Recursive Modules

Keiko Nakata

Research Institute for Mathematical Sciences,
Kyoto University

keiko@kurims.kyoto-u.ac.jp

Abstract
The ML module system is useful for building large-scale programs.

The programmer can factor programs into nested and parameter-

ized modules, and can control abstraction with signatures. Yet ML
prohibits recursion between modules. As a result of this constraint,

the programmer may have to consolidate conceptually separate!

components into a single module, intruding on modular program-
ming. Introducing recursive modules is a natural way out of this

predicament. Existing proposals, however, vary in expressiveness

and verbosity. In this paper, we propose a type system for recur-

sive modules, which can infer their signatures. Opaque signatures

can also be given explicitly, to provide type abstraction either in-

side or outside the recursion. The type system is decidable, and is

sound for a call-by-value semantics. We also present a solution to
the expression problem, in support of our design choices.

Categories and Subject DescriptorsD.3.1 [PROGRAMMING
LANGUAGE$ Formal Definitions and Theory; D.3.3PRO-
GRAMMING LANGUAGEJSLanguage Constructs and Features—
Recursion, Modules

General Terms Languages, Theory, Design
Keywords Type systems, type inference, recursive modules, ap-
plicative functors, the expression problem

1. Introduction
When building a large software system, it is useful to decompose

the system into smaller parts and to reuse them in different contexts.

Module systems play an important role in facilitating such factoring
of programs. Many modern programming languages provide some
forms of module systems.

The family of ML programming languages, which includes
SML[18] and Objective Caml [15], provides a powerful module
system [16, 14]. Nested structures of modules allow hierarchical

for Programming

Jacques Garrigue

Graduate School of Mathematics,
Nagoya University
garrigue@math.nagoya-u.ac.jp

guages have supported recursive definitions across class boundaries
from the beginning, and this feature is heavily used in practice.

We, ML programmers, enjoy strong type safety. Yet, due to the
lack of recursive modules, we may have to consolidate conceptually
separate components into a single module, intruding on modular
programming [23]. If we had both recursive modules and this
flexible module language, we could enjoy a strongly type safe
programming language with an equally strong expressive power.

Recently, much work has been devoted to investigating exten-
sions with recursion of the ML module system. Two important is-
sues involved are type checking and initialization. Crary, Harper
and Puri [3], Russo [23], and Dreyer [5] have given type theo-
retic accounts for recursive modules. Boudol [1], Hirschowitz and
Leroy [11], and Dreyer [4] have investigated type systems which
guarantee well-formedness of recursive modules, ensuring that ini-
tialization of recursive modules will not attempt to access not-yet-
evaluated values.

To some extent, ML programmers can already use recursive
modules in everyday programming. Several languages of the ML
family support recursive modules [15, 22], allowing practical pro-
gramming, or, at least, a flavor of it.

In this paper, we first review two examples. In the first one, two
recursive moduleSree andForest respect each other’s privacy:
we seal them with opaque signatures individually. Thus type ab-
straction is enforced inside the recursion. In the sectnéde and
Forest are intimate: they know each other’s exact implementa-
tions, and we seal them with an opaque signature as a whole. Thus
type abstraction is enforced outside the recursion.

Both privacy and intimacy will be important for practical uses of
recursive modules. Existing proposals, however, vary in their way
to handle them. We may be denied privacy. We may have to write
two different signatures for the same module; one of them solely
for assisting the type checker, while the other gives the resulting
signature for the module.

Our goal is to develop a type system for recursive modules,

decomposition of programs. Functors can be used to express adwhich is practical and useful from the programmer’s perspective;
vanced forms of parameterization, which ease code reuse. Abstracwe want to use them easily in everyday programming, possibly
tion can be controlled by signatures with transparent, opaque or combining with other constructs of the core and module languages.
translucent types [9, 12]. With this goal in mind, we propose a type system for recursive
In spite of this flexibility, the ML module language prohibits modules, in which modules can have privacy or intimacy depending
recursion between modules. This is a major disadvantage of ML, on the situation they are in. The type system does not require addi-
when compared to object-oriented languages, like Java. These lantional signature annotations. Thus the programmer can either omit
writing signatures or give signatures explicitly to control abstrac-
tion. Moreover, he can rely on type inference during development;
all previous proposals by others do not support type inference for
recursive modules.

In this paper, we also present an advanced example of recur-
sive modules, by giving a concise and type safe solution to the ex-
pression problem [26]. In the example, we use recursive modules,
applicative functors [13] and private row types [8] together. The

[copyright notice will appear here] example confirms that by combining recursive modules with other

2006/9/7

module TreeForest = struct (TF) module TreeForest =
module Tree = (struct functor(X : sig type t val compare : t — t — bool end) —
datatype t = Leaf of int | Node of int * TF.Forest.t (struct (TF)

val max = Ax.case x of Leaf i = i module S = MakeSet (X)
| Node (i, f) = module Tree = struct

let j = TF.Forest.max f in if i > j then i else j module f = TF.Forest
end : sig type t val max : t — int end) type s = F.t
datatype t = Leaf of X.t | Node of X.t * s

module Forest = (struct
type t = TF.Tree.t list
val max = Ax.case x of [] = 0
| hd :: tl =
let i = TF.Tree.max hd in let j = max tl in
if 1 > j then i else j
end : sig type t val max : t — int end)

val split = Ax.case x of Leaf i = [Leaf i]
| Node (i, f) = (Leaf i) :: f

val labels = Ax.case x of Leaf i = TF.S.singleton i
| Node (i, f) = TF.S.add i (F.labels f)

end

module Forest = struct

module T = TF.Tree

end type t = T.t list

- val sweep = Ax.case x of [] = []
Figure 1. Modules for trees and forests | (T.Leaf y) :: t1l = (T.Leaf y) :: (sweep t1)

| (T.Node y) :: tl = sweep tl
val labels = Ax.case x of [] = TF.S.empty
language constructions we can indeed enjoy a highly expressive | hd :: t1 = TF.S.union (T.labels hd) (labels t1)
power in a type safe and modular way. val incr = Af.At.let 11 = labels f in

Our contributions are summarized as follows. let 12 = T.labels t in
if TF.S.diff 11 12 != TF.S.empty then (t :: f) else f

e We examine two typical uses of recursive modules by giving egd‘ @
concrete examples. These examples are useful for understand- °*¢ @ S8

. R . module Tree : sig type t val split : t — Z.Forest.t end
ing basic uses of recursive modules. module Forest : sig

e We propose a new type system for recursive modules with type t val sweep : t — t val iner : t — Z.Tree.t — ¢
first-order applicative functors. The type system supports type ezg‘)i

inference for recursive modules, and is decidable and sound for
a call-by-value semantics.

All examples we present in this paper are type checked in this
type system, without requiring additional signature annotations.

Figure 2. Intimate modules for trees and forests

e We give a type safe and concise solution to the expression
problem, in order to demonstrate that recursive modules give us Variable named¥F, which is used insiddree andForest to re-
high expressive power in a modular way when combined with fer to each other recursively. We keep the usual ML scoping rules
other language constructions. for backward references. ThIzee.max can refer to theLeaf
andNode constructors without going through a self varialileee
The rest of the paper is organized as follows. In the next section, might also be used without prefix insitferest, but the explicit
we review two examples of recursive modules and present the mainnpotation seems clearer.
features of our calculu3raviata used for our formal development. This first example illustrates a possible use of recursive mod-
Section 3 gives the concrete syntaxiodviata Section4 and5ex- yles, where they respect each other’s privacy. They are sealed with

plain the type system and present a soundness result. In Section 6signatures individually, enforcing type abstraction inside the recur-
we give a solution to the expression problem. In Section 7, we ex- sjon.

amine the double vision problem [6]. Section 9 examines related

. The second example appears in Figure 2. NaweF tis
work and Section 10 concludes. ple abp 9 o ores

a functor, parameterized by the type of labels of trees. We assume
that an applicative functafakeSet is given in a library for making
2. Examples sets of comparable elements.

In this section, we review two examples to illustrate two possible ~ The moduleSree andForest define the same recursive types
uses of recursive modules and to informally preSeatiata’. as the first example, except that th(_a argument types of the construc-
The first example appears in Figure 1. The top-level module t©OrSLeaf andNode are parameterized. The module abbreviation

TreeForest contains two moduleSree andForest: Tree rep- module F = TF.Forest I_nSIdeTree _all_ows ustousean abbrevi-

resents a module for trees whose leaves and nodes are labeled witRtiONF for TF.Forest insideTree. Similarly, the types in Tree

integers;Forest represents a module for unordered sets of those IS @n abbreviation which expands intb. Forest.t.

integer trees. In.thls second examplelree and Forest are intimate: .the
The modulesTree andForest refer to each other in a mutu- funCtlonSTre_e.split andForest.sweep know the underlying

ally recursive way. Their type componeftsee . t andForest .t implementations of the typé®rest .t andTree.t of the others, .

refer to each other, as do their value compon@ttse .max and thus can construct and deconstruct values of those types. Given

Forest.max. These functions calculate the maximum integers a @ tré€,split cuts off the root node of the tree and returns the

tree and a forest contain, respectively. resulting forest. The functiosweep gathers the leaves from a given
To enable forward references, we extend structures and signa-forest. L

tures with implicitly typed declarations aflf variables Compo- Since the two modules are intimate, we do not Seale and

nents of structures and signatures can refer to each other recursively orest individually here. Instead, we seal them as a whole with

using the self variables. For instan@eeeForest declares a self @ Single signature. The signature only exposes functigndt,
sweep, andincr, which augments a given forest only if a given tree

11n examples, we shall allow ourselves to use some usual core languageCOntains original labels that are not contained in the forest, but hides
constructions, such as let and if expressions and list constructors, evenfunctions Tree.labels and Forest.labels, which are utility
though they are not part of the formal development given in Section 3. functions forincr. The signature also enforces type abstraction by

2 2006/9/7

hiding implementations of the typ&gee . t andForest. t, thus it
protects privacy of the two modules from the outside.

The two examples we have seen so far illustrate two possible
uses of recursive modules. They may have privacy, enforcing type
abstraction inside the recursion. They may have intimacy, enforcing
type abstraction outside the recursion. We think both uses are
natural and would become common in practice.

Comparison with existing type systemsThe two examples pre-
sented are type checked in our type system without requiring addi-
tional annotations. Below, we examine the ways existing type sys-
tems handle these examples.

To avoid presenting too much annotations, we remove the mod-
ule abbreviatiomodule F = TF.Forest from Tree in Figure 2.

Yet, although we can dispense with abbreviations by replacing them
with their definitions altogether, they are useful in practice [24].

In Russo’s system [23] there is no obvious way to type check the

first example, keeping type abstraction betw&eee andForest.
A suggested solution, which is found in his paper, is to annotate the
self variableTF of TreeForest with arecursive signaturé 3 [23]:
sig (Z : sig module Tree : sig type t end
module Forest : sig type t
end)
module Tree : sig
datatype t = Leaf of int | Node of int * Z.Forest.t end
module Forest : sig

type t = Tree.t list val max :

end
This annotation fof’F, however, would break type abstraction be-
tweenTree andForest, exposing underlying implementations of
typesTree.t andForest .t to each other.

In Dreyer’s system [5], the sealing signatures faree and
Forest must be given in advance. That is, the programmer has to
write both signatures before defining either of the two modules, as
opposed to Figure 1, where the signatures are written in a module-
wise way.

O’Caml [15] type checks Figure 1 without modifications.

Next, we examine the second example.

In Russo’s system, the programmer must annotatevith a
recursive signature:

sig (Z :

Tree.t list end

t — int end

sig module Tree : sig type t end
module Forest : sig type t = Tree.t list end
end)
module Tree : sig
datatype t = Leaf of X.t | Node of X.t * Z.Forest.t end
module Forest : sig
type t = Tree.t list val labels :
end
Note that this signature is solely for assisting the type checker. We
have already given in Figure 2 the eventual signaturesTthes
andForest should have; these signatures do not reveal the un-
derlying implementations of typeBree.t andForest.t or the
functionForest.labels.
To type check Figure 2 in Dreyer's system and O’Caml, the
programmer must write fully manifesting signaturesTete and

t — MakeSet(X).t end

Module expression

E = Ej
Module expression descriptions
Eq = struct (Z) Di...D, end structure
| functor (X : A) = F functor
\ (E:5) sealing
\ mid module identifier
| X module variable
Definitions
D = module M = F module def.
| datatypet = cof T datatype def.
| typet =1 type abbreviation
| vall=e value def.
Signature

S i ¥
Signature descriptions
Sq sig (Z) B1... B, end
| functor(X : A) — S
Module variable signature
A Af
Module variable signature description

structure type
functor type

Agq ©= sigBi...Bpend
Specifications
B = module M : S module spec.
\ datatypet = cof 7 datatype spec.
| typet =T manifest type spec.
| type t abstract type spec.
| vall:r value spec.
Recursive identifiers
rid n= Z| rid.M
Module identifiers
mid = rid | mad(mid) | mid(X)

Extended module identifiers
extmid Z | ext-mid.M

| ext_mid(ext_mid) | ext_mid(X)
Module paths

D,q,T n= o extomid | X
Program
P = struct (Z) Di...D, end’

Figure 3. The module language dfraviata

We believe that both privacy and intimacy are important for
practical uses of recursive modules. Existing type systems, how-
ever, do not handle them equally. These type systems may deny
privacy. They may require additional annotations that are used only
for helping the type checker, but do not affect resulting signatures
of modules. Even if we assume that these annotations provide some
useful information, our experience with type inference in ML is that
one often writes a module without its signature, and then eventually
writes a signature by editing the result of type inference. This tech-
nigue is not available for recursive modules in these type systems.

Forest in advance, where the signatures declare every component3- Syntax

of the modules. The type checker first type checks the two modules

Figure 3 gives the module languageToéviata which is based on

assisted by these manifest signatures. Once this succeeds, typeeroy’s applicative functor calculus [13]. We usé as a metavari-

abstraction is enforced using the sealing signature given in Figure 2.

able for module namesy for module variables and for self vari-

Thus the programmer has to write annotations yet more verboseables. For simplicity, we distinguish them syntactically, however

than in Russo’s system.

2This recursive signature does not exactly follow his syneag,we have
to use the keywordtructure instead ofnodule in his system.

3We note that by permuting the definition orderTafee andForest the

the context could tell them apart without this distinction. We also
uset for type names andfor (core) value names.

For the purpose of both defining type equality and designing a
decidable type system, we label module expressions, signatures and
module variable signaturewith integers. For instance, a module

amount of required annotations can be reduced to some extent in this case€Xpressionf is a module expression descriptidf labeled with

However permutation does not always work.

an integeri, where E; is either a structure, a functor, a sealing,

2006/9/7

Coretypes 7 = 1l |n—mn|n*mn|pt The core language describes a simple functional language ex-
Coreexpr. e = z|()|(Aze:7)| (e, e2) | mi(e) | exlez) tended withvalue pathsX.! and rid.l, andtype pathsp.t. Value
| ridce| X.ce| caseeof ms|rid.l| X.l

paths X.l andrid.l refer to the value componentsn the struc-
tures referred to byX andrid, respectively. A type path.t refers
Figure 4. The core language diraviata to the type componeritin the structure that refers to.
We may say paths to mean module, type and value paths as a
whole.
An unusual convention is that a module variable is bound inside
a module identifier or a module variabte One can think of the its own signature. For instance,
integer I_abeh‘ of £} as t_he location oEd_ in the source program. functor(X : sig type t val 1 : X.t end) — X
For the interest of bre\{lty, we may omit integer Iabe_ls Whef‘.they is a legal expression, which should be understood as
are not used. For the interest of clarity, we may write additional .
parentheses, for instan@anctor(X : sig type t end?) — X°)*. We functor(X : sig type t val 1 : t end) — X
use metavariables j for integers. This convention is convenient when proving type soundness, as the
As explained in the previous section, we extend structures and Syntax of paths is kept uniform, that is, every path is prefixed by
signatures with implicitly typed declarations of self variables to either a self variable or a module variable. In Section 6, we give

Matching ms ridcx = e| X.cx = e

support recursive references. In the constatatuct (Z) D; ... examples where this this convention is useful. _
D,, end, the self variableZ is bound inD; ... D,. Similarly, in We write M Vars(p) to denote the set of module variables con-
the construckig (Z) By ... B, end, the self variableZ is bound tained in the module path We also writeM Vars(r), MVars(e)
inBi...B,. and the likes with obvious meanings.

For simplicity, we provide different syntax for signatures and In the formalization, 1) function definitions are explicitly type

module variable signatures; the latter are used to specify signaturesannotated; 2) every structure and structure type declares a self vari-
of functor arguments and do not declare self variables. In a practical able; 3) a path is always prefixed by a self variable or a module
system, we can unify their syntax for the programmer’s benefit. variable. Our examp_les do not StIC!(to these rules. Instead, we hc_';\ve
The construct which enables recursive referencesdarsive ~ assumed that there is an elaboration phase, prior to type checking,
identifiers A recursive identifier is constructed from a self variable thatadds type annotations for functions by running a type inference
and the dot notation.M”, which represents access to the sub- algorithm on the core language. The original program may still re-
modules)M of a structure. A recursive identifier may begin from guire some type annotations, to avoid running into the polymorphic
any bound self variable, and may refer to a module at any level recursion pro_blem. In Section 8,. we discuss the details Of this in-
of nesting within the recursive structure, regardless of component ference algorithm. The elaboration phase also infers omitted self
ordering. For instance, through the self variable of the top-level Variables, to complete implicit backward references.
structure, one can refer to any module named in that structure ~ We assume the following five conventions: 1) a program does
except for those hidden within sealed sub-structures. It is important Not contain free module variables or free self variables; 2) all bind-
that recursive identifiers can only contain bound self variables, and ing occurrences of module or self variables use distinct names; 3)
that self variables of sealed modules are unbound outside them.any sequence of module definitions, type abbreviations, datatype

Otherwise type abstraction could be broken. definitions, value definitions, module specifications, manifest and
For the sake of simplicity, functor applications only contain OPaque type specifications, datatype specifications and value speci-

module identifiers and module variables. fications does not contain duplicate definitions or specifications for
To support applicative functors [13], we define a slightly ex- the same name; 4) all occurrences of module expressions, signa-

tended class of identifiers, namewdule pathsn Figure 3, which tures and module variable signatures in a program are labeled with

can liberally include functor applications. Core types defined in distinctintegers; 5) module variable signatures do not contain mod-
Figure 4 may use module paths. Applicative functors give us more ule specifications.

flexibility in expressing type sharing constraints between recursive

modules. In Section 6, we give a practical example which usesre-4, Reconstruction

cursive modules and applicative functors together in support of our
design choices. It will be useful to note thatC rid C mid C
ext_mid C p holds.

A program is a top-level structure which contains a bunch of re-
cursive modules. In this paper, we only consider recursive modules,
but not ordinary ones.

To obtain a decidable type system, we imposérst-order
structure restrictionthat requires functors 1) not to take functors

as argument, 2) nor o access sub-modules of arguments. The firs In this section we describe the reconstruction part; the next
condition means that our functors are first-order, and the second . - part;
section explains the type-correctness check part.

implies that the programmer has to pass sub-modules as indepen- The rest of this section is organized as follows. In Section 4.1
dent parameters for functors instead of passing a module which ' gar : o
contains all of them. One might have noticed that the syntax of & d€fine lazy program types, which are output by the reconstruc-
module expression descriptions excludes those of the fofmig tion algorithm. In Section 4.2, we definelaok-up judgmentor
and X (mid). This is consistent with this restriction using programs and lazy program types as lookup tables. In Sec-
. i,)) tion 4.3, we introduce “resolution algorithms*, the key for enabling
Figure 4 gives the our core languageTodviata We user as a the reconstruction. Finally, in Section 4.4, we present an algorithm
metavariable for program variables (variables, for short), afu for reconstructing lazy program types from programs.
value constructor names. In the rest of the paper, we assume that each self varigbles
is annotated with anodule variable environmerst, written Z°.
“Note thatTraviata does not have separate notions for opaque signatures A module variable environment is a substitution of module paths
and transparent ones. for module variables. Correspondingly, we assume that each occur-

The type system is composed of two parts, namely a type recon-
struction part and a type-correctness check part. Concretely, we
type check a progran® in two steps: 1) reconstructlazy pro-
gram typeof P; at this point, we do not require the reconstructed
type to be correct; 2) check type-correctnes£ddy type checking

P in the intuitive way, using the reconstructed type as type environ-
ment; once this second step is completed, we are certain both that
lP is type-correct and that the reconstruction was correct.

4 2006/9/7

Lazy signature struct (Z)
T o= T o module M; = (functor(X : sig type t end®) —
Lazy signature descriptions struct module M;; = struct end® end?)?

Ty == sig(Z)Cy...Crend lazy structure type _ _ 6
functor(X : A) —» T lazy functor type module M; - struct typ7e t = int end
(Ty : T») lazy sealing type m?dule Mz = Z.M1(Z.M2)
P end
Lazy specifications -
C = moduleM :T Figure 8. A programP
datatypet =cof 7
typet =1
type t 4.2 Look-up
L] r"riltl o7 Next, we define a look-up judgment for finding module descriptions
Uazy p ogram)Eze) Ci . O endi and their integer labels from a top-level. During the reconstruction
= sig 1...C, en

we use the judgment against programs; during the type-correctness
Figure 5. Lazy module types check, we use the judgment against lazy program types.

We assume that, for a top-levél, there is a global mapping
po Which sends i) a self variablg to the structure or the (lazy)
structure type to whichZ is ascribedin O, and ii) a module

P|U variable X to the module variable signature specified forin O.

Eq| S| Aa|Ta We say that in the construstruct (Z) D; ... D,, end’ the self

= | variable Z is ascribed tastruct (Z) D; ... D, end’. Similarly,

in the constructsig (Z) Bi ... By, end’ andsig (Z') C1 ... Ch,
Figure 6. Notation convention endj, Z and Z' are as;:ribed tcmg (Z) Bi...B, endi and
sig (Z') C...Cy, end’, respectively. The use @fo makes the
presentation concise

We present inference rules for the look-up judgment in Figure 7.

Top-levels (0]
Module descriptions K

ss struct | sig

- (1) : (2) The judgmentO + p — (0, K') means that the module path
OF 2% (0,p0(2)) OF X = (id, po(X)) refers to the module descriptidi labeled with the integerin the
OFprs (0,ss ...module M := K7 ...end’) K # (Ki':KJ?) 5 top-levelO, where each module variablé is bound to9(X).
OFp.M— (6,K9) (3) Let us examine each rule. For self variables and module vari-

ables, the judgment consults the global mappingNext two rules

D — [— KJ i — J1 . g2
OFp—(fss .. .module M := K7...end) K =(Kj : Ky (4) (3) and (4) handle module paths of the fopmdZ. A module path

Ok p.Mw— (0,K3?) » ‘ p.M refers to the sub-module namad in the module thap refers
O+ p1 — (0, (functor(X : A) — K7)) K # (KJ' : K3?) to. Hencep must refer to either a structure or a (lazy) structure type.
OF p1(p2) — (B[X — pa), K7) (5) The rules_ 3) al;)d 4) <J:_iist_inguish whethM _is bound to a sealing
Ok py (60, (functor(X : A) — K7))) K = (Kt : K3%) constructlo_n(Kl1 : KQZ’)J or not; yvhen it is, them. M resol_ves_
% (6) to the sealing parf<32. Thus, the judgment prevents peeking in-
Ok pi(p2) = (01X = p2], K3?) side of sealed modules from outside them. The last two rules (5)
Figure 7. Look-up and (6) handle module paths of the fopa(p2). Whenp; refers to

either a functor or a (lazy) functor type, then(p2) resolves to the

body of the functor, where the module variable environment is aug-

mented with the new bindingX — p.]. Again the rules (5) and
rence of a self variable in a prograis implicitly annotated with ~ (6) distinguish whether the body is a sealing construction or not.

an identity substitutionid. That is, we regard as an abbreviation The look-up judgment does not hold for arbitrary module paths.

for Z'. We used as a metavariable for module variable environ- For instance, consider Figure 8. We havel Z.M; (Z.Mp) Mi1 —

ments. ([X — Z.Mg], struct end®). But, the judgment does not hold for
the module patiz.M3.M;;.

4.1 Lazy module types Recall that we have assumed the absence of free module vari-

ables. This means that whénht+ p — (0, ¢"), thenMVars(q) C

Figure 5 gives the syntax for lazy module types, which we use as j,, (9). For a module variable environmehtdom (6) denotes the
signatures of modules during type checking. The syntax for lazy gomain ofé.

signature descriptions extends that for signature descriptions with
the sealing constructiofil; : 7>) and module paths. We use the 4.3 Resolution algorithms
sealing constructior{7y : 7») to check type-correctness of the
sealing constructioffEZ : S) of module expression descriptions
((25) in Figure 15). We use module paths to instantiate signatures
lazily ((55) in Figure 18). In the construstig (Z) C ...C), end,

the self variableZ is bound inC' . .. C,,. A lazy program type is a
top-level lazy structure type labeled with an integer. Note that lazy
signatures include signatures.

We use the ”0“"?“0“ convention In F'g‘_”e 6. In .parthUIar’ W€ S\We could avoid this assumption of a global mapping by annotating each
useO as a metavariable for top-levels, which are either programs gt yariable with the source program location of the structure or structure
or lazy program types, andl’ for module descriptionawhich are type to which the self variable is ascribed. Since the source program can be
either module expression descriptions, signature descriptions, mod-regarded as a finite tree, we can represent every node of the tree by a finite
ule variable signature descriptions or lazy signature descriptions. representation (i.e., we need not use file names or line numbers.)

Our type system differs from others in that it can resolve path ref-
erences. Concretely, we developed a terminating procedure for de-
termining the component that a path refers to, where the path may
contain forward references. The motivation of this procedure was to
define a decidable judgment for type equality. In a language with re-
cursive modules and applicative functors, there is the potential that

5 2006/9/7

OkFpronp
O+ p(q) ~n p'(9)
OFp—(0.¢")
Ok p~n6(q)

Obpr~yp
OF p.M~s, p'.M
OFqronq
O+ p(q) ~n p(d)

Figure 9. Normalization of module paths with respect®

a program contains pathologically cyclic type abbreviations which

may cause type equality check to diverge. We later noticed that
a similar procedure enables type inference for recursive modules.
Note that we cannot use the well-typedness of the source program
when resolving path references, since we already need type equal-

ity to ensure this well-typedness.

0,0F1]1
0,0Fm |7 0,QFm |7 OQFn |7 0,QF7]| 7
O0,0F7 =T | T — 1) O,QF T %71 | T %79
PathEzp(O,p) =p' Ot p +— (0,ss...typet...end")
O,QFpt] pt
PathBxp(O,p) =p' OFp' +— (0,ss...datatypet = cof 7...end")
O0,QFpt|pt
PathEzp(O,p) =p' OFp — (f,ss...typet =71 ...end")
0,QW (i, t) b |72 O,QF0() | T
O,QFpt| T

Figure 10. Type expansion with respect

We implement the procedure for path resolution as three algo- module path expansion To Specify the module path expansion

rithms, namely, a module path expansion algoritPathExp a type
expansion algorithnTyExpand a core type reconstruction algo-
rithm CtyReconstThese algorithms use termination criteria based

algorithmPathExp we define theormalizationof module paths in
Figure 9. The judgmer® + p ~+, ¢ means thap reduces int@ in
one step, with respect to the top-level The normalization traces

on ground term rewriting and recursive path ordering; the criteria module abbreviations in the intuitive way. We wrek p ~»,« ¢
do not rely on the well-typedness of the source program, and still to mean thap reduces inta in more than or equal to zero step.

allow flexible handling of module and type abbreviations.
For lack of space, we do not explain all these algorithms; we

The proposition below states thBathExpis terminating and
that, when it succeeds, it coincides with normalizatiBathExp

only give their specifications, needed to present the rest of the rajses an error when it cannot prove that the input module path

type system. We give definitions éfathExpand CtyReconsin
Appendix A. In [19], the reader can find detailed explanations.

Located types We define a canonical form of types, calledated

types The type system checks equality between two arbitrary types

by reducing them into located types usiigExp
A located type is a type composedsfnple located typesndl
using— andsx. Intuitively, a simple located type is an abstract type

which is obtained by expanding all type and module abbreviations.

We first defindocated formsa canonical form of module paths.
A module patty is in located form if and only ip does not contain
a module path which resolves to a module abbreviation.

DEFINITION 1. A module patlp is in located form with respect to
a top-levelO if and only if the following two conditions hold.

e OF p (0, K*) whereK is not a module path.
e Forall g in args(p), ¢ is in located form.

For a module path, args(p) denotes the set of module paths that
p contains as functor arguments, or:

ar9s(Z°) = U x e gom(e) 10(X)}
args(p.M) = args(p) args(p1(p2)) = args(p1) U {p2}

A simple located type is an abstract type whose prefix is a
located form.

DEFINITION 2. A simple located type with respect to a top-level
O is a type pattp.t wherep is in located form with respect t©
and eitherO F p — (6,ss...datatypet = cof 7...end") Or
OFprs (0,ss...typet...end") holds.

Now located types are defined below.

DEFINITION 3. A located type with respect to a top-lev@lis a
type T where each type’ in typaths(t) is a simple located type
with respect taD.

For a typer, typaths(7) denotes the set of type paths that
contains. Precisely,
typaths(m1) U typaths(t2) whenrt =71 — 7
Or 7T =171 *xT2
whenr = p.t
whenr =1

typaths(T) = (p.t}
0

does not contain cyclic or dangling references.

PROPOSITIONL.

1. For any top-levelO and module pattp, PathExp(O, p) either
returns a module path in located form with respec@tpor else
raises an error.

2. WhenPathEzp(O, p) = q,thenO p ~»,= q.

Type expansion We define the type expansion algorithm in Fig-
ure 10. The judgmen®, 2 - 7 | 72 means that the algorithm
expands the type; into the typer, where is locked, with re-
spect to the top-leveD. We use) as a metavariable for pai(s, t)
of an integeri and a type name. The notation2 & (i,t) means
Y U{(i,t)} whenever(i, t) ¢ Q. Note that derivations of the type
expansion are deterministic. In particular, it is an error state when
there are no applicable rules.

Then we defin€TyExp such that it takes as argument a top-
level O and a typer, then either returns a typ€ whenO, 0 +
7 | 7' holds or else raises an error when no rule appliesit
cannot prove that the input type does not contain cyclic or dangling
references.

PROPOSITION2. For any top-levelO and typer, TyEzp(O,)
either returns a located type with respect@or else raises an
error.

Core type reconstruction The type reconstruction algorithm
CtyReconspropagates type annotations on functions. It does not
check that these annotations are correct. For instance, for an ex-
pressiore; (e2), CtyReconsbnly reconstructs a type efi, which
must be of the formr; — 72, then returns the result type. In the
type-correctness check part, the type system checksthads a
type equivalent to .

At this time, we only requir€tyReconsto be terminating.

PrROPOSITION3. For any program P and core expressiore,
CtyReconst(P, e) either returns a located type with respect to
P or else raises an error.

4.4 Lazy program type reconstruction algorithm

Figure 11 presents inference rules for the lazy program type re-
construction algorithm with respect to a progré&mnThe algorithm
is a straightforward application @tyRecons{see (10)), hence it

2006/9/7

Definitions
PFE>T
P Fmodule M = E>module M : T

(7

P |- datatype t = c of 7> datatypet =cof 7 ®)
©) CtyReconst(P,e) =T
Pl-typet=71p>typet =1 Plrvall=epvall:T
Module expression
P+ Ed > Td (11)
Pt E;>Ty
Module expression descriptions
PFDi>Cy ... P-D,>C,
Pt struct (Z) D1 ... D, endp>sig(Z) C1
PHE>rT
P F functor(X : A) — E > functor(X : A) —» T
PHECT
PEH(E:S)>(T:5) (14) 15)

(10)

... C, end (12)
(13)

Pkpbp(

Figure 11. Lazy program type reconstruction with respecfto

does not ensure type-correctness of the prograitt either returns
a lazy program type thaP would have whenP is type-correct,
or else raises an error when it cannot prove tRaloes not con-
tain cyclic or dangling references. Note that it does not check type-
correctness of functor applications (see (15)).

Then we defineReconstPsuch that it takes a prograi® as
argument, then either returi$ when P + P > U holds or else
raises an error when this cannot be done.

PROPOSITION4. For any programP, ReconstP(P) either re-
turns a lazy program type or raises an error.

5. Type-correctness check
One of the main difficulties in type checking recursive modules is

Ut TyExzp(U,m1) =- TyExp(U,2)
Ub1 =7

(16)

Figure 12. Type equivalence with respect o

Ubkni=,m Ubm=1n
= (A7) ———— (18)
Uk1=,1 Ubm —=T=1—"T
Ubn=1m Ubn= 1 =,
5! 't T2 Ty (19) Uk pr=pp2 (20)

UbTi T =, T 75 Utk pit=; pat

Figure 13. Equivalence on located types with respectito

Ubp— (00.T) Ubprr (02,T2) i1 =12
VX € dom(61), Ut 61(X) =, 62(X)
Uk pi =, p2

(21)

Figure 14. Equivalence on located forms with respectio

5.1 Type equality

We define a type equivalence judgment in Figure 12, with auxil-
iaries in Figure 13 and 14. The judgmént 7, = 7> means that
two typesr; andr; are equivalent with respect to the lazy program
type U. We check equivalence between two arbitrary types by re-
ducing them into located types.

Figure 13 defines equivalence on located types. The first three
rules are straightforward. The last rule judges whether two abstract
types are equivalent. Two typ@s.t andp..t are equivalent if and
only their prefixesp; andp, are equivalent module paths. (Note
that sincep, .t is a located typep; is in located form.)

Figure 14 defines a judgment for equivalence on module paths
in located form. Two located forms; andp. are equivalent if
and only if they refer to module descriptions at the same location
(i.e., labeled with the same integer) and their functor arguments
are equivalent. Take a look at the look-up judgment (Figure 7)
again. The module variable environmeht collects all module

how to reason about forward references. Usually, a type checkerpaths contained ip; as functor arguments.

consults a type environment for the necessary type information

about paths. When paths only contain backward references, it is

sufficient to accumulate in the type environment signatures of pre-

5.2 Typing rules
In Figure 15, we present typing rules for the type-correctness

viously type checked modules. When modules are defined recur-check, with auxiliaries in Figure 16, 17, 18 and 19.

sively, however, paths may contain forward references. Then the

The judgmenty - E : T means that the module expression

type checker may attempt to ask the type environment for a signa- £ of lazy signatureT” is type-correct with respect to the lazy

ture of a module which is not yet type checked.
To circumvent difficulties arising from forward references, other

program typel/. The judgmeni/;T" I e : 7 means that the core
expressiore of type 7 is type-correct under the type environment

type systems rely on signature annotations. As we examined inT" with respect tdJ. A type environment assigns a located type to

Section 2, this requirement compels the programmer to write two

different signatures for the same module to enforce type abstraction

a variable. Other judgments are read similarly.
The typing rules in Figure 15 are mostly straightforward. Here

outside the recursion. Moreover, the programmer cannot rely on we only explain the rule for sealing.

type inference during development due to it. This is unfortunate
since a lot of useful inference algorithms have been and will be
developed to support smooth development of programs.

The rule (25) checks that the sealing construciigh: S) is
type-correct. In particular, the third premise is for ensuring that the
module expressiotl; inhabits the signaturé’; it checks that the

We have a reconstruction algorithm, hence we do not need thelazy signaturél; of E; is a subtype ofSubst (11, S).

assistance of signature annotations. That is, we use the result of

The subtyping relation, to be given below, follows that of

reconstruction as type environment instead of using programmer- Leroy’s applicative functor calculus. In particular, for two manifest

supplied annotations.

type specificationsype ¢ : 71 andtype t : 72 to be in subtyping

There are three tasks to be completed in this type-correctnessrelations, andr must be equivalent. To check type equivalence,
check part: 1) to check type-correctness of core expressions. (Re-the type system expand types usiigexp here is the reason that

call that CtyReconstloes not ensure type-correctness of expres-

sions that it reconstructs types for.); 2) to check well-formedness of

we define the functio®ubst which is found in Figure 17.
The functionSubstperforms explicit substitution for self vari-

module paths, that is, to check that functor applications contained ables declared inside sealing signatures. For instance, consider Fig-
in the paths are type-correct and that references of the paths are notire 2. The reconstruction algorithm infers that the functpnit

cyclic or dangling; 3) to check that, for every sealing construction
(E : S), the module expressial inhabits the signaturs.

in Forest has atyp&F.Tree.t — TF.Tree.t list (For clar-
ity, we add omitted self variables.). The sealing signature specifies

2006/9/7

(U, p,c) = (t,7) when ,
Ut p— (0,sig...datatypet = cof 7' ...end")
(22) and TyEzp(U,0(7")) = 7

Module expression
U Eq:Ty
UkrE,:T:
Module expression descriptions
UFDy:Cy...UFD,:C,
Ut struct (Z) D1 ... Dy end:sig(Z)Cy ... Cy end
UFA:A UFE:T (
U F functor(X : A) — F : functor(X : A') - T

Figure 16. Datatype look-up with respect (@

(23) Subst(Tj, S7) = subst1 (Ta, Sa)’

subst1(p,sig (Z) By ... By end)
24) = (sig (Z) subst2(p,[Z — p|B1) ... subst2(p,[Z — p|B,) end)

subst1(p, functor(X : A) — S7)

UFE:Tv UES:T, UFTy <:Subst(Th,S) Ut pwf i
UF(E.5) (T T) (25) Trpop (26) = functor(X : A) — subst1(p(X), Sq)
. s !
Definitions and Specifications iu:f:((zsll)g (2)C1 .. Cn end,s1g (Z') By ... Bm end)
UFE:T (27) UbFe:r (28) subst3(Cy1), 2+ Z]By) ... subst3(Co(my, [Z' +— Z]By) end
U Fmodule M = E :module M : T Ukvall=e:vall:T substl(sig ...end, functor(X : A) — S) = raise Error
Ukto i ’ ’ j
— - — (29) subst! (functor(X : A) — T, functor(X’ : A") — 59)
U[: " datatypet = cof 7 : datatype i]*Fc;f; = functor(X’ : A’') — subst! ([X — X'|Ty4, Sa)’
TO : . o
Ul typet=r71:typet =1 (30) U+ module M : S :module M : T' (31) subst1 (functf.)r(X :A) — T sig...end) = raise Error
(32) Ukro (33) subst1 (T : Ty),Sa) = subst1(Ty, Sa)
U typet:typet UbFvall:7:vall:7

subst2(p,module M : S}) =module M : substl(p.M, Sq)*

Signature subst2(p, B) = B whereB is not a module specification
Uk Sq:Ty (34))
UFS,:Ti subst3 (module M : T module M : S%) =module M : substl(Ty, Sd)j
Signature descriptions subst3(C, B) = B whereB is not a module specification
UFB:Cy...UF B, :C, . .
35 Figure 17. Substitution
UFsig(Z)Bl..ABnend:sig(Z)Clu.C’nend() 9
LAY . UkFTy<: 854 UkRT,; <: Aqg
UFA:A URS:T : (36) - j(52) ; j(53)
Ut functor(X : A) — S : functor(X : A') = T UFT; <8 UkFTy<: A
Module variable signature Uk Ti<:Saq (54)
Uk Aa : Age (37) Uk (T:T)) <:Sa
Utk Ag Age PathExp(U,p) =p Uk p — (0,T) UF 0(Ty) <: Sy
Module variable signature description Ubp<:Sy (55)
UFB,:B,..UFB,:B, (38) o:{l,....m}—{1,...,n} Vi€ {1,...,m}, Ut Co) <: B; (56)
Ut sigBi...Byend:sig By ... B, end Ut sig(Z)Ci...Crend <:sig(Z') Bi...Bp end
Core types UFA < [X— XA Uk[X—X]T<:8 -
Ub1io UkFmo Ukbrio Ukmo 7 7
- = - = - functor(X : A T <: functor(X': A
Ui (39) TE——— (40) UEremo (41) 1U unc or(1)~>v< 1unc or(U'_LHS .,
Utpwt TyExp(U,pt)=rT oiflompo il onp Vel mh o) < i(58)
Uk pio (42) Ut sigCy...C, end <:sig By ... B, end
. 9 60
Core expressions Ut typet <:typet (59) Ul typet =171 <:typet (60)
x € dom(T") (61)
3 44 — :
U;FI—():I() UiTFz:T(2) (44) U t- datatypet = cof 7 <: typet
UF Tl = T2
UTkrei:m U;Tl'kex:m U 'Fe:m %1 (62)
45 46 = : =
U;TF (e1,e2) : 11 %72 (45) U;TFmie): 11 (46) UFtypetU}_Tl <itypel =T
T1L = T2
U+ TyExp(U,T) =11 — UTl,x:mmke:ms Ubm= 63
ro WEp@U T =n — m pnren p=D (47) UbFvall:7 <:vall:me (63)
Uk (Ave:7) 11 — 72 Uk
T =7 T2
; : ; LT =T 64
UTke:mm—m UlbFe:m Ukbmi=m13 (48) U F datatype t = c of 71 <: datatype { — ¢ of 7 (64)
U;FFel (62) L T2
, UFT<:S (65)
, Ut pwl PathEzp(U,p) = p U F module M : T <:module M : S
YU, p',¢c)=(t,71) U;Tke:m Ubmi=m7 1
UTkpece:pt (49) Figure 18. Subtyping with respect t&/
UiTFeiim Ubpwt PathiZap(U.p) = p Ubpwt PathEsp(U,p.M) =g
YU, p',c)=(t,72) Ubmi=p't U;Rx:TQFeg:T(so) UF X wi Ub 74wt U T p. M wi
U,FFcaseelofp.c:Léez.T Ut prwf Uk pswk
/ U Fpwf PalthExp((i],p) =p) PathEzp(U,p1) = p} PathEa:p(U,pz) = ph PathExp(U, p1(p2)) = q
Ubp — (0,sig...vall:7"...end") TybEap(U,0(7")) =7 1) U F p} (0, (functor (X : A)) — T)") Ut ph <: §[X — ph](Aq)
U;F}_p.lZT U|—p1(p2)Wf
Figure 15. Typing rules with respect t&/ Figure 19. Well-formed module paths with respectlo

8 2006/9/7

thatsplit has a typeZ.Tree.t — Z.Forest.t. Both the re-

constructed type and the specified type are located types, but they

are not equivalent according to the type equivalence judgment. In
fact, forForest to inhabit the sealing signature, the reconstructed
type TF.Tree.t — TF.Tree.t list should be equivalent to
TF.Tree.t —TF.Forest.t, which is the type obtained by sub-
stitutingTF for Z in the specified typ&.Tree.t — Z.Forest.t.
Indeed, this is satisfied since the type.Forest .t expands into
TF.Tree.t list.

One may think that it would be more natural to identify signa-
tures related byv-renaming rather than to perform explicit substi-
tution. Yet implicit renaming makes it complex to use the type ex-
pansion algorithm, which is developed separately from the typing
rules.

In Figure 18, we define subtyping relations between a lazy sig-

module type E = sig
type exp val eval :

module PF =
functor (X :
struct
type exp = [‘Num of int | ‘Plus of X.exp * X.exp]
val eval : exp — int = Ax.case x of ‘Num n = n
| ‘Plus (el, e2) = X.eval el + X.eval e2
val simp : exp — X.exp = Ax.case x of
‘Num n = ‘Num n
| ‘Plus(el, e2) = case (X.simp el, X.simp e2) of
(‘Num m, ‘Num n) = ‘Num(m+n)
| e12 = ‘Plus el2

exp — int val simp : exp — exp end

E with type exp = private [> PF(X).exp]) —

end

module Plus = (PF(Plus) : E with type exp = PF(Plus).exp)

Figure 20. A first expression language

nature and a signature ((52)), between a lazy signature and a mod-
ule variable signature ((53)), between a lazy signature description
and a signature description ((54) to (57)), between a lazy signaturesealing signatures iR are erased. (Then, the rules (2), (4) and (6)
description and a module variable description ((58)) and between in Figure 7 are not used any more.) After the erasure, the look-up
a lazy specification and a specification ((59) to (65)). The rules are judgment always looks up actual implementations during the nor-
mostly intuitive. The reader should only look at the rule (55). A" mgajization of module paths and in the reduction step
lazy signature description can be a module patfio check thap We assume that the top-level structure of every prog@am
is a subtype of a signature descriptip, we instantiate the lazy contains a value component namestin. The evaluation ofP
signature of the module thatrefers to; we use the module path pegins by reducing the defining expressiomafn.
expansion algorithnPathExpto resolvep’s reference. For the de-
cidability of the subtyping relations, it is important that only lazy PRopPosITION6 (Soundness)Let a program P be well-typed.
signature descriptions can be module paths, but ordinary signatureThen the evaluation d? either returns a value or else gives rise to
descriptions cannot. an infinite reduction sequence.

The judgmentU + p wf, defined in Figure 19, checks that the)])
module pathp is well-formed. For instance, the rule (26) in Fig- We cannot state a subject reduction lemma in the context of
ure 15 uses this judgment for checking type-correctness of mod- Traviata For the decidability result, the type systemTohviata
ule paths. The judgment ensures that the module patbes not ~ rejects cyclically defined types. Yet, for proving subject reduction,
contain cyclic or dangling references and that functor applications We want to establish type equality which can handle these cycles.
contained irp are type-correct. In proofs, we define another type system, calleaviataX which
may not be decidable, but can reason about cyclically defined types.
We prove thaffraviataXis sound for the operational semantics, by
proving subject reduction and progress properties. Then, Proposi-
tion 6 is obtained by proving that if a programis well-typed in
Traviata then so is inTraviataX

DEFINITION 4. A programP is well-typed if and only if
ReconstP(P) = U andU + P : U holds.

PrROPOSITIONS. For any programP, it is decidable whetheP is
well-typed or not.

Soundness 6. The expression problem

Here we give a call-by-value operational semantics and state its In this section, we present an advanced example of recursive mod-
type soundness. ules, by giving a solution to the expression problem [26].

Valuesv and evaluation contexts are: The expression problem, named by Phil Wadler, dates back to
vou= ()] (v,v2) [pev|(Aze:T) Cook [2]. Itis one of the most fundamental problems one faces dur-
E = {3(Ee)| (v,E)|m(E)|E(e) ing the development of extensible software. Here, we paraphrase a

| v (E)|pcE|caseE of ms typical example of this problem in the following way: suppose that
wherep does not contain module variables. we have a small expression language, composed of a recursively de-

Then a small step reduction is either: fined datatype and processors which operate on this datatype; then

p.l Byl whenP - p o pf mi(vr, v2) B3 g we want to extend the expression language in two dimensions, that

is, to extend the datatype with new constructors and to add new pro-
cessors. That a programming language can solve this problem in a
type safe and concise way has been regarded as a measure of the ex-
pressive power of the language. Many researchers have addressed
this problem, using different programming languages [21, 27, 25].
a7 F7Y Our aim here is not to draw a conclusion that our solution is
E{e1} — E{ez} better than others. Instead, we aim to give a useful example of
Again, these reductions are defined with respect to a progtam recursive modules, in order to show that by combining recursive
When deconstructing a value through the case expressionmodules with other constructs of the core and the module languages
case p.c v of g.c x, we do not explicitly check thgt andq are we can obtain more expressive power in a modular way.
equivalent. The type system already ensures ghatd ¢ expand The example we use here extends the one in [8]. It is a variation
into equivalent module paths. on the expression problem, where we only insist on the addition of
During the reduction, we would like to look up actual imple- new constructors. Adding new processors is easy in this setting.
mentations of modules instead of their signatures from the program We shall assume that we have extendea/iatawith polymor-
P. For this purpose, we assume that ori¢as type checked, all phic variants [7], private row types [8] and some usual module lan-

(Ax.e:r)vg][va]e case p.cvof .cx = e 3 [z vle

Pl 0(e) whenP F p — (0,struct ... vall =e... end’)

or an inner reduction obtained by induction:
e — e E 7é {}

9 2006/9/7

module MF =
functor (X :
struct
module Plus = PF(X)
type exp = [Plus.exp | ‘Mult of X.exp * X.exp]
val eval : exp — int = Ax.case x of
#Plus.exp as e = Plus.eval e
| ‘Mult(el, e2) = X.eval el * X.eval e2
val simp : exp — X.exp = Ax.case x of
#Plus.exp as e = Plus.simp e
| ‘Mult(el, e2) = case (X.simp el, X.simp e2) of
(‘Num m, ‘Num n) = ‘Num(m*n)
| el2 = ‘Mult el2

E with type exp = private [> MF(X).exp 1) —

end

module Mult = (MF(Mult) : E with type exp = MF(Mult).exp)

Figure 21. A second expression language

guage constructions. Adding polymorphic variants and private row
types is straightforward. We add typing rules for them to our lan-
guage. Allowing structures to contain module type definitions may
not be easy, but having module type definitions in the top-level is
easy.

module TreeForest = struct (TF)
module Tree = (struct

datatype t = Leaf of int | Node of int * TF.Forest.t
val max = ...

val mk_tree = Ax.let i = TF.Forest.max x in Node(i, x)
end : sig

type t val max : t — int

val mk_tree : TF.Forest.t — t end)

module Forest = (struct (F)

type t = TF.Tree.t list

val max = ...

val combine = Ax.\y.TF.Tree.mk_tree [x;y]

end : sig (FS)

type t val max : t — int

val combine : TF.Tree.t — TF.Tree.t — TF.Tree.t end)
end

Figure 22. Modules for trees and forests(2)

Next, we define our second expression language using the func-
tor MF in Figure 21. The second language supports expressions
composed of multiplication and addition on integers.

We use the exactly same idiom as the first language to define
this second language. In particular, the tyJp&X) . exp appearing

To reduce notational burden, we omit, here and elsewhere, pre-in x's signature refers to the typerp defined in the body affF.

ceding self variables even for forward references when no ambigu-

ity seems to arise. We also omit the top-lesetuct andend.

Note that we instantiate the first addition language ingigle
and use it in functiongval andsimp to delegate known cases by

We define our first expression language in Figure 20, using the yariant dispatch. Thus we avoid duplication of program codes.

functor PF. The typeexp defined in the body ofF indicates that

The moduleMult instantiates the second language, by closing

the first language supports expressions composed of integers angi’s open recursion. Now we can do arithmetic on the second lan-

addition. The functiorval is for evaluating expressions into inte-
gers. The functiosimp is for simplifying expressions, by reducing
the ‘P1lus constructor into thé Num constructor when possible.

To keep the first language extensible, we leave recursion open

in PF; the polymorphic variant typexp and functionseval and
simp recur througtPF’s parametek.
The intuition of the example is thaF takes as argument an ex-

pression language which is built by extending the addition language

thatPF defines. This is exactly what the signaturexoéxpresses;
here is the key of the example. The type specificatippe t =
private [> PF(X).exp] specifies an abstract type into which
the typePF (X) . exp can be coerced, or, informally, an abstract type
which is a supertype dfF (X) . exp. The typePF (X) . exp refers to

the typeexp defined insid®F’s body. Henc&'s signature specifies
thatPF can only be applied to a module whose defining expression

guage. For instance,

val e2 = Mult.eval (‘Plus(‘Mult(‘Num 3, ‘Num 4), ‘Num 5))
Having seen examples here and in Section 2, we confirm that

recursive modules are useful in several situations. Moreover, when

combined with other language constructions, they give us the

highly expressive power in a modular way. We believe that they are

a promising candidate for supporting robust extensible software.

7. The double vision problem

Here we examine the double vision problem [6], a typing difficulty
involved in recursive modules, in the contextlofiviata Detailed
examinations of this problem are found in [6, 3].

The situation we want to deal with When a module is sealed

language supports both integers and addition. This recursive use ofwith a signature, the type system distinguishes the module defined

PF (X) . exp to constrairPF’s argument is the main difference with
the solution in [8]. By avoiding the need to define types outside of
the functor, it allows for a more concise and scalable solution. Ob-
serve that if it were not for all of applicative functors, private row
types and flexible path references, we could not widesignature

in this way.

The use of polymorphic variants, which are structural types un-
like usual nominal datatypes, is important also for defining the
function simp. The functionsimp has the typeexp — X.exp.
Since the typ&. exp structurally contains the typexp, as spec-
ified in the X’s signature, all of'Num n, ‘Num(m+n) and ‘Plus
e12, which are the results of the case branches, are oftypep.

The modulePlus instantiates the addition language, by closing

inside the signature and the module which inhabits the signature.
For instance, consider Figure 1. InsBerest, the typet and the
type TF .Forest.t are not equivalent; the former is an internal
type, which refers tForest’s type t inside the sealing, but the
latter is an external type, which refersRorest’s typet outside.

This design choice of type equivalence keeps the type equiva-
lence judgment simple. Yet, it might be occasionally inconvenient,
for instance, when the programmer wants to build a value of an
external type inside sealing.

To see a concrete situation, consider Figure 22. This is the same
program as in Figure 1, but hefree andForest contain new
functionsmk_tree and combine, respectively; the former is for
building a tree from a given forest and the latter for building a tree

PF’s open recursion. Observe that both the type and the value level from given two trees.

recursion are closed simultaneously, that is, by taking the fix-point
of PF, the forwarding.exp, X.eval andX.simp are connected
to exp, simp andeval themselves, thus yielding self-contained
recursive typeexp and recursive functionsval andsimp.
Now we can perform addition on the first language. For in-
stance,
val el =

Plus.eval (‘Plus(‘Num 3, ‘Num 4))

10

Our type system cannot type check the defining expression of
combine. For the expressiofix;yl inside the body otombine,
the core type reconstruction algorithm infers that the expression has
atypeTF.Tree.t list;the functionTF.Tree.mk_tree takes an
argument of typ&F .Forest . t, which is specified iTree’s seal-
ing signature. According to our type equivalence judgment, how-
ever, the typeSF.Forest.t andTF.Tree.t list are notequiv-

2006/9/7

alent, sincefF .Forest .t is an abstract type thus is not equivalent 9.1 Type systems
to any other types than itself.

This kind of situation typically occurs when the programmer
attempts to cyclically import, inside a sealed module, a value that

To the best of our knowledge, no work has proposed a type sys-
tem for recursive modules with applicative functors, except for the
experimental implementation in Objective Caml [15], or examined
etype inference for recursive modules whether functors are applica-
tive or generative. Among other proposals, oftgviatacan type
the examples on the expression problem in Section 6.

The experimental implementation of recursive modules in Ob-
jective Caml is most related to our work. Indeed, we followed it
in large part when designingraviata O’Caml supports a highly
expressive core language and a strong type inference algorithm,
which are one of our motivations for the effort to enable type in-
ference. O'Caml also supports recursive signatures, with a rather
concise syntax. However, it allows to write problematic modules
whose type checking diverges.The potential for divergence when
typing O’Caml modules is well-known, but is assumed to be a rare
phenomenon in practice. Recursive signatures seem to make the
problem much more acute. This is one of our motivations in insist-
ing on decidable type checking f@raviata Of course we obtain it
through restrictions, and a less expressive signature language. Yet,
this may be the price for safety. Since we have similar typing rules,
we hope that our approach can apply to O’Caml with little change.

Crary, Harper and Puri [3] gave a foundational type theoretic
analysis of recursive modules in the context of a phase-distinction
formalism [10].

Russo [23, 22] proposed a type system for recursive modules,
which we examined in Section 2.
8. Type inference for the core language Dreyer [5] gave atheore_tical account for_type abstractiqn inside

)) i recursive modules. In particular, he investigated generative func-
We implemented a type inference algorithm for the core language tors in the context of recursive modules, by proposing a “destina-
by determining an inference order using the module path expansiontion passing” interpretation of type generativity. There is a critical
algorithm, then running a standard inference algorithm along this difference in design choices between us, with respects to type ab-
order. Concretely, usingathExp we build a call graph of functions straction inside recursive modules. For instance, consider the two
(represented by a directed graph), which expresses how functions inprograms:
modules depend on each other: the strongly connected components ; 3u16 M
of the graph indicate sets of value components whose type should podule N
be inferred simultaneously, referring to each other monomorphi- g4
cally; by topologically sorting the connected components, we gen- podule M = (struct type t = N.t list end : sig type t end)
eralize types in a connected component before moving on to typing module N = (struct type t = M.t * M.t end : sig type t end)
the next one. For instance in Figure 2, we build an inference order: Dreyer prohibits both programs, whereas we accept both. A mo-

that such reimportation is only possible with recursive modules, but
not with ordinary modules.

Type coercion Currently we provide a core language construc-
tion, calledtype coercionthat allows the programmer to coerce
types of expressions from internal types to external types and vice
versa, in an explicit way. The type coercion construction is of the
form (e : 7 ::> 7'), which informally reads as “to coerce the type

7 of the expressior into 7'". For instance, the programmer can
define a type-correctombine as

val combine =

Ax.\y.TF.Tree.mk_tree ([x;y] : t ::> TF.Forest.t)
(Observe that the internal typeof Forest is only visible inside
Forest.)

For lack of space, we refer the reader to [20] for a typing rule
for type coercion. In short, for the constructién: = ::> 7’), the
type system checks type equality betweeandr’ in a way more
sensitive to sealing but without usiigExp We also note that there
is a (somewhat verbose) workaround to define a typeesafeine
without using type coercions; the programmer can define his own
functions which perform type coercion.

(struct type
(struct type

N.t end : sig type t end)
M.t end : sig type t end)

ot o
non

Tree.split — {Tree.labels, Forest.labels} tivation of our design choice is that we want to keep liberal uses
— {Forest.sweep} — Forest.incr of polymorphic variants and objects, which are useful constructs
where braces indicate strongly connected component. The infer-supported in O’Caml; prohibiting the latter program may result in
ence order we build for Figure 1 is restriction in using these constructs and recursive modules together.
{Tree.map} — {Forest.map} o
For the purpose of type inference, we do not considerTthes . map 9.2 Initialization
andForest .map are mUtUa”y recursive, since the Sig_natures of Boudol [1], Hirschowitz and Leroy [11], and Dreyer [4] have pro-
Tree andForest specify exported types for these functions. posed type systems which ensure that initialization of recursive

We must also check for well-formedness of types, as module modules does not try to access components of modules that are
variables should not escape their scope during unification. This is not yet evaluated. They are interested in the safety of initialization,
checked after the inference. Note that when an abstract type de-hence their modules do not have type components.
pends on a functor argument, then the argument explicitly appears Their type systems judge the two modules:
inside the type. For instance, in Figure 2, the tfpee.t is inter- module M = struct (Z) val 1 = Z.m val m = Z.1 end
nally represented a&*~* Tree.t. and

Explicit type annotations can be used to break dependencies module N = struct (Z)
in the call graph, and allow polymorphic recursion. Annotations val 1 = A\x — x + Z.m val m = Z.1(3) end

cannot be completely avoided, as type inference for polymorphic y, 1o iy tyned. In both cases, evaluation of the compomenycli-
recursion is known to be undecidable.

cally requires evaluation of itself. Our type system, in particular
the core type reconstruction algorithm, can reject the cycle for the
9. Related work former, but not for the latter.

Much work has been devoted to investigating recursive module .
extensions of the ML module system. Notably, type systems and 10. Conclusion

initialization of recursive modules pose non-trivial issues, and have In this paper, we presented a type system for recursive modules by
been the main subjects of study. extending Leroy’s applicative functor calculus. The type system is

11 2006/9/7

decidable and sound for a call-by-value operational semantics. It

supports type inference for recursive modules, hence type abstrac-

tion both inside and outside the recursion is handled equally; the
programmer does not need to write two different signatures for the
same module to assist the type checker.

We examined three examples. The first two presented typical
uses of recursive modules with different choices of where to en-
force type abstraction. The last one gave a solution to the expres-
sion problem and demonstrated how recursive modules add to the
expressive power of the programming language when combined
with other language constructions.

Here we give a brief overview of future work.

Separate type checking Although we have not discussettavi-

ata is already prepared for separate type checking. In short, we
only have to extend the look-up judgment (Figure 7) so that the
judgment informs the type system of signatures of modules which
are type checked separately(i.e., to replace concrete module expres
sions with their signatures).

Lazy modules with eager value component3he operational se-
mantics presented in this paper uses lazy evaluation for both mod-

ules and their value components in the sense that only components

[8] J. Garrigue. Private rows: abstracting the unnanettp: //www.
math.nagoya-u.ac.jp/ garrigue/papers/privaterows.
pdf, 2005

[9] R. Harper and M. Lillibridge. A type-theoretic approach to higher-
order modules with sharing. Rroc. POPL'94 1994.

[10] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and
the phase distinction. IRorc. of POPL'9Q pages 341-354, 1990.

[11] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value
setting. InProc. ESOP’02pages 6-20, 2002.

[12] X. Leroy. Manifest types, modules, and separate compilation. In
Proc. POPL'94 pages 109-122. ACM Press, 1994.

[13] X. Leroy. Applicative functors and fully transparent higher-order
modules. IrProc. POPL'95 pages 142-153. ACM Press, 1995.

[14] X. Leroy. A modular module system.Journal of Functional
Programming 10(3):269-303, 2000.

[15] X. Leroy, D. Doligez, J. Garrigue, D.&ny, and J. Vouillon. The

Objective Caml system, release 3.09. Software and documentation
available on the Wethttp://caml.inria.fr/, 2005.

[16] D. MacQueen. Modules for Standard ML. Froc. the 1984 ACM
Conference on LISP and Functional Programmipgges 198-207.
ACM Press, 1984.

of modules that are accessed are evaluated, and the evaluation i417] R. Milner. Communicating and Mobile Systems: the pi-Calculus

triggered at access time. This semantics simplifies the soundness

statement and its proof. For a practical system, however, we are in-
vestigating lazy modules with eager value components, that is, to
keep modules lazy but evaluate all the value components (but not
module components) of a module at once, triggered by the first ac-

cess to some component of the module. Lazy semantics of modules

would allow flexible uses of recursive modules; eager semantics of
value components would give the programmer a way to initialize
recursive modules. We need more investigation on this topic.

The double vision problem It is desirable to solve the double
vision problem without requiring type coercion annotations from
the programmer. The current type system always passégbxp

the whole lazy program typReconstRonstructed. This seems too
ndve. Given thafTyExpterminates for whatever input, we think it

is safe to pas3yExpdifferent signature information depending on
whether it is used inside sealing or not. For instance in Figure 22,
we should mak&yExpinterpret the sealing signature Bérest
transparently during type checking insiBlerest.

Acknowledgements

We thank Masahito Hasegawa for useful discussions on the sound-
ness proof and for comments on this paper. We thank anonymous
reviewers for their detailed comments, which were most helpful.

References

[1] G. Boudol. The recursive record semantics of objects revisited.
Journal of Functional Programmind.4:263-315, 2004.

[2] W. R. Cook. Object-Oriented Programming Versus Abstract Data
Types. InProc. REX Workshagpvolume 489 oflecture Notes in
Computer Sciencépringer-Verlag, 1990.

[3] K. Crary, R. Harper, and S. Puri. What is a recursive module? In
Proc. PLDI'99, pages 50-63, 1999.

[4] D. Dreyer. A type system for well-founded recursion. Rroc.
POPL’'04, 2004.

[5] D. Dreyer. Recursive Type Generativity. fmoc. ICFP’05 2005.

[6] D. Dreyer.Understanding and Evolving the ML Module Syst&hD
thesis, Carnegie Mellon University, 2005.

[7] J. Garrigue. Programming with polymorphic variantsiriiProc. ML
workshop’98 1998.

12

Cambridge University Press, 1999.

[18] R. Milner, M. Tofte, R. Harper, and D. MacQue€ehhe Definition of
Standard ML (RevisedMIT Press, 1997.

[19] K. Nakata and J. Garrigue. Path resolution for recursive modules.
Technical Report 1545, Kyoto University Research Institute for
Mathematical Sciences, 2006.

[20] K. Nakata and J. Garrigue. Recursive modules for programming.
Technical Report 1546, Kyoto University Research Institute for
Mathematical Sciences, 2006.

[21] D. Remy and J. Garrigue. On the expression problemtp:
//pauillac.inria.fr/"remy/work/expr/, 2004.

[22] S. Romanenko, C. Russo, N. Kokholm, and P. Sestoft. Moscow
ML, 2004. Software and documentation available on the Web,
http://www.dina.dk/"sestoft/mosml.html.

[23] C. Russo. Recursive Structures for Standard MLPioc. ICFP'01,
pages 50-61. ACM Press, 2001.

[24] C. Stone. Type definitions. IAdvanced Topics in Types and
Programming Languageshapter 9. The MIT Press, 2004.

[25] M. Torgersen. The Expression Problem Revisited.Eulropean
Conference on Object-Oriented Programming:LN, @dume 3086.
Springer-Verlag, 2004.

[26] P. Wadler. The expression problem. Java Genericity maling list,
1998. http://wuw.cse.ohio-state.edu/ " gb/cis888.07g/
java-genericity/20.

[27] M. Zenger and M. Odersky. Independently Extensible Solutions to
the Expression Problem. Proc. FOOL 12 2005.

Appendices

A. Path resolution algorithms
Here we defindathExpandCtyReconst

A.1 Module path expansion algorithm

We definePathExpby composingground normalizatiorandvari-
able normalizationwhich are defined below.

We define the ground normalization in Figure 23. The judgment
0,¥ F p ~4 g means that the ground normalization expands
p into ¢ where X is locked, with respect t@. We useX as a
metavariable for sets of integers.

2006/9/7

O,SFX~y X O%FZ0~, 2°
O,Evagp/
OFp' M (0,K") K ¢ ext_mid

0,5 tprsgp OFp' .M —(0,q)
g#X O, XWikg~sgr

O, S Fp.M~sgp' .M O, X F p.M ~4 0(r)

O, X Fpi~gpt O,SFpr~gph OFpi(py) — (0,K') K ¢ ext-mid

0,2+ pi(p2) ~ PL(P2)
O, X Fp1r~gpt O, 8 F pa~sg ph
OFpi(pa) = (0,4") q#X O, XWik g~y
0,5 F pi(p2) ~4 0(r)

Figure 23. Ground-normalization with respect @

no(z = 2z
wheredom(0) = dom(6'),
and, for allX € dom(0), 0'(X) = no(6(X))

no(X) = X
no(p-M) = Co(no(p)-M)
no(pi(p2)) = Co(no(p1)(no(p2)))
(X henO F p — (0, X®
o = {400 theno L 0.0

Figure 24. Variable normalization with respect @

P;YThFer i PyXThes:m

P;YTkz:T'(z) P;5TE():1 P;3iTF (er,e2) i 11 %2
P;YiTke:misxm P;XiTke 7 —71 TyEzp(P,7') =T

P2 T Emie): 7 P;SiThei(en): 7 PySTEQme:7):7

PathEzp(P,p) =p' ~(U,p ,c) = (t,71)
P;STkpece:pt
PathExp(P,p) =p" ~(U,p',c) = (t,71) P;STa:mbex:t
P;¥;T'Fcaseeiof pcx = ex: T
PathEzp(P,p) =p' Pt p — (0,struct...vall=e...end")
P;vy(il);0Fe:m TyEzp(P,0(m)) =T
P;YTkpl:T
PathEzp(P,p) = p'
Pt p v (0,sig...vall: 7' ...end") TyEzp(P,0(7")) =T
P TkEpl:T

Figure 25. Core type reconstruction with respectio

Ukbp>yp Ukbp>yp
UbpM > p. M Uk p(g) = p(q)
Ukqg>q Utp—(6,q")
Ubplg) =pld) Ukp=6(q)
dom(0) = dom(#’) 3IX € dom(9), U F 0(X) > ¢'(X)
VX' € dom(0)\{X}, 0(X') =0'(X")
Urz' 52z

Figure 26. Transition rules for module paths with respectio

U120 Urm—omnZqg U}*Tl*Tgpr—d\1T7,
UkpZlyp UF X+ (0,sig...typet...end")
Uk pt>plt Uk xtXo

Ul pr (0,sig...datatypet = cof 7...end")
Ut pt=0(r)
Utp+ (0,sig...typet =7...end")
Ut pt>6(r)

Figure 27. Transition rules for types with respecttd

Ubx E:Ty Ubx S:Ty UbxTi < S
Ubx (E:5):(T1:T3)

Figure 28. A typing rule for sealing with respect {6 in TraviataX

Our proof proceeds in the following two steps.

1. We define a type systefiraviataX whose type equivalence re-
lation is defined by the weak bisimulation relation on a labeled
transition system on types. We establish a soundness result for
TraviataX by proving subject reduction and progress proper-
ties.

2. We prove that if a progran® is type-correct infraviata then
P is also type-correct iffraviataX

We define labeled transition systems on module paths and types
in Figure 26 and 27, respectively.

Typing rules inTraviataXare same as those Tmaviata, except
for the rule for sealing, which is given in Figure 28, and for that
a type equivalence relation ifraviataXis defined by the largest

We define the variable normalization with respect to a top-level weak bisimulation relation [17] on the labeled transition system on

O using functions;o and{o, found in Figure 24.

Then we define the module path expansion algoriBathExp
such that it takes as argument a top-leeand a module patp,
then either returns a module paghwhenO,0 + p ~», p’ and

types. For typing rules ifiraviataX we use the subscrigt .

To prove subject reduction ifraviataX we break type abstrac-
tion in the lazy program typ& thatReconstReconstructed. That
is, we build a lazy program type*® from U by making all abstract

no(p’) = ¢ hold or else raises an error when this cannot be done. type specifications il manifest, except for type specifications ap-

A.2 Core type reconstruction algorithm

pearing in module variable signatures. This is consistent with the
typing rule in Figure 28, since, once type abstraction is broken, we

We define the core type reconstruction algorithm in Figure 25. The do not need s_ubsgitution of self variables. In [20], the reader can
judgmentP; 3;T F e : 7 means that the algorithm reconstructs ~ find how to buildU* from U.
the typer for the expressiom whereV is locked, with respect to _ ")
the programP. We useV as a metavariable for paifs, /) of an P§OPOS'T'ON7' AssumeReconstP(P) = U andU* Fx P
integeri and a value name U*. We have the following two results.
Then we defineCtyReconssuch that it takes as argument a e If Ut DFx e:Tande — ¢, thenU* 0 tx ¢ : 7.

program P and a core expressian then either returns a type o If U0 Fx e: 7then eithere is a value or else there is some
whenP; (; 0 - e : 7 holds or else raises an error when this cannot e withe — ¢’.
be done.

PROPOSITION8. AssumeReconstP(P) = U andU + P : U,

B. Proof sketch of the type soundness thenU* -x P : U*.

Here, we present our central idea for proving Proposition 6. For
details, see [20].

13 2006/9/7

