m∧k6n

cα,k(x−xc)α(t−t0)k ±
∑

|α|6m∧k6n
|α|=m∨k=n

|Cα,k−cα,k| |x−xc|α |t−t0|k.

Differential equations

Kyoto, 13 February 2023 Rigorous Function Calculi – 30 / 48

Consider the differential equation ẋ = f(x) = x for initial conditions in [−1:+1]:
f= ValidatedVectorMultivariateFunction .identity (1);

dom=BoxDomainType ([[-1 ,+1]]);

For t ∈ [0, 1/2], the flow remains in the set [−3:+3].
h=1/ two;

bbx=BoxDomainType ([[-3 ,+3]]);

Compute the flow by evaluating Taylor series coefficients:

tolerance =1e-8; order =12

integrator =TaylorSeriesIntegrator (tolerance ,order);

flow=integrator .flow_step (f,dom ,h);

Differential equations

Kyoto, 13 February 2023 Rigorous Function Calculi – 31 / 48

Define a more complicated problem:

x=RealVariable ("x")

f=make_function ([x],[-x+sin(x)])

dom=BoxDomainType ([[1,2]])

h=Dyadic ("0.125")

Solve using Picard iteration:

tolerance =1e-9

integrator = TaylorPicardIntegrator (tolerance)

flow=integrator .flow_step (f,dom ,h)

print (flow)

Computed solution:

VectorFunctionPatch(result_size=1,dom=[{1.0:2.0},{-0.03125:0.03125}], rng=[{0.96542248:2.0350336}])

[{0.3272*x0^6*x1^5 -2.593*x0^5*x1^5 +8.408*x0^4*x1^5 -14.52*x0^3*x1^5 +14.17*x0^2*x1^5 -7.419*x0*x1^5

+1.629*x1^5 +0.04681*x0^8*x1^4 -0.5617*x0^7*x1^4 +2.778*x0^6*x1^4 -7.574*x0^5*x1^4 +12.80*x0^4*x1^4

-13.90*x0^3*x1^4 +9.505*x0^2*x1^4 -3.747*x0*x1^4 +0.6524*x1^4 -0.01165*x0^8*x1^3 +0.1205*x0^7*x1^3

-0.4802*x0^6*x1^3 +0.9949*x0^5*x1^3 -1.317*x0^4*x1^3 +1.142*x0^3*x1^3 -0.6297*x0^2*x1^3 +0.2012*x0*x1^3

-0.02840*x1^3 -0.0003479*x0^9*x1^2 +0.004808*x0^8*x1^2 -0.02333*x0^7*x1^2 +0.04241*x0^6*x1^2

-0.02796*x0^5*x1^2 +0.07998*x0^4*x1^2 -0.06351*x0^3*x1^2 +0.03335*x0^2*x1^2 -0.01044*x0*x1^2

+0.001481*x1^2 +0.00002472*x0^8*x1 -0.0003107*x0^7*x1 +0.0003195*x0^6*x1 +0.007722*x0^5*x1

+0.0008026*x0^4*x1 -0.1674*x0^3*x1 +0.0004201*x0^2*x1 -0.0001451*x0*x1 +0.00002249*x1 +1.000*x0

+/-0.000000000470}]

Function sets

Kyoto, 13 February 2023 Rigorous Function Calculi – 32 / 48

A powerful way of defining sets is using functions to express constraints, and to

map points from a parameter domain into the space of interest:

R = {x | f(x) ∈ C}; S = {h(p) | p ∈ D | g(p) ∈ E}.
Intersection and image for constrained image sets S are expressible using

function composition:

S ∩R = {h(p) | p ∈ D | g(p) ∈ E ∧ [f ◦ h](p) ∈ C};
f(S) = {[f ◦ h](p) | p ∈ D | g(p) ∈ C}.

Constrained image sets are overt and compact, meaning that they have verifiable

intersection and subset relations with open sets.

Reduces to nonlinear feasibility problems of the form {p ∈ D ∧ g(p) ∈ C} ?
= ∅.

Hybrid system — water tank

Kyoto, 13 February 2023 Rigorous Function Calculi – 33 / 48

The water height h in a tank with continuous outflow and a valve-restricted inflow

needs to be controlled between hmin and hmax.

By Torricelli’s law, ḣ = −a
√
h+ b α where α ∈ [0, 1] is the aperture of the inlet

valve, a and b are physical constants.

The valve can be opened or closed at a speed of 1/T and it is controlled so that it

starts to open as soon as h 6 hopen and starts to close as soon as h > hclose.

The automaton starts in location opening, the value of α increases with speed

1/T and the water level follows Torricelli’s law. As soon as α = 1 (the valve is

fully open) the urgent transition to open is taken. The valve is kept open until

h = hclose, when the automaton switches to location closing and the valve starts

closing with speed −1/T . The urgent transition to closed is activated when

α = 0, and the water level decreases following the dynamics ḣ = −a
√
h until

h = hopen and the transition to opening is taken.

Hybrid system — water tank

Kyoto, 13 February 2023 Rigorous Function Calculi – 34 / 48

Hybrid system — water tank

Kyoto, 13 February 2023 Rigorous Function Calculi – 35 / 48

A computation of one evolution loop starting from {(opening, 0, 0)} using Ariadne

is shown.

The result is a rigorous and accurate over-approximation of the exact reachable

set.

(Computation time ≈ 6s on a 2.4 GHz Intel Core 2 Duo with 4 Gb of memory.)

Open Problems

Introduction

Motivation

Theory

Practice

Problems

• Naming

• Semantics

• Parameters

• Dispatching

• Improvements

• Extensions

• Verification

• Documentation

Conclusions

Kyoto, 13 February 2023 Rigorous Function Calculi – 36 / 48

Naming conventions

Kyoto, 13 February 2023 Rigorous Function Calculi – 37 / 48

Good naming schemes make code easier to write and understand!

• Should Function<Real(Real)> be Effective by default?

• Should Function be required to be total, or allowed to be partial?

• Should Function be parametrised by the type of the domain set?

• Should we have separate ContinuousFunction, SmoothFunction,

ElementaryFunction classes?

Choices for semantics

Kyoto, 13 February 2023 Rigorous Function Calculi – 38 / 48

What does Validated information mean? The former is stronger than the latter:

• Information giving an (open or compact) set x̂ of possible values of x : X.

• A finite prefix w ∈ Σ∗ of a name p ∈ Σω of x : X under a representation

δ : Σω → X.

How can we mix Effective and Validated information in computations?

• Usually, one can choose a sensible Validated answer.

• There are corner cases (like evaluating a constant function) where this fails!

Should we consider a separate Symbolic information for problem specification

without an Effective implementation?

Parametrising computations

Kyoto, 13 February 2023 Rigorous Function Calculi – 39 / 48

Builtin functions like mul and sin, and functionals like flow of a differential

equation, have many possible implementations.

How can we select which implementation to use within a particular computation?

The more complicated solvers have individually-tunable accuracy parameters.

How can we tune computational parameters in solvers hidden within a computation?

• Since the final answer may be a very simple object e.g. a Kleenean, we do

not have access to these parameters at the top layer.

• Currently, computing both Kleenean and Real is controlled by an Effort

parameter. This could correspond to the bit-length of the computed name.

• Currently, data types specify their own “core” operations (e.g.

Bounds<FloatMP> uses rounded MPFR operations for elementary functions.

• In metric spaces only, controlling the Accuracy makes sense.

• Maybe solver parameters should be mappings of Effort to the actual values.

• Ultimately, designing efficient algorithms relies on estimating the trade-off

between accuracy and computational complexity.

Double-dispatching

Kyoto, 13 February 2023 Rigorous Function Calculi – 40 / 48

Most types have multiple equivalent representations. How do we combine these?

Object-oriented languages provide polymorphic dispatching to implement generic

classes.

• Generic classes, such as ValidatedReal can dynamically store objects of

different types, such as Bounds<Dyadic> and Ball<FloatMP,FloatDP>.

• Dispatching (a fixed set of) unary operators in C++ is easily accomplished

using virtual functions.

• Dynamically dispatching binary functions requires double dispatching

• Unfortunately, there’s no good solution to double-dispatching in C++.

• In ARIADNE, we provide wrappers which can semi-automatically

doubly-dispatch certain pairs of arguments.

Currently, the Number classes support polymorphic dispatching, including

double-dispatched binary arithmetic, while the Real class only used symbolic

operations. Is this distinction worth keeping?

Clarity and efficiency improvements

Kyoto, 13 February 2023 Rigorous Function Calculi – 41 / 48

There are many different idioms used in the code. These should be cleaned-up

and made consistent.

Modern C++ has support for concepts. These are being integrated into the

code-base.

Some of the core algorithms need efficiency improvements, notably the differential

equation solvers.

Extensions to functionality

Kyoto, 13 February 2023 Rigorous Function Calculi – 42 / 48

Implement types for piecewise-continuous and measurable functions.

Implement concrete function classes based on Chebyshev and Fourier

expansions.

Implement set-valued functions.

Verification of implementation

Kyoto, 13 February 2023 Rigorous Function Calculi – 43 / 48

We should also implement core functionality of an ARIADNE-like tool in a language

which allows verification of the algorithms and their implementation.

• Together with the groups of N. Müller, M. Konečný, M. Ziegler, H. Thies,

S. Park, and A. Simpson/A. Bauer we have been looking at designing a verified

language for effective (exact) real computation.

• N. Müller has been attempting to verify iRRAM code.

• M. Konečný has been experimenting with an Agda implementation of AERN

functionality.

• H. Thies, S. Park, H. Tsuiki and M. Konečný have been implementing TTE

functions and sets in Coq.

• P.C. M. Niqui and N. Revol have verified the operations of Taylor model

calculus in Coq (2011).

Documentation

Kyoto, 13 February 2023 Rigorous Function Calculi – 44 / 48

The main ARIADNE documentation is made with Doxygen.

It’s easy to make appallingly bad documentation with Doxygen!

Nevertheless, we’ve tried to

+ Separate pages decribing the the theoretical basis of the tool and the

algorithms.

+ High-level overview of modular structure and functionality of each module.

+ Links to annotated tutorials.

− Unfortunately the documentation is also out-of-date in places.

We really need specific information from users to help improve the documentation!

+ Consider using Jupyter notebooks for Python tutorials. [Holger’s suggection!]

Concluding Remarks

Introduction

Motivation

Theory

Practice

Problems

Conclusions

• Summary

• Future Work

Kyoto, 13 February 2023 Rigorous Function Calculi – 45 / 48

Summary

Kyoto, 13 February 2023 Rigorous Function Calculi – 46 / 48

Function calculi can be developed based on concepts from computable analysis

and techniques from rigorous numerics.

ARIADNE is a software tool for reachability analysis of nonlinear hybrid systems

based on such a rigorous function calculus.

• The functional calculus includes support for interval arithmetic, linear algebra,

automatic differentiation, function models with evaluation and composition,

solution of algebraic and differential equations, constraint propagation and

nonlinear programming.

•

Future Work

Kyoto, 13 February 2023 Rigorous Function Calculi – 47 / 48

Improvements to the design, implementation and efficiency of ARIADNE.

Implementation of function calculi for discontinuous functions in ARIADNE.

Formal verification of a computable, rigorous function calculus in Coq.

Future Work

Kyoto, 13 February 2023 Rigorous Function Calculi – 47 / 48

Improvements to the design, implementation and efficiency of ARIADNE.

Implementation of function calculi for discontinuous functions in ARIADNE.

Formal verification of a computable, rigorous function calculus in Coq.

Your ideas for collaboratative research at RIMS!

That’s all, folks!

Introduction

Motivation

Theory

Practice

Problems

Conclusions

Kyoto, 13 February 2023 Rigorous Function Calculi – 48 / 48

