
Proof of the Density Threshold Conjecture
for Pinwheel Scheduling∗

Akitoshi Kawamura

kawamura@kurims.kyoto-u.ac.jp

Kyoto University

Kyoto, Japan

ABSTRACT
In the pinwheel scheduling problem, each task 𝑖 is associated with

a positive integer 𝑎𝑖 called its period, and we want to (perpetually)

schedule one task per day so that each task 𝑖 is performed at least

once every 𝑎𝑖 days. An obvious necessary condition for schedula-

bility is that the density, i.e., the sum of the reciprocals 1/𝑎𝑖 , not
exceed 1. We prove that all instances with density not exceeding

5

6

are schedulable, as was conjectured by Chan and Chin in 1993. Like

some of the known partial progress towards the conjecture, our

proof involves computer search for schedules for a large but finite

set of instances. A key idea in our reduction to these finite cases is

to generalize the problem to fractional (non-integer) periods in an

appropriate way. As byproducts of our ideas, we obtain a simple

proof that every instance with two distinct periods and density at

most 1 is schedulable, as well as a fast algorithm for the bamboo

garden trimming problem with approximation ratio
4

3
.

CCS CONCEPTS
•Mathematics of computing→Combinatoric problems; Com-
binatorial algorithms; • Theory of computation→ Scheduling
algorithms; Packing and covering problems; Rounding techniques; •
Computer systems organization→ Real-time systems; •Applied
computing → Industry and manufacturing.

KEYWORDS
pinwheel scheduling, density, bamboo garden trimming, Beatty

sequence

ACM Reference Format:
Akitoshi Kawamura. 2024. Proof of the Density Threshold Conjecture for

Pinwheel Scheduling. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing (STOC ’24), June 24–28, 2024, Vancouver, BC, Canada.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3618260.3649757

∗
This research was supported by JSPS KAKENHI (Grants-in-Aid for Scientific Re-

search) JP20H00587 and JP23K28036 and by Royal Society International Exchanges

IES\R1\191184. Preliminary announcements of some results in this work appeared at

the 2022 IEICE General Conference [18] and IPSJ SIG on Algorithms [19, 20].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649757

1 INTRODUCTION
In pinwheel scheduling (PS) [15], we are given𝑘 recurring tasks, each
of which must be performed with a given frequency. Specifically,

each task 𝑖 ∈ [𝑘] = {1, . . . , 𝑘} must be scheduled at least once every

𝑎𝑖 days, where 𝑎𝑖 is the period of task 𝑖 . We want to schedule the

tasks, one per day, so that each task is performed at (at least) its

requisite frequency. Thus, an instance of PS is a nonempty array

(𝑎𝑖)𝑖∈[𝑘] = (𝑎1, . . . , 𝑎𝑘) of positive integers, which we assume to

be arranged in non-decreasing order, and we seek to find a schedule
𝑆 : Z → [𝑘] (with 𝑆 (𝑡) specifying the task performed on day 𝑡)

satisfying, for all 𝑖 ∈ [𝑘], the frequency condition:

for each𝑚 ∈ Z, there exists a day 𝑡 ∈ [𝑚,𝑚 + 𝑎𝑖) ∩ Z
such that 𝑆 (𝑡) = 𝑖 .

An instance for which a schedule exists is said to be schedulable.
For example, the instances (3, 3, 3), (2, 4, 8, 8), and (3, 4, 5, 8) are
schedulable, but all become non-schedulable if any one period is

decreased. A schedule 𝑆 : Z→ [4] for (3, 4, 5, 8) is given by

𝑆 (𝑡) =


1 for 𝑡 ≡ 0, 3, 6,

2 for 𝑡 ≡ 1, 5,

3 for 𝑡 ≡ 2, 7,

4 for 𝑡 ≡ 4 (mod 8) .

For an instance 𝐴 = (𝑎𝑖)𝑖∈[𝑘] to be schedulable, the condition

that its density

D(𝐴) =
∑︁
𝑖∈[𝑘]

1

𝑎𝑖

be at most 1 is clearly necessary, but not sufficient. For example,

(2, 3, 𝑎3) is non-schedulable for all values of 𝑎3. On the other hand,

it is relatively easy to see that any instance with a density of at

most
1

2
= 0.5 is schedulable [15, Corollary 3.2]. The challenge of

improving this sufficient condition has been taken up by several

authors, who succeeded in increasing the bound to 0.66 . . . [5],

to 0.7 [6, Theorem 4.2], and then to 0.75 [10, Theorem 1]. It has

been conjectured [5] that this value could be increased to
5

6
=

0.83 . . . (which is the best possible because of the instance (2, 3, 𝑎3)
mentioned above), and this conjecture has been confirmed in a

number of special cases: when𝐴 has three (or fewer) distinct period

values [22, Theorem 4], when for each period value there are at

least five tasks having that period [4, Theorem 3], when the smallest

period 𝑎1 is 2 [10, Theorem 2], and when the number 𝑘 of tasks is

≤ 12 [13]. We resolve this conjecture affirmatively:

Theorem 1. If a PS instance 𝐴, comprised of positive integers,
satisfies D(𝐴) ≤ 5

6
, then 𝐴 is schedulable.

https://doi.org/10.1145/3618260.3649757
https://doi.org/10.1145/3618260.3649757

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Akitoshi Kawamura

The reason for the explicit restriction to integers is that, in the

following section, we extend the PS problem so that we allow peri-

ods to be positive real numbers, not just integers. This extension

plays a key role in our proof of Theorem 1.

The condition D(𝐴) ≤ 1, which is obviously necessary for any

instance 𝐴, has been shown also to be sufficient for instances 𝐴

containing only two distinct periods [16, Corollary 4.9]. Our idea

of fractional periods yields a simple proof of this statement (for

possibly non-integer periods as well). That is, we (re)prove:

Theorem 2 ([16]). If a PS instance 𝐴 has at most two distinct
period values, and D(𝐴) ≤ 1, then 𝐴 is schedulable.

Bamboo garden trimming (BGT) [11] is an optimization version

of PS: in a grove of 𝑘 bamboo plants, plant 𝑖 ∈ [𝑘] grows in height

at a daily rate ℎ𝑖 ∈ N; each day (at a fixed time of day) we select

one plant to be trimmed (i.e., reduced to height 0) with the goal of

keeping the highest plant in the grove as low as possible. Clearly, a

trimming schedule achieves 𝐾 ∈ N \ {0} (i.e., ensures perpetually
an overall grove height of at most 𝐾) if and only if it satisfies the

PS instance (⌊𝐾/ℎ𝑖 ⌋)𝑖∈[𝑘] . There have been efficient algorithms

for BGT with approximation ratios 2 [12], 1.88 . . . [8, Corollary 1],

1.71 . . . [25, Corollary 1], 1.60 . . . [11, Theorem 3], and 1.42 . . . [14,

Section 3]. We use Theorem 1, and ideas used in its proof, to obtain

an improved approximation ratio
4

3
= 1.33

In what follows, we first note in Section 1.1 some basic facts

regarding the decision of schedulability, then review in Section

1.2 other related work. In Section 2 we discuss the extension of

PS to non-integer periods and note some basic properties of this

extension, which, as we pause to note, allow a simple proof of

Theorem 2. We then use the extension to prove our main theorem

(Theorem 1) in Section 3, after which we discuss BGT in Section 4.

1.1 Deciding Schedulability
Although solutions to the PS problem are infinite schedules, the

following discussion shows [15, Theorem 2.1] that any schedulable

instance𝐴 = (𝑎𝑖)𝑖∈[𝑘] has a schedule that repeats a finite sequence
of tasks (thus justifying the term “pinwheel” scheduling).

The elements of [𝑎1] × · · · × [𝑎𝑘] are called states; if, at the end
of a day, we find ourselves in a state (𝑢𝑖)𝑖∈[𝑘] , this means that task

𝑖 must be performed no later than 𝑢𝑖 days from now. For a task

𝑗 ∈ [𝑘] and two states 𝑢 = (𝑢𝑖)𝑖∈[𝑘] and 𝑢′ = (𝑢′
𝑖
)𝑖∈[𝑘] , we write

𝑢 ⊢𝑗 𝑢′ if

𝑢′𝑖 =

{
𝑎𝑖 if 𝑖 = 𝑗,

𝑢𝑖 − 1 otherwise.

This means that if we are in state 𝑢 on a given day, then performing

task 𝑗 on the next day will bring us into state 𝑢′. We write 𝑢 ⊢ 𝑢′ if
𝑢 ⊢𝑗 𝑢′ for some 𝑗 . An instance 𝐴 is thus schedulable if and only if

its state graph, i.e., the directed graph with states as nodes and the

relation ⊢ as edges, admits an infinite walk, or equivalently, contains

a cycle. This can be checked in polynomial space [15, Corollary

2.2], but the number of states is in general exponential in the size of

the input 𝐴. It is unknown whether or not the problem of deciding

schedulability is in NP.
This gives rise to some subtlety in discussing algorithms that are

supposed to “output” a schedule: a general schedule is an infinite ob-

ject, and even if we focus on repeating schedules, we cannot hope

for a polynomial-time algorithm to always write out the whole

repeating pattern. One (somewhat informal) way to formulate effi-

cient scheduling in this context is to require that we can, given an

instance, generate in polynomial time a fast online scheduler (FOLS),
i.e., a program that efficiently computes which task to perform each

day [15]. Many of the results about PS or BGT, including ours in

Section 4, give such algorithms.

1.2 Related Work
Our PS problem is perhaps the most basic among various settings

for scheduling recurring tasks (such as monitoring, maintenance, or

replenishment) that must be performed with sufficient frequencies.

Some generalizations immediately present themselves: one might

suppose that (a fixed number of) multiple tasks can be performed

each day [1, 2], that different tasks require different lengths of time

to perform [9], or that the tasks are placed on graphs or metric

spaces so that moving between them takes some time or cost [7, 11].

The frequency condition for PS is that task 𝑖 must be scheduled

at least once in the interval [𝑚,𝑚 + 𝑎𝑖) starting on any day 𝑚.

We could consider a somewhat simpler problem [3, 4, 23] where

instead we require this condition only when the starting day𝑚 is

an integer multiple of 𝑎𝑖 . One may also consider variants in which

(there can be days to which no task is assigned, and) each task 𝑖

must be scheduled precisely once (rather than at least once) in 𝑎𝑖
days [17, 24, 26].

The packing-style problem considered in this paper (in which

the tasks are packed into Z) is complementary to a covering-style
variant of the problem, in which task 𝑖 may only be scheduled at
most once in 𝑎𝑖 days. For the covering problem, there is a conjecture

similar to Theorem 1 (namely, that any instance of integer-valued

periods with a density of at least 1.26 . . . suffices to cover Z) whose
status remains unresolved [21].

The class of problems including ours and the above variants, or

a subclass thereof depending on the context, has been also called

windows scheduling or periodic scheduling.

2 FRACTIONAL PERIODS
As noted above, an essential component of our argument is to

extend the allowed values of periods from integers to real numbers.

We do so by requiring that a task 𝑖 with possibly non-integer period

𝑎𝑖 be performed at least ⌊𝑟/𝑎𝑖 ⌋ times during any 𝑟 -day interval.

Thus, the new frequency condition is that

for each 𝑟 ∈ N and𝑚 ∈ Z, there exist at least ⌊𝑟/𝑎𝑖 ⌋
values of 𝑡 ∈ [𝑚,𝑚 + 𝑟) ∩ Z such that 𝑆 (𝑡) = 𝑖 ,

or equivalently that

for each 𝑠 ∈ N and𝑚 ∈ Z, there exist at least 𝑠 values
of 𝑡 ∈ [𝑚,𝑚 + ⌈𝑠 · 𝑎𝑖 ⌉) ∩ Z such that 𝑆 (𝑡) = 𝑖 .

For integer-valued 𝑎𝑖 this reduces to the frequency condition stated

at the beginning of the paper, but for non-integer 𝑎𝑖 it acquires

new significance. For example, a period 𝑎𝑖 =
7

2
requires that task 𝑖

be performed at least once every 4 days and at least twice every 7

days; this could be achieved if we schedule task 𝑖 every week on

Monday and Thursday, but not if we schedule it on Monday and

Wednesday, or if we simply schedule it every 4 days.

Proof of the Density Threshold Conjecture for Pinwheel Scheduling STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

base

particle 1particle 2

Figure 1: Two particles moving in opposite directions, to-
gether covering the whole circle exactly each day.

One advantage of this extension is that it does not affect the

validity of the basic properties of schedulability stated in the fol-

lowing lemma, which have been used, explicitly or implicitly, in

previous studies as well (for integer periods). We write𝐴⊔𝐵 for the

instance consisting simply of tasks in𝐴 and tasks in 𝐵; for example,

(6, 6) ⊔ (4, 4, 6) = (4, 4, 6, 6, 6).

Lemma 3. If 𝐴 ⊔ (𝑎) is schedulable, then so are

(1) 𝐴 ⊔ (𝑏), for any period 𝑏 ≥ 𝑎 (monotonicity), and
(2) 𝐴 ⊔ (𝑎 · 𝑞, . . . , 𝑎 · 𝑞︸ ︷︷ ︸

𝑞

), for any positive integer 𝑞 (partitioning).

Proof. (1) Simply schedule the period-𝑏 task on the days

reserved for the period-𝑎 task.

(2) Simply schedule the 𝑞 new tasks, in sequence, on the days

reserved for the period-𝑎 task. □

This is the only preparation we need to give a concise proof of

Theorem 2, which we pause to state here (though it is not needed

for Theorem 1).

Proof of Theorem 2. By the partitioning property of Lemma

3, we may assume we have just one task with each period value,

i.e., our instance is 𝐴 = (𝑎1, 𝑎2) with 1/𝑎1 + 1/𝑎2 ≤ 1. Using the

monotonicity property, we may further assume that 1/𝑎1+1/𝑎2 = 1.

Consider a circle with circumference 1, and two particles 𝑖 ∈ [2]
moving along it in opposite directions, each with daily speed 1/𝑎𝑖
(Figure 1), so that they meet each other every midnight, which is

possible because 1/𝑎1+1/𝑎2 = 1. Fix any point on the circle and call

it the base. During each day, the two particles together cover the

circumference exactly once, and thus exactly one of them sees the

base, under the convention (just in case the particles happen tomeet

at the base) that midnight belongs to the next day for particle 1, and

to the previous day for particle 2. This allows us to schedule each

task 𝑖 ∈ [2] on days when particle 𝑖 sees the base. This schedule

satisfies the frequency condition for both tasks 𝑖 , because the time

at which particle 𝑖 is at the base and the time at which it comes

back there after going around the circle 𝑠 ∈ N times are 𝑠 · 𝑎𝑖 apart,
and thus they belong to days that are at most ⌈𝑠 · 𝑎𝑖 ⌉ apart. □

That we obtain two complementary sets of integers in this way is

sometimes referred to as Rayleigh’s or Beatty’s theorem, especially

when 𝑎1 and 𝑎2 are irrational.

3 PROOF OF THE MAIN THEOREM
By repeatedly applying the procedures of Lemma 3 in reverse, a non-
schedulable instance may be transformed into a non-schedulable

instance with only small periods. Indeed, consider the following

process which can be applied to any instance whose largest period

𝑎 exceeds a threshold 𝜃 > 0:

• if the instance contains only one task with period 𝑎, decrease

its period to the second largest period > 𝜃 , or to 𝜃 if 𝑎 is the

only period > 𝜃 ;

• if the instance contains more than one tasks with period 𝑎,

replace two of them with a single task with period 𝑎/2.
Given an instance𝐴 and 𝜃 > 0, every second application of this pro-

cess reduces the number of periods > 𝜃 ; thus, after a finite number

of steps, we obtain an instance fold𝜃 (𝐴) containing only periods

≤ 𝜃 . For example, fold
22
(3, 4, 8, 17, 42, 55, 72) = (3, 4, 8, 13.75, 17).

Lemma 4. For an arbitrary PS instance 𝐴 and arbitrary 𝜃 > 0,
(1) If 𝐴 is non-schedulable, then fold𝜃 (𝐴) is also non-schedulable.
(2) Any period in fold𝜃 (𝐴) with a value ≤ 𝜃/2 is in 𝐴 as well.
(3) D(fold𝜃 (𝐴)) < D(𝐴) + 1/𝜃 .

Proof. The above operations used in turning 𝐴 into fold𝜃 (𝐴)
(1) preserve non-schedulability by Lemma 3,

(2) never create periods ≤ 𝜃/2 newly,
(3) and never increase the difference between the density and

the reciprocal of the largest period. □

With this, to prove the schedulability of instance𝐴 in Theorem 1,

it suffices to establish the schedulability of fold𝜃 (𝐴) for some 𝜃 .

In fact, it turns out that the choice 𝜃 = 22 allows us to reduce

Theorem 1 to exhaustive analysis of a finite number of instances:

Lemma 5. Any instance 𝐵 = (𝑏𝑖)𝑖∈[𝑘] whose periods are integers
less than 22 and which satisfies D′ (𝐵) < 5

6
+ 1

22
is schedulable, where

D
′ (𝐵) =

∑︁
𝑖∈[𝑘]

{
1/𝑏𝑖 for 𝑏𝑖 < 11,

1/(𝑏𝑖 + 1) for 𝑏𝑖 ≥ 11.

Proof. We need only check (by computer) the schedulability

of finitely many instances 𝐵, using the state graph method in Sec-

tion 1.1 (and some techniques to implement it efficiently [13]).

Details will appear in a full version of this paper. □

Proof of Theorem 1. Suppose that there is a non-schedulable

instance 𝐴 with integer-valued periods and a density of at most
5

6
.

By Lemma 4, the instance fold
22
(𝐴) is also non-schedulable, con-

sists of integers ≤ 11 and real numbers between 11 and 22, and

has density less than D(𝐴) + 1

22
≤ 5

6
+ 1

22
. Now construct a new

instance 𝐵 from fold
22
(𝐴) by retaining all periods ≤ 11 and re-

placing other periods 𝑎 by ⌈𝑎⌉ − 1. By the monotonicity property

of Lemma 3, 𝐵 is non-schedulable. On the other hand, any period

𝑏 ∈ 𝐵 produced by this replacement has a value ≥ 11 and origi-

nates from a period in fold
22
(𝐴) with a value ≤ 𝑏 + 1, whereupon

D
′ (𝐵) ≤ D(fold

22
(𝐴)) < 5

6
+ 1

22
. This contradicts Lemma 5. □

The values 11 and 22 in Lemma 5 are the smallest possible: replac-

ing them by 10 and 20 would make the lemma false—for example,

the instance (3, 4, 7, 10, 15) is non-schedulable (as can be verified by

the state graph method), even though
1

3
+ 1

4
+ 1

7
+ 1

11
+ 1

16
< 5

6
+ 1

20
.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Akitoshi Kawamura

4 APPROXIMATION ALGORITHM FOR BGT
We will provide an (efficient, in the sense discussed at the end of

Section 1.1) algorithm𝑀 that, given a PS instance (𝑎𝑖)𝑖∈[𝑘] , either
• declares correctly that it is non-schedulable, or

• outputs a schedule for the “relaxed” instance

(⌊
4

3
· 𝑎𝑖

⌋)
𝑖∈[𝑘] ;

note that𝑀 is allowed to choose the second branch when (𝑎𝑖)𝑖∈[𝑘]
is non-schedulable. This implies

4

3
-approximation for BGT: Given a

BGT instance 𝐻 = (ℎ𝑖)𝑖∈[𝑘] , binary search for a height 𝐾 such

that 𝑀 applied to (⌊𝐾/ℎ𝑖 ⌋)𝑖∈[𝑘] outputs a schedule but not if

𝐾 is replaced by 𝐾 − 1 (and hence the optimal value for 𝐻 is

at least 𝐾). Since this schedule satisfies the relaxed PS instance(⌊
4

3
· ⌊𝐾/ℎ𝑖 ⌋

⌋)
𝑖∈[𝑘] (and thus

(⌊
4

3
· 𝐾/ℎ𝑖

⌋)
𝑖∈[𝑘]), it achieves

4

3
· 𝐾

for the BGT instance 𝐻 .

Such an algorithm𝑀 would come easily if we aim for the ratio

3

2
instead of

4

3
: Simply declare (𝑎𝑖)𝑖∈[𝑘] non-schedulable if it has

density > 1. Otherwise, the relaxed instance

(⌊
3

2
· 𝑎𝑖

⌋)
𝑖∈[𝑘] has

density ≤ 5

6
(unless 𝑘 = 1), because elementwise we have⌊

3

2

· 𝑎
⌋
≥ 3

2

· 𝑎 − 1

2

≥ 3

2

· 𝑎 − 1

4

· 𝑎 =
5

4

· 𝑎 ≥ 6

5

· 𝑎

for any integer 𝑎 > 1. Thus it is schedulable by (the underlying

algorithm for) Theorem 1 (or already by the earlier density bound

3

4
[10] instead of our

5

6
, since in fact we have

⌊
3

2
· 𝑎
⌋
≥ 4

3
· 𝑎).

For the ratio
4

3
, we need a better idea, since the analogous bound⌊

4

3
· 𝑎
⌋
≥ 6

5
· 𝑎 holds only for 𝑎 > 2 (as can be verified by⌊
4

3

· 𝑎
⌋
≥ 4

3

· 𝑎 − 2

3

≥ 4

3

· 𝑎 − 2

15

· 𝑎 =
6

5

· 𝑎

for 𝑎 ≥ 5 and individually for 𝑎 = 3, 4). Thus, giving exceptional

treatment to period 2, our algorithm 𝑀 , given a PS instance 𝐴 =

(𝑎𝑖)𝑖∈[𝑘] , proceeds as follows:
(1) If 𝑎1 = 1, do as follows.

• If 𝑘 > 1, declare 𝐴 non-schedulable.

• If 𝑘 = 1, output the trivial schedule that performs task 1

every day.

(2) If 𝑎1 = 2, recursively apply 𝑀 itself to the instance 𝐴′ =(⌊
1

2
· 𝑎𝑖

⌋)
𝑖∈[𝑘]\{1} .

• If𝑀 says𝐴′
is non-schedulable, declare𝐴 non-schedulable.

• If𝑀 outputs a schedule 𝑆 ′ : Z→ ([𝑘] \ {1}), then output

a schedule 𝑆 : Z→ [𝑘] defined by

𝑆 (𝑡) =
{
1 for 𝑡 odd,

𝑆 ′ (𝑡/2) for 𝑡 even.

(3) If 𝑎1 ≥ 3, yield the schedule obtained by applying the under-

lying algorithm of Theorem 1 to the instance

(⌊
4

3
· 𝑎𝑖

⌋)
𝑖∈[𝑘] ,

which has density ≤ 5

6
by the above argument.

Correctness of the algorithm𝑀 may be shown by induction on

𝑘 , with cases (1) and (3) being trivial or already taken care of. The

first branch of case (2) is justified because, if there is a schedule

for 𝐴, then simply eliminating all days on which it performs task 1

yields a schedule for 𝐴′
. The second branch is justified because

each task 𝑖 ≠ 1 is scheduled at least once in

⌊
4

3
·
⌊
1

2
· 𝑎𝑖

⌋⌋
days in

𝑆 ′, and thus in twice as many days in 𝑆 , which is ≤
⌊
4

3
· 𝑎𝑖

⌋
.

ACKNOWLEDGEMENTS
The author is grateful to Leszek Gąsieniec, Yusuke Kobayashi, Igor

Potapov, Benjamin Smith and SebastianWild for valuable comments

on preliminary presentations of this work. He also thanks Keita

Hiroshima for helping to verify the list of schedules in Lemma 5.

REFERENCES
[1] A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast sys-

tems. SIAM Journal on Computing, 32(4), 1091–1113, 2003.
[2] A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted

version of bin packing. ACM Transactions on Algorithms, 3(3), Article 28, 2007.
[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:

A notion of fairness in resource allocation. Algorithmica, 15, 600–625, 1996.
[4] S. K. Baruah and S. Lin. Pfair scheduling of generalized pinwheel task systems.

IEEE Transactions on Computers, 47(7), 812–816, 1998.
[5] M. Y. Chan and F. Chin. Schedulers for larger classes of pinwheel instances.

Algorithmica, 9, 425–462, 1993.
[6] M. Y. Chan and F. Y. L. Chin. General schedulers for the pinwheel problem based

on double-integer reduction. IEEE Transactions on Computers, 41(6), 755–768,
1992.

[7] S. Coene, F. C. R. Spieksma, and G. J. Woeginger. Charlemagne’s challenge: The

periodic latency problem. Operations Research, 59(3), 674–683, 2011.
[8] F. Della Croce. An enhanced pinwheel algorithm for the bamboo garden trimming

problem. ArXiv preprint arXiv:2003.12460, 2020.

[9] E. A. Feinberg and M. T. Curry. Generalized pinwheel problem. Mathematical
Methods of Operations Research, 62, 99–122, 2005.

[10] P. C. Fishburn and J. C. Lagarias. Pinwheel scheduling: Achievable densities.

Algorithmica, 34, 14–38, 2002.
[11] L. Gąsieniec, T. Jurdziński, R. Klasing, C. Levcopoulos, A. Lingas, J. Min, and T.

Radzik. Perpetual maintenance of machines with different urgency requirements.

Journal of Computer and System Sciences, 139, 103476, 2024.
[12] L. Gąsieniec, R. Klasing, C. Levcopoulos, A. Lingas, J. Min, and T. Radzik. Bamboo

garden trimming problem (perpetual maintenance of machines with different

attendance urgency factors). In Proc. 43rd International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM), 229–240, 2017.

[13] L. Gąsieniec, B. Smith, and S. Wild. Towards the 5/6-density conjecture of

pinwheel scheduling. In Proc. SIAM Symposium on Algorithm Engineering and
Experiments (ALENEX), 91–103, 2022.

[14] F. Höhne and R. van Stee. A 10/7-approximation for discrete bamboo garden

trimming and continuous trimming on star graphs. In Proc. 26th International
Conference on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), Article 16, Leibniz International Proceedings in Informatics (LIPIcs)

275, 2023.

[15] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A real-

time scheduling problem. In Proc. 22nd Annual Hawaii International Conference
on System Sciences, Volume II, 693–702, 1989.

[16] R. Holte, L. Rosier, I. Tulchinsky, and D. Varvel. Pinwheel scheduling with two

distinct numbers. Theoretical Computer Science, 100(1), 105–135, 1992.
[17] A. P. Huhn and L. Megyesi. On disjoint residue classes. Discrete Mathematics,

41(3), 327–330, 1982.

[18] A. Kawamura. IEICE General Conference, D-1-11, 2022. In Japanese. (河村．輪番

詰込の密度閾値について． 2022年電子情報通信学会総合大会講演論文集．)

[19] A. Kawamura. IPSJ SIG Technical Report, 2024-AL-196(1), 2024. In Japanese. (河

村．輪番割当6分の5予想の解決．情報処理学会第196回アルゴリズム研究会．)

[20] A. Kawamura. IPSJ SIG Technical Report, 2024-AL-197(9), 2024. In Japanese. (河

村．竹叢伐採の近似率の改善．情報処理学会第197回アルゴリズム研究会．)

[21] A. Kawamura and M. Soejima. Simple strategies versus optimal schedules in

multi-agent patrolling. Theoretical Computer Science, 839, 195–206, 2020.
[22] S.-S. Lin and K.-J. Lin. A pinwheel scheduler for three distinct numbers with a

tight schedulability bound. Algorithmica, 19, 411–426, 1997.
[23] C. L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. Journal of the Association for Computing Machinery,
20(1), 46–61, 1973.

[24] Z.-W. Sun. On disjoint residue classes. Discrete Mathematics, 104(3), 321–326,
1992.

[25] M. van Ee. A 12/7-approximation algorithm for the discrete Bamboo Garden

Trimming problem. Operations Research Letters, 49(5), 645–649, 2021.
[26] W.D. Wei and C. L. Liu. On a periodic maintenance problem. Operations Research

Letters, 2(2), 90–93, 1983.

Received 2023-11-13; accepted 2024-02-11

	Abstract
	1 Introduction
	1.1 Deciding Schedulability
	1.2 Related Work

	2 Fractional Periods
	3 Proof of the Main Theorem
	4 Approximation Algorithm for BGT
	References

