
Recursive Modules for Programming

Keiko Nakata
Research Institute for Mathematical Sciences,

Kyoto University
keiko@kurims.kyoto-u.ac.jp

Jacques Garrigue
Graduate School of Mathematics,

Nagoya University
garrigue@math.nagoya-u.ac.jp

Abstract
The ML module system is useful for building large-scale programs.
The programmer can factor programs into nested and parameter-
ized modules, and can control abstraction with signatures. Yet ML
prohibits recursion between modules. As a result of this constraint,
the programmer may have to consolidate conceptually separate
components into a single module, intruding on modular program-
ming. Introducing recursive modules is a natural way out of this
predicament. Existing proposals, however, vary in expressiveness
and verbosity. In this paper, we propose a type system for recur-
sive modules, which can infer their signatures. Opaque signatures
can also be given explicitly, to provide type abstraction either in-
side or outside the recursion. The type system is decidable, and is
sound for a call-by-value semantics. We also present a solution to
the expression problem, in support of our design choices.

Categories and Subject DescriptorsD.3.1 [PROGRAMMING
LANGUAGES]: Formal Definitions and Theory; D.3.3 [PRO-
GRAMMING LANGUAGES]: Language Constructs and Features—
Recursion, Modules

General Terms Languages, Theory, Design

Keywords Type systems, type inference, recursive modules, ap-
plicative functors, the expression problem

1. Introduction
When building a large software system, it is useful to decompose
the system into smaller parts and to reuse them in different contexts.
Module systems play an important role in facilitating such factoring
of programs. Many modern programming languages provide some
forms of module systems.

The family of ML programming languages, which includes
SML[18] and Objective Caml [15], provides a powerful module
system [16, 14]. Nested structures of modules allow hierarchical
decomposition of programs. Functors can be used to express ad-
vanced forms of parameterization, which ease code reuse. Abstrac-
tion can be controlled by signatures with transparent, opaque or
translucent types [9, 12].

In spite of this flexibility, the ML module language prohibits
recursion between modules. This is a major disadvantage of ML,
when compared to object-oriented languages, like Java. These lan-

[copyright notice will appear here]

guages have supported recursive definitions across class boundaries
from the beginning, and this feature is heavily used in practice.

We, ML programmers, enjoy strong type safety. Yet, due to the
lack of recursive modules, we may have to consolidate conceptually
separate components into a single module, intruding on modular
programming [23]. If we had both recursive modules and this
flexible module language, we could enjoy a strongly type safe
programming language with an equally strong expressive power.

Recently, much work has been devoted to investigating exten-
sions with recursion of the ML module system. Two important is-
sues involved are type checking and initialization. Crary, Harper
and Puri [3], Russo [23], and Dreyer [5] have given type theo-
retic accounts for recursive modules. Boudol [1], Hirschowitz and
Leroy [11], and Dreyer [4] have investigated type systems which
guarantee well-formedness of recursive modules, ensuring that ini-
tialization of recursive modules will not attempt to access not-yet-
evaluated values.

To some extent, ML programmers can already use recursive
modules in everyday programming. Several languages of the ML
family support recursive modules [15, 22], allowing practical pro-
gramming, or, at least, a flavor of it.

In this paper, we first review two examples. In the first one, two
recursive modulesTree andForest respect each other’s privacy:
we seal them with opaque signatures individually. Thus type ab-
straction is enforced inside the recursion. In the second,Tree and
Forest are intimate: they know each other’s exact implementa-
tions, and we seal them with an opaque signature as a whole. Thus
type abstraction is enforced outside the recursion.

Both privacy and intimacy will be important for practical uses of
recursive modules. Existing proposals, however, vary in their way
to handle them. We may be denied privacy. We may have to write
two different signatures for the same module; one of them solely
for assisting the type checker, while the other gives the resulting
signature for the module.

Our goal is to develop a type system for recursive modules,
which is practical and useful from the programmer’s perspective;
we want to use them easily in everyday programming, possibly
combining with other constructs of the core and module languages.

With this goal in mind, we propose a type system for recursive
modules, in which modules can have privacy or intimacy depending
on the situation they are in. The type system does not require addi-
tional signature annotations. Thus the programmer can either omit
writing signatures or give signatures explicitly to control abstrac-
tion. Moreover, he can rely on type inference during development;
all previous proposals by others do not support type inference for
recursive modules.

In this paper, we also present an advanced example of recur-
sive modules, by giving a concise and type safe solution to the ex-
pression problem [26]. In the example, we use recursive modules,
applicative functors [13] and private row types [8] together. The
example confirms that by combining recursive modules with other

1 2006/9/7

module TreeForest = struct (TF)
module Tree = (struct
datatype t = Leaf of int | Node of int * TF.Forest.t
val max = λx.case x of Leaf i ⇒ i

| Node (i, f) ⇒
let j = TF.Forest.max f in if i > j then i else j

end : sig type t val max : t → int end)
module Forest = (struct
type t = TF.Tree.t list
val max = λx.case x of [] ⇒ 0

| hd :: tl ⇒
let i = TF.Tree.max hd in let j = max tl in
if i > j then i else j

end : sig type t val max : t → int end)
end

Figure 1. Modules for trees and forests

language constructions we can indeed enjoy a highly expressive
power in a type safe and modular way.

Our contributions are summarized as follows.

• We examine two typical uses of recursive modules by giving
concrete examples. These examples are useful for understand-
ing basic uses of recursive modules.

• We propose a new type system for recursive modules with
first-order applicative functors. The type system supports type
inference for recursive modules, and is decidable and sound for
a call-by-value semantics.

All examples we present in this paper are type checked in this
type system, without requiring additional signature annotations.

• We give a type safe and concise solution to the expression
problem, in order to demonstrate that recursive modules give us
high expressive power in a modular way when combined with
other language constructions.

The rest of the paper is organized as follows. In the next section,
we review two examples of recursive modules and present the main
features of our calculus,Traviata, used for our formal development.
Section 3 gives the concrete syntax ofTraviata. Section 4 and 5 ex-
plain the type system and present a soundness result. In Section 6,
we give a solution to the expression problem. In Section 7, we ex-
amine the double vision problem [6]. Section 9 examines related
work and Section 10 concludes.

2. Examples
In this section, we review two examples to illustrate two possible
uses of recursive modules and to informally presentTraviata1.

The first example appears in Figure 1. The top-level module
TreeForest contains two modulesTree andForest: Tree rep-
resents a module for trees whose leaves and nodes are labeled with
integers;Forest represents a module for unordered sets of those
integer trees.

The modulesTree andForest refer to each other in a mutu-
ally recursive way. Their type componentsTree.t andForest.t
refer to each other, as do their value componentsTree.max and
Forest.max. These functions calculate the maximum integers a
tree and a forest contain, respectively.

To enable forward references, we extend structures and signa-
tures with implicitly typed declarations ofself variables. Compo-
nents of structures and signatures can refer to each other recursively
using the self variables. For instance,TreeForest declares a self

1 In examples, we shall allow ourselves to use some usual core language
constructions, such as let and if expressions and list constructors, even
though they are not part of the formal development given in Section 3.

module TreeForest =
functor(X : sig type t val compare : t → t → bool end) →
(struct (TF)
module S = MakeSet(X)
module Tree = struct
module F = TF.Forest
type s = F.t
datatype t = Leaf of X.t | Node of X.t * s
val split = λx.case x of Leaf i ⇒ [Leaf i]

| Node (i, f) ⇒ (Leaf i) :: f
val labels = λx.case x of Leaf i ⇒ TF.S.singleton i

| Node (i, f) ⇒ TF.S.add i (F.labels f)
end
module Forest = struct
module T = TF.Tree
type t = T.t list
val sweep = λx.case x of [] ⇒ []

| (T.Leaf y) :: tl ⇒ (T.Leaf y) :: (sweep tl)
| (T.Node y) :: tl ⇒ sweep tl

val labels = λx.case x of [] ⇒ TF.S.empty
| hd :: tl ⇒ TF.S.union (T.labels hd) (labels tl)

val incr = λf.λt.let l1 = labels f in
let l2 = T.labels t in
if TF.S.diff l1 l2 != TF.S.empty then (t :: f) else f

end
end : sig (Z)
module Tree : sig type t val split : t → Z.Forest.t end
module Forest : sig
type t val sweep : t → t val incr : t → Z.Tree.t → t

end
end)

Figure 2. Intimate modules for trees and forests

variable namedTF, which is used insideTree andForest to re-
fer to each other recursively. We keep the usual ML scoping rules
for backward references. ThusTree.max can refer to theLeaf
andNode constructors without going through a self variable.Tree
might also be used without prefix insideForest, but the explicit
notation seems clearer.

This first example illustrates a possible use of recursive mod-
ules, where they respect each other’s privacy. They are sealed with
signatures individually, enforcing type abstraction inside the recur-
sion.

The second example appears in Figure 2. NowTreeForest is
a functor, parameterized by the type of labels of trees. We assume
that an applicative functorMakeSet is given in a library for making
sets of comparable elements.

The modulesTree andForest define the same recursive types
as the first example, except that the argument types of the construc-
tors Leaf andNode are parameterized. The module abbreviation
module F = TF.Forest insideTree allows us to use an abbrevi-
ationF for TF.Forest insideTree. Similarly, the types in Tree
is an abbreviation which expands intoTF.Forest.t.

In this second example,Tree and Forest are intimate: the
functionsTree.split andForest.sweep know the underlying
implementations of the typesForest.t andTree.t of the others,
thus can construct and deconstruct values of those types. Given
a tree,split cuts off the root node of the tree and returns the
resulting forest. The functionsweep gathers the leaves from a given
forest.

Since the two modules are intimate, we do not sealTree and
Forest individually here. Instead, we seal them as a whole with
a single signature. The signature only exposes functionssplit,
sweep, andincr, which augments a given forest only if a given tree
contains original labels that are not contained in the forest, but hides
functionsTree.labels and Forest.labels, which are utility
functions forincr. The signature also enforces type abstraction by

2 2006/9/7

hiding implementations of the typesTree.t andForest.t, thus it
protects privacy of the two modules from the outside.

The two examples we have seen so far illustrate two possible
uses of recursive modules. They may have privacy, enforcing type
abstraction inside the recursion. They may have intimacy, enforcing
type abstraction outside the recursion. We think both uses are
natural and would become common in practice.

Comparison with existing type systemsThe two examples pre-
sented are type checked in our type system without requiring addi-
tional annotations. Below, we examine the ways existing type sys-
tems handle these examples.

To avoid presenting too much annotations, we remove the mod-
ule abbreviationmodule F = TF.Forest from Tree in Figure 2.
Yet, although we can dispense with abbreviations by replacing them
with their definitions altogether, they are useful in practice [24].

In Russo’s system [23] there is no obvious way to type check the
first example, keeping type abstraction betweenTree andForest.
A suggested solution, which is found in his paper, is to annotate the
self variableTF of TreeForest with a recursive signature2 3 [23]:
sig (Z : sig module Tree : sig type t end

module Forest : sig type t = Tree.t list end
end)

module Tree : sig
datatype t = Leaf of int | Node of int * Z.Forest.t end
module Forest : sig
type t = Tree.t list val max : t → int end

end

This annotation forTF, however, would break type abstraction be-
tweenTree andForest, exposing underlying implementations of
typesTree.t andForest.t to each other.

In Dreyer’s system [5], the sealing signatures forTree and
Forest must be given in advance. That is, the programmer has to
write both signatures before defining either of the two modules, as
opposed to Figure 1, where the signatures are written in a module-
wise way.

O’Caml [15] type checks Figure 1 without modifications.
Next, we examine the second example.
In Russo’s system, the programmer must annotateTF with a

recursive signature:
sig (Z : sig module Tree : sig type t end

module Forest : sig type t = Tree.t list end
end)

module Tree : sig
datatype t = Leaf of X.t | Node of X.t * Z.Forest.t end
module Forest : sig
type t = Tree.t list val labels : t → MakeSet(X).t end

end

Note that this signature is solely for assisting the type checker. We
have already given in Figure 2 the eventual signatures thatTree
and Forest should have; these signatures do not reveal the un-
derlying implementations of typesTree.t andForest.t or the
functionForest.labels.

To type check Figure 2 in Dreyer’s system and O’Caml, the
programmer must write fully manifesting signatures ofTree and
Forest in advance, where the signatures declare every component
of the modules. The type checker first type checks the two modules
assisted by these manifest signatures. Once this succeeds, type
abstraction is enforced using the sealing signature given in Figure 2.
Thus the programmer has to write annotations yet more verbose
than in Russo’s system.

2 This recursive signature does not exactly follow his syntax,e.g.we have
to use the keywordstructure instead ofmodule in his system.
3 We note that by permuting the definition order ofTree andForest the
amount of required annotations can be reduced to some extent in this case.
However permutation does not always work.

Module expression
E ::= Ei

d

Module expression descriptions
Ed ::= struct (Z) D1 . . . Dn end structure

| functor (X : A) → E functor
| (E : S) sealing
| mid module identifier
| X module variable

Definitions
D ::= module M = E module def.

| datatype t = c of τ datatype def.
| type t = τ type abbreviation
| val l = e value def.

Signature
S ::= Si

d

Signature descriptions
Sd ::= sig (Z) B1 . . . Bn end structure type

| functor(X : A) → S functor type
Module variable signature

A ::= Ai
d

Module variable signature description
Ad ::= sig B1 . . . Bn end

Specifications
B ::= module M : S module spec.

| datatype t = c of τ datatype spec.
| type t = τ manifest type spec.
| type t abstract type spec.
| val l : τ value spec.

Recursive identifiers
rid ::= Z | rid .M

Module identifiers
mid ::= rid | mid(mid) | mid(X)

Extended module identifiers
ext mid ::= Z | ext mid .M

| ext mid(ext mid) | ext mid(X)
Module paths
p, q, r ::= ext mid | X

Program
P ::= struct (Z) D1 . . . Dn endi

Figure 3. The module language ofTraviata

We believe that both privacy and intimacy are important for
practical uses of recursive modules. Existing type systems, how-
ever, do not handle them equally. These type systems may deny
privacy. They may require additional annotations that are used only
for helping the type checker, but do not affect resulting signatures
of modules. Even if we assume that these annotations provide some
useful information, our experience with type inference in ML is that
one often writes a module without its signature, and then eventually
writes a signature by editing the result of type inference. This tech-
nique is not available for recursive modules in these type systems.

3. Syntax
Figure 3 gives the module language ofTraviata, which is based on
Leroy’s applicative functor calculus [13]. We useM as a metavari-
able for module names,X for module variables andZ for self vari-
ables. For simplicity, we distinguish them syntactically, however
the context could tell them apart without this distinction. We also
uset for type names andl for (core) value names.

For the purpose of both defining type equality and designing a
decidable type system, we label module expressions, signatures and
module variable signatureswith integers. For instance, a module
expressionE is a module expression descriptionEd labeled with
an integeri, whereEd is either a structure, a functor, a sealing,

3 2006/9/7

Core types τ ::= 1 | τ1 → τ2 | τ1 ∗ τ2 | p.t
Core expr. e ::= x | () | (λx.e : τ) | (e1, e2) | πi(e) | e1(e2)

| rid .c e | X.c e | case e of ms | rid .l | X.l
Matching ms ::= rid .c x ⇒ e | X.c x ⇒ e

Figure 4. The core language ofTraviata

a module identifier or a module variable4. One can think of the
integer labeli of Ei

d as the location ofEd in the source program.
For the interest of brevity, we may omit integer labels when they
are not used. For the interest of clarity, we may write additional
parentheses, for instance(functor(X : sig type t end2) → X3)1. We
use metavariablesi, j for integers.

As explained in the previous section, we extend structures and
signatures with implicitly typed declarations of self variables to
support recursive references. In the constructstruct (Z) D1 . . .
Dn end, the self variableZ is bound inD1 . . . Dn. Similarly, in
the constructsig (Z) B1 . . . Bn end, the self variableZ is bound
in B1 . . . Bn.

For simplicity, we provide different syntax for signatures and
module variable signatures; the latter are used to specify signatures
of functor arguments and do not declare self variables. In a practical
system, we can unify their syntax for the programmer’s benefit.

The construct which enables recursive references isrecursive
identifiers. A recursive identifier is constructed from a self variable
and the dot notation “.M ”, which represents access to the sub-
modulesM of a structure. A recursive identifier may begin from
any bound self variable, and may refer to a module at any level
of nesting within the recursive structure, regardless of component
ordering. For instance, through the self variable of the top-level
structure, one can refer to any module named in that structure
except for those hidden within sealed sub-structures. It is important
that recursive identifiers can only contain bound self variables, and
that self variables of sealed modules are unbound outside them.
Otherwise type abstraction could be broken.

For the sake of simplicity, functor applications only contain
module identifiers and module variables.

To support applicative functors [13], we define a slightly ex-
tended class of identifiers, namedmodule pathsin Figure 3, which
can liberally include functor applications. Core types defined in
Figure 4 may use module paths. Applicative functors give us more
flexibility in expressing type sharing constraints between recursive
modules. In Section 6, we give a practical example which uses re-
cursive modules and applicative functors together in support of our
design choices. It will be useful to note thatZ ⊆ rid ⊆ mid ⊆
ext mid ⊆ p holds.

A program is a top-level structure which contains a bunch of re-
cursive modules. In this paper, we only consider recursive modules,
but not ordinary ones.

To obtain a decidable type system, we impose afirst-order
structure restrictionthat requires functors 1) not to take functors
as argument, 2) nor to access sub-modules of arguments. The first
condition means that our functors are first-order, and the second
implies that the programmer has to pass sub-modules as indepen-
dent parameters for functors instead of passing a module which
contains all of them. One might have noticed that the syntax of
module expression descriptions excludes those of the formsX.M
andX(mid). This is consistent with this restriction.

Figure 4 gives the our core language ofTraviata. We usex as a
metavariable for program variables (variables, for short), andc for
value constructor names.

4 Note thatTraviata does not have separate notions for opaque signatures
and transparent ones.

The core language describes a simple functional language ex-
tended withvalue pathsX.l andrid .l, and type pathsp.t. Value
pathsX.l andrid .l refer to the value componentsl in the struc-
tures referred to byX andrid, respectively. A type pathp.t refers
to the type componentt in the structure thatp refers to.

We may say paths to mean module, type and value paths as a
whole.

An unusual convention is that a module variable is bound inside
its own signature. For instance,

functor(X : sig type t val l : X.t end) → X

is a legal expression, which should be understood as
functor(X : sig type t val l : t end) → X

This convention is convenient when proving type soundness, as the
syntax of paths is kept uniform, that is, every path is prefixed by
either a self variable or a module variable. In Section 6, we give
examples where this this convention is useful.

We writeMVars(p) to denote the set of module variables con-
tained in the module pathp. We also writeMVars(τ), MVars(e)
and the likes with obvious meanings.

In the formalization, 1) function definitions are explicitly type
annotated; 2) every structure and structure type declares a self vari-
able; 3) a path is always prefixed by a self variable or a module
variable. Our examples do not stick to these rules. Instead, we have
assumed that there is an elaboration phase, prior to type checking,
that adds type annotations for functions by running a type inference
algorithm on the core language. The original program may still re-
quire some type annotations, to avoid running into the polymorphic
recursion problem. In Section 8, we discuss the details of this in-
ference algorithm. The elaboration phase also infers omitted self
variables, to complete implicit backward references.

We assume the following five conventions: 1) a program does
not contain free module variables or free self variables; 2) all bind-
ing occurrences of module or self variables use distinct names; 3)
any sequence of module definitions, type abbreviations, datatype
definitions, value definitions, module specifications, manifest and
opaque type specifications, datatype specifications and value speci-
fications does not contain duplicate definitions or specifications for
the same name; 4) all occurrences of module expressions, signa-
tures and module variable signatures in a program are labeled with
distinct integers; 5) module variable signatures do not contain mod-
ule specifications.

4. Reconstruction
The type system is composed of two parts, namely a type recon-
struction part and a type-correctness check part. Concretely, we
type check a programP in two steps: 1) reconstruct alazy pro-
gram typeof P ; at this point, we do not require the reconstructed
type to be correct; 2) check type-correctness ofP by type checking
P in the intuitive way, using the reconstructed type as type environ-
ment; once this second step is completed, we are certain both that
P is type-correct and that the reconstruction was correct.

In this section we describe the reconstruction part; the next
section explains the type-correctness check part.

The rest of this section is organized as follows. In Section 4.1,
we define lazy program types, which are output by the reconstruc-
tion algorithm. In Section 4.2, we define alook-up judgmentfor
using programs and lazy program types as lookup tables. In Sec-
tion 4.3, we introduce “resolution algorithms“, the key for enabling
the reconstruction. Finally, in Section 4.4, we present an algorithm
for reconstructing lazy program types from programs.

In the rest of the paper, we assume that each self variablesZ
is annotated with amodule variable environmentθ, written Zθ.
A module variable environment is a substitution of module paths
for module variables. Correspondingly, we assume that each occur-

4 2006/9/7

Lazy signature
T ::= T i

d

Lazy signature descriptions
Td ::= sig (Z) C1 . . . Cn end lazy structure type

| functor(X : A) → T lazy functor type
| (T1 : T2) lazy sealing type
| p

Lazy specifications
C ::= module M : T

| datatype t = c of τ
| type t = τ
| type t
| val l : τ

Lazy program type
U ::= sig (Z) C1 . . . Cn endi

Figure 5. Lazy module types

Top-levels O ::= P | U
Module descriptions K ::= Ed | Sd | Ad | Td

:= ::= = | :
ss ::= struct | sig

Figure 6. Notation convention

−−
O ` Zθ 7→ (θ, ρO(Z))

(1) −−
O ` X 7→ (id , ρO(X))

(2)

O ` p 7→ (θ, ss . . . module M := Kj . . . endi) K 6= (Kj1
1 : Kj2

2)

O ` p.M 7→ (θ, Kj)
(3)

O ` p 7→ (θ, ss . . . module M := Kj . . . endi) K = (Kj1
1 : Kj2

2)

O ` p.M 7→ (θ, Kj2
2)

(4)

O ` p1 7→ (θ, (functor(X : A) → Kj)i) K 6= (Kj1
1 : Kj2

2)

O ` p1(p2) 7→ (θ[X 7→ p2], K
j)

(5)

O ` p1 7→ (θ, (functor(X : A) → Kj)i) K = (Kj1
1 : Kj2

2)

O ` p1(p2) 7→ (θ[X 7→ p2], K
j2
2)

(6)

Figure 7. Look-up

rence of a self variable in a programP is implicitly annotated with
an identity substitutionid. That is, we regardZ as an abbreviation
for Zid . We useθ as a metavariable for module variable environ-
ments.

4.1 Lazy module types

Figure 5 gives the syntax for lazy module types, which we use as
signatures of modules during type checking. The syntax for lazy
signature descriptions extends that for signature descriptions with
the sealing construction(T1 : T2) and module paths. We use the
sealing construction(T1 : T2) to check type-correctness of the
sealing construction(E : S) of module expression descriptions
((25) in Figure 15). We use module paths to instantiate signatures
lazily ((55) in Figure 18). In the constructsig (Z) C1 . . . Cn end,
the self variableZ is bound inC1 . . . Cn. A lazy program type is a
top-level lazy structure type labeled with an integer. Note that lazy
signatures include signatures.

We use the notation convention in Figure 6. In particular, we
useO as a metavariable for top-levels, which are either programs
or lazy program types, andK for module descriptions, which are
either module expression descriptions, signature descriptions, mod-
ule variable signature descriptions or lazy signature descriptions.

struct (Z)

module M1 = (functor(X : sig type t end3) →
struct module M11 = struct end5 end4)2

module M2 = struct type t = int end6

module M3 = Z.M1(Z.M2)
7

end1

Figure 8. A programP1

4.2 Look-up

Next, we define a look-up judgment for finding module descriptions
and their integer labels from a top-level. During the reconstruction
we use the judgment against programs; during the type-correctness
check, we use the judgment against lazy program types.

We assume that, for a top-levelO, there is a global mapping
ρO which sends i) a self variableZ to the structure or the (lazy)
structure type to whichZ is ascribed in O, and ii) a module
variableX to the module variable signature specified forX in O.
We say that in the constructstruct (Z) D1 . . . Dn endi the self
variableZ is ascribed tostruct (Z) D1 . . . Dn endi. Similarly,
in the constructssig (Z) B1 . . . Bn endi andsig (Z′) C1 . . . Cm

endj , Z and Z′ are ascribed tosig (Z) B1 . . . Bn endi and
sig (Z′) C1 . . . Cm endj , respectively. The use ofρO makes the
presentation concise5.

We present inference rules for the look-up judgment in Figure 7.
The judgmentO ` p 7→ (θ, Ki) means that the module pathp
refers to the module descriptionK labeled with the integeri in the
top-levelO, where each module variableX is bound toθ(X).

Let us examine each rule. For self variables and module vari-
ables, the judgment consults the global mappingρO. Next two rules
(3) and (4) handle module paths of the formp.M . A module path
p.M refers to the sub-module namedM in the module thatp refers
to. Hencep must refer to either a structure or a (lazy) structure type.
The rules (3) and (4) distinguish whetherM is bound to a sealing
construction(Kj1

1 : Kj2
2)j or not; when it is, thenp.M resolves

to the sealing partKj2
2 . Thus, the judgment prevents peeking in-

side of sealed modules from outside them. The last two rules (5)
and (6) handle module paths of the formp1(p2). Whenp1 refers to
either a functor or a (lazy) functor type, thenp1(p2) resolves to the
body of the functor, where the module variable environment is aug-
mented with the new binding[X 7→ p2]. Again the rules (5) and
(6) distinguish whether the body is a sealing construction or not.

The look-up judgment does not hold for arbitrary module paths.
For instance, consider Figure 8. We haveP1 ` Z.M1(Z.M2).M11 7→
([X 7→ Z.M2], struct end5). But, the judgment does not hold for
the module pathZ.M3.M11.

Recall that we have assumed the absence of free module vari-
ables. This means that whenO ` p 7→ (θ, qi), thenMVars(q) ⊆
dom(θ). For a module variable environmentθ, dom(θ) denotes the
domain ofθ.

4.3 Resolution algorithms

Our type system differs from others in that it can resolve path ref-
erences. Concretely, we developed a terminating procedure for de-
termining the component that a path refers to, where the path may
contain forward references. The motivation of this procedure was to
define a decidable judgment for type equality. In a language with re-
cursive modules and applicative functors, there is the potential that

5 We could avoid this assumption of a global mapping by annotating each
self variable with the source program location of the structure or structure
type to which the self variable is ascribed. Since the source program can be
regarded as a finite tree, we can represent every node of the tree by a finite
representation (i.e., we need not use file names or line numbers.)

5 2006/9/7

O ` p ;n p′

O ` p.M ;n p′.M

O ` p ;n p′

O ` p(q) ;n p′(q)

O ` q ;n q′

O ` p(q) ;n p(q′)

O ` p 7→ (θ, qi)

O ` p ;n θ(q)

Figure 9. Normalization of module paths with respect toO

a program contains pathologically cyclic type abbreviations which
may cause type equality check to diverge. We later noticed that
a similar procedure enables type inference for recursive modules.
Note that we cannot use the well-typedness of the source program
when resolving path references, since we already need type equal-
ity to ensure this well-typedness.

We implement the procedure for path resolution as three algo-
rithms, namely, a module path expansion algorithmPathExp, a type
expansion algorithmTyExpand a core type reconstruction algo-
rithm CtyReconst. These algorithms use termination criteria based
on ground term rewriting and recursive path ordering; the criteria
do not rely on the well-typedness of the source program, and still
allow flexible handling of module and type abbreviations.

For lack of space, we do not explain all these algorithms; we
only give their specifications, needed to present the rest of the
type system. We give definitions ofPathExpand CtyReconstin
Appendix A. In [19], the reader can find detailed explanations.

Located types We define a canonical form of types, calledlocated
types. The type system checks equality between two arbitrary types
by reducing them into located types usingTyExp.

A located type is a type composed ofsimple located typesand1
using→ and∗. Intuitively, a simple located type is an abstract type
which is obtained by expanding all type and module abbreviations.

We first definelocated forms, a canonical form of module paths.
A module pathp is in located form if and only ifp does not contain
a module path which resolves to a module abbreviation.

DEFINITION 1. A module pathp is in located form with respect to
a top-levelO if and only if the following two conditions hold.

• O ` p 7→ (θ, Ki) whereK is not a module path.
• For all q in args(p), q is in located form.

For a module pathp, args(p) denotes the set of module paths that
p contains as functor arguments, or:

args(Zθ) =
∪

X∈dom(θ)
{θ(X)}

args(p.M) = args(p) args(p1(p2)) = args(p1) ∪ {p2}

A simple located type is an abstract type whose prefix is a
located form.

DEFINITION 2. A simple located type with respect to a top-level
O is a type pathp.t wherep is in located form with respect toO
and eitherO ` p 7→ (θ, ss . . . datatype t = c of τ . . . endi) or
O ` p 7→ (θ, ss . . . type t . . . endi) holds.

Now located types are defined below.

DEFINITION 3. A located type with respect to a top-levelO is a
typeτ where each typeτ ′ in typaths(τ) is a simple located type
with respect toO.

For a typeτ , typaths(τ) denotes the set of type paths thatτ
contains. Precisely,

typaths(τ) =

typaths(τ1) ∪ typaths(τ2) whenτ = τ1 → τ2

or τ = τ1 ∗ τ2

{p.t} whenτ = p.t
∅ whenτ = 1

O, Ω ` 1 ↓ 1

O, Ω ` τ1 ↓ τ ′
1 O, Ω ` τ2 ↓ τ ′

2

O, Ω ` τ1 → τ2 ↓ τ ′
1 → τ ′

2

O, Ω ` τ1 ↓ τ ′
1 O, Ω ` τ2 ↓ τ ′

2

O, Ω ` τ1 ∗ τ2 ↓ τ ′
1 ∗ τ ′

2

PathExp(O, p) = p′ O ` p′ 7→ (θ, ss . . . type t . . . endi)

O, Ω ` p.t ↓ p′.t

PathExp(O, p) = p′ O ` p′ 7→ (θ, ss . . . datatype t = c of τ . . . endi)

O, Ω ` p.t ↓ p′.t

PathExp(O, p) = p′ O ` p′ 7→ (θ, ss . . . type t = τ1 . . . endi)
−−−−−−O, Ω] (i, t) ` τ1 ↓ τ2 O, Ω ` θ(τ2) ↓ τ−−−−−

O, Ω ` p.t ↓ τ

Figure 10. Type expansion with respect toO

module path expansion To specify the module path expansion
algorithmPathExp, we define thenormalizationof module paths in
Figure 9. The judgmentO ` p ;n q means thatp reduces intoq in
one step, with respect to the top-levelO. The normalization traces
module abbreviations in the intuitive way. We writeO ` p ;n∗ q
to mean thatp reduces intoq in more than or equal to zero step.

The proposition below states thatPathExpis terminating and
that, when it succeeds, it coincides with normalization.PathExp
raises an error when it cannot prove that the input module path
does not contain cyclic or dangling references.

PROPOSITION1.

1. For any top-levelO and module pathp, PathExp(O, p) either
returns a module path in located form with respect toO, or else
raises an error.

2. WhenPathExp(O, p) = q, thenO ` p ;n∗ q.

Type expansion We define the type expansion algorithm in Fig-
ure 10. The judgmentO, Ω ` τ1 ↓ τ2 means that the algorithm
expands the typeτ1 into the typeτ2 whereΩ is locked, with re-
spect to the top-levelO. We useΩ as a metavariable for pairs(i, t)
of an integeri and a type namet. The notationΩ] (i, t) means
Σ ∪ {(i, t)} whenever(i, t) 6∈ Ω. Note that derivations of the type
expansion are deterministic. In particular, it is an error state when
there are no applicable rules.

Then we defineTyExp such that it takes as argument a top-
level O and a typeτ , then either returns a typeτ ′ whenO, ∅ `
τ ↓ τ ′ holds or else raises an error when no rule applies,i.e. it
cannot prove that the input type does not contain cyclic or dangling
references.

PROPOSITION2. For any top-levelO and typeτ , TyExp(O, τ)
either returns a located type with respect toO or else raises an
error.

Core type reconstruction The type reconstruction algorithm
CtyReconstpropagates type annotations on functions. It does not
check that these annotations are correct. For instance, for an ex-
pressione1(e2), CtyReconstonly reconstructs a type ofe1, which
must be of the formτ1 → τ2, then returns the result typeτ2. In the
type-correctness check part, the type system checks thate2 has a
type equivalent toτ1.

At this time, we only requireCtyReconstto be terminating.

PROPOSITION3. For any program P and core expressione,
CtyReconst(P, e) either returns a located type with respect to
P or else raises an error.

4.4 Lazy program type reconstruction algorithm

Figure 11 presents inference rules for the lazy program type re-
construction algorithm with respect to a programP . The algorithm
is a straightforward application ofCtyReconst(see (10)), hence it

6 2006/9/7

Definitions
P ` E . T

P ` module M = E . module M : T
(7)

−−
P ` datatype t = c of τ . datatype t = c of τ

(8)

−−
P ` type t = τ . type t = τ

(9)
CtyReconst(P, e) = τ

P ` val l = e . val l : τ
(10)

Module expression
P ` Ed . Td

P ` Ei
d . T i

d

(11)

Module expression descriptions
P ` D1 . C1 . . . P ` Dn . Cn

P ` struct (Z) D1 . . . Dn end . sig (Z) C1 . . . Cn end
(12)

P ` E . T
P ` functor(X : A) → E . functor(X : A) → T

(13)

P ` E . T
P ` (E : S) . (T : S)

(14)
P ` p . p

(15)

Figure 11. Lazy program type reconstruction with respect toP

does not ensure type-correctness of the programP . It either returns
a lazy program type thatP would have whenP is type-correct,
or else raises an error when it cannot prove thatP does not con-
tain cyclic or dangling references. Note that it does not check type-
correctness of functor applications (see (15)).

Then we defineReconstPsuch that it takes a programP as
argument, then either returnsU whenP ` P . U holds or else
raises an error when this cannot be done.

PROPOSITION4. For any programP , ReconstP(P) either re-
turns a lazy program type or raises an error.

5. Type-correctness check
One of the main difficulties in type checking recursive modules is
how to reason about forward references. Usually, a type checker
consults a type environment for the necessary type information
about paths. When paths only contain backward references, it is
sufficient to accumulate in the type environment signatures of pre-
viously type checked modules. When modules are defined recur-
sively, however, paths may contain forward references. Then the
type checker may attempt to ask the type environment for a signa-
ture of a module which is not yet type checked.

To circumvent difficulties arising from forward references, other
type systems rely on signature annotations. As we examined in
Section 2, this requirement compels the programmer to write two
different signatures for the same module to enforce type abstraction
outside the recursion. Moreover, the programmer cannot rely on
type inference during development due to it. This is unfortunate
since a lot of useful inference algorithms have been and will be
developed to support smooth development of programs.

We have a reconstruction algorithm, hence we do not need the
assistance of signature annotations. That is, we use the result of
reconstruction as type environment instead of using programmer-
supplied annotations.

There are three tasks to be completed in this type-correctness
check part: 1) to check type-correctness of core expressions. (Re-
call that CtyReconstdoes not ensure type-correctness of expres-
sions that it reconstructs types for.); 2) to check well-formedness of
module paths, that is, to check that functor applications contained
in the paths are type-correct and that references of the paths are not
cyclic or dangling; 3) to check that, for every sealing construction
(E : S), the module expressionE inhabits the signatureS.

U ` TyExp(U, τ1) ≡τ TyExp(U, τ2)

U ` τ1 ≡ τ2
(16)

Figure 12. Type equivalence with respect toU

U ` 1 ≡τ 1
(17)

U ` τ1 ≡τ τ ′
1 U ` τ2 ≡τ τ ′

2

U ` τ1 → τ2 ≡τ τ ′
1 → τ ′

2

(18)

U ` τ1 ≡τ τ ′
1 U ` τ2 ≡τ τ ′

2

U ` τ1 ∗ τ2 ≡τ τ ′
1 ∗ τ ′

2

(19)
U ` p1 ≡p p2

U ` p1.t ≡τ p2.t
(20)

Figure 13. Equivalence on located types with respect toU

U ` p1 7→ (θ1, T
i1
d1) U ` p2 7→ (θ2, T

i2
d2) i1 = i2

−−−∀X ∈ dom(θ1), U ` θ1(X) ≡p θ2(X)−−−
U ` p1 ≡p p2

(21)

Figure 14. Equivalence on located forms with respect toU

5.1 Type equality

We define a type equivalence judgment in Figure 12, with auxil-
iaries in Figure 13 and 14. The judgmentU ` τ1 ≡ τ2 means that
two typesτ1 andτ2 are equivalent with respect to the lazy program
typeU . We check equivalence between two arbitrary types by re-
ducing them into located types.

Figure 13 defines equivalence on located types. The first three
rules are straightforward. The last rule judges whether two abstract
types are equivalent. Two typesp1.t andp2.t are equivalent if and
only their prefixesp1 andp2 are equivalent module paths. (Note
that sincep1.t is a located type,p1 is in located form.)

Figure 14 defines a judgment for equivalence on module paths
in located form. Two located formsp1 and p2 are equivalent if
and only if they refer to module descriptions at the same location
(i.e., labeled with the same integer) and their functor arguments
are equivalent. Take a look at the look-up judgment (Figure 7)
again. The module variable environmentθ1 collects all module
paths contained inp1 as functor arguments.

5.2 Typing rules

In Figure 15, we present typing rules for the type-correctness
check, with auxiliaries in Figure 16, 17, 18 and 19.

The judgmentU ` E : T means that the module expression
E of lazy signatureT is type-correct with respect to the lazy
program typeU . The judgmentU ; Γ ` e : τ means that the core
expressione of type τ is type-correct under the type environment
Γ with respect toU . A type environment assigns a located type to
a variable. Other judgments are read similarly.

The typing rules in Figure 15 are mostly straightforward. Here
we only explain the rule for sealing.

The rule (25) checks that the sealing construction(E : S) is
type-correct. In particular, the third premise is for ensuring that the
module expressionE inhabits the signatureS; it checks that the
lazy signatureT1 of E1 is a subtype ofSubst(T1, S).

The subtyping relation, to be given below, follows that of
Leroy’s applicative functor calculus. In particular, for two manifest
type specificationstype t : τ1 andtype t : τ2 to be in subtyping
relations,τ1 andτ2 must be equivalent. To check type equivalence,
the type system expand types usingTyExp; here is the reason that
we define the functionSubst, which is found in Figure 17.

The functionSubstperforms explicit substitution for self vari-
ables declared inside sealing signatures. For instance, consider Fig-
ure 2. The reconstruction algorithm infers that the functionsplit
in Forest has a typeTF.Tree.t → TF.Tree.t list (For clar-
ity, we add omitted self variables.). The sealing signature specifies

7 2006/9/7

Module expression

U ` Ed : Td

U ` Ei
d : T i

d

(22)

Module expression descriptions

U ` D1 : C1 . . . U ` Dn : Cn

U ` struct (Z) D1 . . . Dn end : sig (Z) C1 . . . Cn end
(23)

U ` A : A′ U ` E : T

U ` functor(X : A) → E : functor(X : A′) → T
(24)

U ` E : T1 U ` S : T2 U ` T1 <: Subst(T1, S)

U ` (E : S) : (T1 : T2)
(25)

U ` p wf

U ` p : p
(26)

Definitions and Specifications

U ` E : T
U ` module M = E : module M : T

(27)
U ; ∅ ` e : τ

U ` val l = e : val l : τ
(28)

U ` τ ¦
U ` datatype t = c of τ : datatype t = c of τ

(29)

U ` τ ¦
U ` type t = τ : type t = τ

(30)
U ` S : T

U ` module M : S : module M : T
(31)

U ` type t : type t
(32)

U ` τ ¦
U ` val l : τ : val l : τ

(33)

Signature

U ` Sd : Td

U ` Si
d : T i

d

(34)

Signature descriptions

U ` B1 : C1 . . . U ` Bn : Cn

U ` sig (Z) B1 . . . Bn end : sig (Z) C1 . . . Cn end
(35)

U ` A : A′ U ` S : T

U ` functor(X : A) → S : functor(X : A′) → T
(36)

Module variable signature

U ` Ad1 : Ad2

U ` Ai
d1 : Ai

d2

(37)

Module variable signature description

U ` B1 : B′
1 . . . U ` Bn : B′

n

U ` sig B1 . . . Bn end : sig B′
1 . . . B′

n end
(38)

Core types

U ` 1 ¦ (39)
U ` τ1 ¦ U ` τ2 ¦

U ` τ1 → τ2 ¦ (40)
U ` τ1 ¦ U ` τ2 ¦

U ` τ1 ∗ τ2 ¦ (41)

U ` p wf TyExp(U, p.t) = τ

U ` p.t ¦ (42)

Core expressions

U ; Γ ` () : 1
(43)

x ∈ dom(Γ)

U ; Γ ` x : Γ(x)
(44)

U ; Γ ` e1 : τ1 U ; Γ ` e2 : τ2

U ; Γ ` (e1, e2) : τ1 ∗ τ2
(45)

U ; Γ ` e : τ1 ∗ τ2

U ; Γ ` πi(e) : τ1
(46)

U ` τ ¦ TyExp(U, τ) = τ1 → τ2 U ; Γ, x : τ1 ` e : τ3 U ` τ2 ≡ τ3

U ; Γ ` (λx.e : τ) : τ1 → τ2
(47)

U ; Γ ` e1 : τ1 → τ2 U ; Γ ` e2 : τ3 U ` τ1 ≡ τ3

U ; Γ ` e1 (e2) : τ2
(48)

U ` p wf PathExp(U, p) = p′

γ(U, p′, c) = (t, τ1) U ; Γ ` e : τ2 U ` τ1 ≡ τ2

U ; Γ ` p.c e : p′.t
(49)

U ; Γ ` e1 : τ1 U ` p wf PathExp(U, p) = p′

γ(U, p′, c) = (t, τ2) U ` τ1 ≡ p′.t U ; Γ, x : τ2 ` e2 : τ

U ; Γ ` case e1 of p.c x ⇒ e2 : τ
(50)

U ` p wf PathExp(U, p) = p′

U ` p′ 7→ (θ, sig . . . val l : τ ′ . . . endi) TyExp(U, θ(τ ′)) = τ

U ; Γ ` p.l : τ
(51)

Figure 15. Typing rules with respect toU

γ(U, p, c) = (t, τ) when
U ` p 7→ (θ, sig . . . datatype t = c of τ ′ . . . endi)
andTyExp(U, θ(τ ′)) = τ

Figure 16. Datatype look-up with respect toU

Subst(T i
d, Sj

d) = subst1 (Td, Sd)
j

subst1 (p, sig (Z) B1 . . . Bn end)
= (sig (Z) subst2 (p, [Z 7→ p]B1) . . . subst2 (p, [Z 7→ p]Bn) end)

subst1 (p, functor(X : A) → Si
d)

= functor(X : A) → subst1 (p(X), Sd)
i

subst1 (sig (Z) C1 . . . Cn end, sig (Z′) B1 . . . Bm end)
= sig (Z′)

subst3 (Cσ(1), [Z
′ 7→ Z]B1) . . . subst3 (Cσ(m), [Z

′ 7→ Z]Bm) end

subst1 (sig . . . end, functor(X : A) → S) = raise Error

subst1 (functor(X : A) → T i
d, functor(X ′ : A′) → Sj

d)
= functor(X ′ : A′) → subst1 ([X 7→ X ′]Td, Sd)

j

subst1 (functor(X : A) → T, sig . . . end) = raise Error

subst1 ((T : T i
d), Sd) = subst1 (Td, Sd)

subst2 (p, module M : Si
d) = module M : subst1 (p.M, Sd)

i

subst2 (p, B) = B whereB is not a module specification

subst3 (module M : T i
d, module M : Sj

d) = module M : subst1 (Td, Sd)
j

subst3 (C, B) = B whereB is not a module specification

Figure 17. Substitution

U ` Td <: Sd

U ` T i
d <: Sj

d

(52)
U ` Td <: Ad

U ` T i
d <: Aj

d

(53)

U ` Td <: Sd

U ` (T : T i
d) <: Sd

(54)

PathExp(U, p) = p′ U ` p′ 7→ (θ, T i
d) U ` θ(Td) <: Sd

U ` p <: Sd
(55)

σ : {1, . . . , m} 7→ {1, . . . , n} ∀i ∈ {1, . . . , m}, U ` Cσ(i) <: Bi

U ` sig (Z) C1 . . . Cn end <: sig (Z′) B1 . . . Bm end
(56)

U ` A′ <: [X 7→ X ′]A U ` [X 7→ X ′]T <: S

U ` functor(X : A) → T <: functor(X ′ : A′) → S
(57)

σ : {1, . . . , m} 7→ {1, . . . , n} ∀i ∈ {1, . . . , m}, U ` Cσ(i) <: Bi

U ` sig C1 . . . Cn end <: sig B1 . . . Bm end
(58)

U ` type t <: type t
(59)

U ` type t = τ <: type t
(60)

U ` datatype t = c of τ <: type t
(61)

U ` τ1 ≡ τ2

U ` type t = τ1 <: type t = τ2
(62)

U ` τ1 ≡ τ2

U ` val l : τ1 <: val l : τ2
(63)

U ` τ1 ≡τ τ2

U ` datatype t = c of τ1 <: datatype t = c of τ2
(64)

U ` T <: S
U ` module M : T <: module M : S

(65)

Figure 18. Subtyping with respect toU

U ` X wf

−−
U ` Zid wf

U ` p wf PathExp(U, p.M) = q

U ` p.M wf

U ` p1 wf U ` p2 wf
PathExp(U, p1) = p′

1 PathExp(U, p2) = p′
2 PathExp(U, p1(p2)) = q

U ` p′
1 7→ (θ, (functor (X : Aj

d) → T)i) U ` p′
2 <: θ[X 7→ p′

2](Ad)

U ` p1(p2) wf

Figure 19. Well-formed module paths with respect toU

8 2006/9/7

that split has a typeZ.Tree.t → Z.Forest.t. Both the re-
constructed type and the specified type are located types, but they
are not equivalent according to the type equivalence judgment. In
fact, forForest to inhabit the sealing signature, the reconstructed
type TF.Tree.t → TF.Tree.t list should be equivalent to
TF.Tree.t →TF.Forest.t, which is the type obtained by sub-
stitutingTF for Z in the specified typeZ.Tree.t → Z.Forest.t.
Indeed, this is satisfied since the typeTF.Forest.t expands into
TF.Tree.t list.

One may think that it would be more natural to identify signa-
tures related byα-renaming rather than to perform explicit substi-
tution. Yet implicit renaming makes it complex to use the type ex-
pansion algorithm, which is developed separately from the typing
rules.

In Figure 18, we define subtyping relations between a lazy sig-
nature and a signature ((52)), between a lazy signature and a mod-
ule variable signature ((53)), between a lazy signature description
and a signature description ((54) to (57)), between a lazy signature
description and a module variable description ((58)) and between
a lazy specification and a specification ((59) to (65)). The rules are
mostly intuitive. The reader should only look at the rule (55). A
lazy signature description can be a module pathp. To check thatp
is a subtype of a signature descriptionSd, we instantiate the lazy
signature of the module thatp refers to; we use the module path
expansion algorithmPathExpto resolvep’s reference. For the de-
cidability of the subtyping relations, it is important that only lazy
signature descriptions can be module paths, but ordinary signature
descriptions cannot.

The judgmentU ` p wf, defined in Figure 19, checks that the
module pathp is well-formed. For instance, the rule (26) in Fig-
ure 15 uses this judgment for checking type-correctness of mod-
ule paths. The judgment ensures that the module pathp does not
contain cyclic or dangling references and that functor applications
contained inp are type-correct.

DEFINITION 4. A programP is well-typed if and only if
ReconstP(P) = U andU ` P : U holds.

PROPOSITION5. For any programP , it is decidable whetherP is
well-typed or not.

Soundness

Here we give a call-by-value operational semantics and state its
type soundness.

Valuesv and evaluation contextsE are:
v ::= () | (v1, v2) | p.c v | (λx.e : τ)

E ::= {} | (E, e) | (v, E) | πi(E) | E (e)

| v (E) | p.c E | case E of ms

wherep does not contain module variables.
Then a small step reduction is either:
p.l

mp→p′.l whenP ` p ;n p′ πi(v1, v2)
prj→ vi

(λx.e : τ) v
fun→ [x 7→ v]e case p.c v of q.c x ⇒ e

case→ [x 7→ v]e

p.l
vpth→ θ(e) whenP ` p 7→ (θ, struct . . . val l = e . . . endi)

or an inner reduction obtained by induction:
e1 → e2 E 6= {}
E{e1} → E{e2}

Again, these reductions are defined with respect to a programP .
When deconstructing a value through the case expression

case p.c v of q.c x, we do not explicitly check thatp andq are
equivalent. The type system already ensures thatp andq expand
into equivalent module paths.

During the reduction, we would like to look up actual imple-
mentations of modules instead of their signatures from the program
P . For this purpose, we assume that onceP is type checked, all

module type E = sig
type exp val eval : exp → int val simp : exp → exp end

module PF =
functor(X : E with type exp = private [> PF(X).exp]) →
struct
type exp = [‘Num of int | ‘Plus of X.exp * X.exp]
val eval : exp → int = λx.case x of ‘Num n ⇒ n

| ‘Plus (e1, e2) ⇒ X.eval e1 + X.eval e2
val simp : exp → X.exp = λx.case x of

‘Num n ⇒ ‘Num n
|‘Plus(e1, e2) ⇒ case (X.simp e1, X.simp e2) of

(‘Num m, ‘Num n) ⇒ ‘Num(m+n)
| e12 ⇒ ‘Plus e12

end

module Plus = (PF(Plus) : E with type exp = PF(Plus).exp)

Figure 20. A first expression language

sealing signatures inP are erased. (Then, the rules (2), (4) and (6)
in Figure 7 are not used any more.) After the erasure, the look-up
judgment always looks up actual implementations during the nor-

malization of module paths and in the reduction step
vpth→ .

We assume that the top-level structure of every programP
contains a value component namedmain. The evaluation ofP
begins by reducing the defining expression ofmain.

PROPOSITION6 (Soundness).Let a programP be well-typed.
Then the evaluation ofP either returns a value or else gives rise to
an infinite reduction sequence.

We cannot state a subject reduction lemma in the context of
Traviata. For the decidability result, the type system ofTraviata
rejects cyclically defined types. Yet, for proving subject reduction,
we want to establish type equality which can handle these cycles.
In proofs, we define another type system, calledTraviataX, which
may not be decidable, but can reason about cyclically defined types.
We prove thatTraviataXis sound for the operational semantics, by
proving subject reduction and progress properties. Then, Proposi-
tion 6 is obtained by proving that if a programP is well-typed in
Traviata, then so is inTraviataX.

6. The expression problem
In this section, we present an advanced example of recursive mod-
ules, by giving a solution to the expression problem [26].

The expression problem, named by Phil Wadler, dates back to
Cook [2]. It is one of the most fundamental problems one faces dur-
ing the development of extensible software. Here, we paraphrase a
typical example of this problem in the following way: suppose that
we have a small expression language, composed of a recursively de-
fined datatype and processors which operate on this datatype; then
we want to extend the expression language in two dimensions, that
is, to extend the datatype with new constructors and to add new pro-
cessors. That a programming language can solve this problem in a
type safe and concise way has been regarded as a measure of the ex-
pressive power of the language. Many researchers have addressed
this problem, using different programming languages [21, 27, 25].

Our aim here is not to draw a conclusion that our solution is
better than others. Instead, we aim to give a useful example of
recursive modules, in order to show that by combining recursive
modules with other constructs of the core and the module languages
we can obtain more expressive power in a modular way.

The example we use here extends the one in [8]. It is a variation
on the expression problem, where we only insist on the addition of
new constructors. Adding new processors is easy in this setting.

We shall assume that we have extendedTraviatawith polymor-
phic variants [7], private row types [8] and some usual module lan-

9 2006/9/7

module MF =
functor(X : E with type exp = private [> MF(X).exp]) →
struct
module Plus = PF(X)
type exp = [Plus.exp | ‘Mult of X.exp * X.exp]
val eval : exp → int = λx.case x of

#Plus.exp as e ⇒ Plus.eval e
|‘Mult(e1, e2) ⇒ X.eval e1 * X.eval e2

val simp : exp → X.exp = λx.case x of
#Plus.exp as e ⇒ Plus.simp e

|‘Mult(e1, e2) ⇒ case (X.simp e1, X.simp e2) of
(‘Num m, ‘Num n) ⇒ ‘Num(m*n)

| e12 ⇒ ‘Mult e12
end

module Mult = (MF(Mult) : E with type exp = MF(Mult).exp)

Figure 21. A second expression language

guage constructions. Adding polymorphic variants and private row
types is straightforward. We add typing rules for them to our lan-
guage. Allowing structures to contain module type definitions may
not be easy, but having module type definitions in the top-level is
easy.

To reduce notational burden, we omit, here and elsewhere, pre-
ceding self variables even for forward references when no ambigu-
ity seems to arise. We also omit the top-levelstruct andend.

We define our first expression language in Figure 20, using the
functorPF. The typeexp defined in the body ofPF indicates that
the first language supports expressions composed of integers and
addition. The functioneval is for evaluating expressions into inte-
gers. The functionsimp is for simplifying expressions, by reducing
the‘Plus constructor into the‘Num constructor when possible.

To keep the first language extensible, we leave recursion open
in PF; the polymorphic variant typeexp and functionseval and
simp recur throughPF’s parameterX.

The intuition of the example is thatPF takes as argument an ex-
pression language which is built by extending the addition language
thatPF defines. This is exactly what the signature ofX expresses;
here is the key of the example. The type specificationtype t =
private [> PF(X).exp] specifies an abstract type into which
the typePF(X).exp can be coerced, or, informally, an abstract type
which is a supertype ofPF(X).exp. The typePF(X).exp refers to
the typeexp defined insidePF’s body. HenceX’s signature specifies
thatPF can only be applied to a module whose defining expression
language supports both integers and addition. This recursive use of
PF(X).exp to constrainPF’s argument is the main difference with
the solution in [8]. By avoiding the need to define types outside of
the functor, it allows for a more concise and scalable solution. Ob-
serve that if it were not for all of applicative functors, private row
types and flexible path references, we could not writeX’s signature
in this way.

The use of polymorphic variants, which are structural types un-
like usual nominal datatypes, is important also for defining the
function simp. The functionsimp has the typeexp → X.exp.
Since the typeX.exp structurally contains the typeexp, as spec-
ified in theX’s signature, all of‘Num n, ‘Num(m+n) and‘Plus
e12, which are the results of the case branches, are of typeX.exp.

The modulePlus instantiates the addition language, by closing
PF’s open recursion. Observe that both the type and the value level
recursion are closed simultaneously, that is, by taking the fix-point
of PF, the forwardingsX.exp, X.eval andX.simp are connected
to exp, simp and eval themselves, thus yielding self-contained
recursive typeexp and recursive functionseval andsimp.

Now we can perform addition on the first language. For in-
stance,

val e1 = Plus.eval (‘Plus(‘Num 3, ‘Num 4))

module TreeForest = struct (TF)
module Tree = (struct
datatype t = Leaf of int | Node of int * TF.Forest.t
val max = ...
val mk tree = λx.let i = TF.Forest.max x in Node(i, x)

end : sig
type t val max : t → int
val mk tree : TF.Forest.t → t end)

module Forest = (struct (F)
type t = TF.Tree.t list
val max = ...
val combine = λx.λy.TF.Tree.mk tree [x;y]
end : sig (FS)
type t val max : t → int
val combine : TF.Tree.t → TF.Tree.t → TF.Tree.t end)

end

Figure 22. Modules for trees and forests(2)

Next, we define our second expression language using the func-
tor MF in Figure 21. The second language supports expressions
composed of multiplication and addition on integers.

We use the exactly same idiom as the first language to define
this second language. In particular, the typeMF(X).exp appearing
in X’s signature refers to the typeexp defined in the body ofMF.

Note that we instantiate the first addition language insideMF,
and use it in functionseval andsimp to delegate known cases by
variant dispatch. Thus we avoid duplication of program codes.

The moduleMult instantiates the second language, by closing
MF’s open recursion. Now we can do arithmetic on the second lan-
guage. For instance,
val e2 = Mult.eval (‘Plus(‘Mult(‘Num 3, ‘Num 4), ‘Num 5))

Having seen examples here and in Section 2, we confirm that
recursive modules are useful in several situations. Moreover, when
combined with other language constructions, they give us the
highly expressive power in a modular way. We believe that they are
a promising candidate for supporting robust extensible software.

7. The double vision problem
Here we examine the double vision problem [6], a typing difficulty
involved in recursive modules, in the context ofTraviata. Detailed
examinations of this problem are found in [6, 3].

The situation we want to deal with When a module is sealed
with a signature, the type system distinguishes the module defined
inside the signature and the module which inhabits the signature.
For instance, consider Figure 1. InsideForest, the typet and the
type TF.Forest.t are not equivalent; the former is an internal
type, which refers toForest’s type t inside the sealing, but the
latter is an external type, which refers toForest’s typet outside.

This design choice of type equivalence keeps the type equiva-
lence judgment simple. Yet, it might be occasionally inconvenient,
for instance, when the programmer wants to build a value of an
external type inside sealing.

To see a concrete situation, consider Figure 22. This is the same
program as in Figure 1, but hereTree andForest contain new
functionsmk tree and combine, respectively; the former is for
building a tree from a given forest and the latter for building a tree
from given two trees.

Our type system cannot type check the defining expression of
combine. For the expression[x;y] inside the body ofcombine,
the core type reconstruction algorithm infers that the expression has
a typeTF.Tree.t list; the functionTF.Tree.mk tree takes an
argument of typeTF.Forest.t, which is specified inTree’s seal-
ing signature. According to our type equivalence judgment, how-
ever, the typesTF.Forest.t andTF.Tree.t list are not equiv-

10 2006/9/7

alent, sinceTF.Forest.t is an abstract type thus is not equivalent
to any other types than itself.

This kind of situation typically occurs when the programmer
attempts to cyclically import, inside a sealed module, a value that
is exported by the same module as a value of an abstract type. Note
that such reimportation is only possible with recursive modules, but
not with ordinary modules.

Type coercion Currently we provide a core language construc-
tion, calledtype coercion, that allows the programmer to coerce
types of expressions from internal types to external types and vice
versa, in an explicit way. The type coercion construction is of the
form (e : τ ::> τ ′), which informally reads as “to coerce the type
τ of the expressione into τ ′”. For instance, the programmer can
define a type-correctcombine as
val combine =

λx.λy.TF.Tree.mk tree ([x;y] : t ::> TF.Forest.t)

(Observe that the internal typet of Forest is only visible inside
Forest.)

For lack of space, we refer the reader to [20] for a typing rule
for type coercion. In short, for the construction(e : τ ::> τ ′), the
type system checks type equality betweenτ andτ ′ in a way more
sensitive to sealing but without usingTyExp. We also note that there
is a (somewhat verbose) workaround to define a type-safecombine
without using type coercions; the programmer can define his own
functions which perform type coercion.

8. Type inference for the core language
We implemented a type inference algorithm for the core language
by determining an inference order using the module path expansion
algorithm, then running a standard inference algorithm along this
order. Concretely, usingPathExp, we build a call graph of functions
(represented by a directed graph), which expresses how functions in
modules depend on each other: the strongly connected components
of the graph indicate sets of value components whose type should
be inferred simultaneously, referring to each other monomorphi-
cally; by topologically sorting the connected components, we gen-
eralize types in a connected component before moving on to typing
the next one. For instance in Figure 2, we build an inference order:

Tree.split → {Tree.labels, Forest.labels}
→ {Forest.sweep} → Forest.incr

where braces indicate strongly connected component. The infer-
ence order we build for Figure 1 is

{Tree.map} → {Forest.map}
For the purpose of type inference, we do not consider thatTree.map
and Forest.map are mutually recursive, since the signatures of
Tree andForest specify exported types for these functions.

We must also check for well-formedness of types, as module
variables should not escape their scope during unification. This is
checked after the inference. Note that when an abstract type de-
pends on a functor argument, then the argument explicitly appears
inside the type. For instance, in Figure 2, the typeTree.t is inter-
nally represented asTF[X 7→X].Tree.t.

Explicit type annotations can be used to break dependencies
in the call graph, and allow polymorphic recursion. Annotations
cannot be completely avoided, as type inference for polymorphic
recursion is known to be undecidable.

9. Related work
Much work has been devoted to investigating recursive module
extensions of the ML module system. Notably, type systems and
initialization of recursive modules pose non-trivial issues, and have
been the main subjects of study.

9.1 Type systems

To the best of our knowledge, no work has proposed a type sys-
tem for recursive modules with applicative functors, except for the
experimental implementation in Objective Caml [15], or examined
type inference for recursive modules whether functors are applica-
tive or generative. Among other proposals, onlyTraviatacan type
the examples on the expression problem in Section 6.

The experimental implementation of recursive modules in Ob-
jective Caml is most related to our work. Indeed, we followed it
in large part when designingTraviata. O’Caml supports a highly
expressive core language and a strong type inference algorithm,
which are one of our motivations for the effort to enable type in-
ference. O’Caml also supports recursive signatures, with a rather
concise syntax. However, it allows to write problematic modules
whose type checking diverges.The potential for divergence when
typing O’Caml modules is well-known, but is assumed to be a rare
phenomenon in practice. Recursive signatures seem to make the
problem much more acute. This is one of our motivations in insist-
ing on decidable type checking forTraviata. Of course we obtain it
through restrictions, and a less expressive signature language. Yet,
this may be the price for safety. Since we have similar typing rules,
we hope that our approach can apply to O’Caml with little change.

Crary, Harper and Puri [3] gave a foundational type theoretic
analysis of recursive modules in the context of a phase-distinction
formalism [10].

Russo [23, 22] proposed a type system for recursive modules,
which we examined in Section 2.

Dreyer [5] gave a theoretical account for type abstraction inside
recursive modules. In particular, he investigated generative func-
tors in the context of recursive modules, by proposing a “destina-
tion passing” interpretation of type generativity. There is a critical
difference in design choices between us, with respects to type ab-
straction inside recursive modules. For instance, consider the two
programs:
module M = (struct type t = N.t end : sig type t end)
module N = (struct type t = M.t end : sig type t end)

and
module M = (struct type t = N.t list end : sig type t end)
module N = (struct type t = M.t * M.t end : sig type t end)

Dreyer prohibits both programs, whereas we accept both. A mo-
tivation of our design choice is that we want to keep liberal uses
of polymorphic variants and objects, which are useful constructs
supported in O’Caml; prohibiting the latter program may result in
restriction in using these constructs and recursive modules together.

9.2 Initialization

Boudol [1], Hirschowitz and Leroy [11], and Dreyer [4] have pro-
posed type systems which ensure that initialization of recursive
modules does not try to access components of modules that are
not yet evaluated. They are interested in the safety of initialization,
hence their modules do not have type components.

Their type systems judge the two modules:
module M = struct (Z) val l = Z.m val m = Z.l end

and
module N = struct (Z)
val l = λx → x + Z.m val m = Z.l(3) end

to be ill-typed. In both cases, evaluation of the componentm cycli-
cally requires evaluation of itself. Our type system, in particular
the core type reconstruction algorithm, can reject the cycle for the
former, but not for the latter.

10. Conclusion
In this paper, we presented a type system for recursive modules by
extending Leroy’s applicative functor calculus. The type system is

11 2006/9/7

decidable and sound for a call-by-value operational semantics. It
supports type inference for recursive modules, hence type abstrac-
tion both inside and outside the recursion is handled equally; the
programmer does not need to write two different signatures for the
same module to assist the type checker.

We examined three examples. The first two presented typical
uses of recursive modules with different choices of where to en-
force type abstraction. The last one gave a solution to the expres-
sion problem and demonstrated how recursive modules add to the
expressive power of the programming language when combined
with other language constructions.

Here we give a brief overview of future work.

Separate type checkingAlthough we have not discussed,Travi-
ata is already prepared for separate type checking. In short, we
only have to extend the look-up judgment (Figure 7) so that the
judgment informs the type system of signatures of modules which
are type checked separately(i.e., to replace concrete module expres-
sions with their signatures).

Lazy modules with eager value componentsThe operational se-
mantics presented in this paper uses lazy evaluation for both mod-
ules and their value components in the sense that only components
of modules that are accessed are evaluated, and the evaluation is
triggered at access time. This semantics simplifies the soundness
statement and its proof. For a practical system, however, we are in-
vestigating lazy modules with eager value components, that is, to
keep modules lazy but evaluate all the value components (but not
module components) of a module at once, triggered by the first ac-
cess to some component of the module. Lazy semantics of modules
would allow flexible uses of recursive modules; eager semantics of
value components would give the programmer a way to initialize
recursive modules. We need more investigation on this topic.

The double vision problem It is desirable to solve the double
vision problem without requiring type coercion annotations from
the programmer. The current type system always passes toTyExp
the whole lazy program typeReconstPconstructed. This seems too
näıve. Given thatTyExpterminates for whatever input, we think it
is safe to passTyExpdifferent signature information depending on
whether it is used inside sealing or not. For instance in Figure 22,
we should makeTyExpinterpret the sealing signature ofForest
transparently during type checking insideForest.

Acknowledgements

We thank Masahito Hasegawa for useful discussions on the sound-
ness proof and for comments on this paper. We thank anonymous
reviewers for their detailed comments, which were most helpful.

References
[1] G. Boudol. The recursive record semantics of objects revisited.

Journal of Functional Programming, 14:263–315, 2004.

[2] W. R. Cook. Object-Oriented Programming Versus Abstract Data
Types. InProc. REX Workshop, volume 489 ofLecture Notes in
Computer Science. Springer-Verlag, 1990.

[3] K. Crary, R. Harper, and S. Puri. What is a recursive module? In
Proc. PLDI’99, pages 50–63, 1999.

[4] D. Dreyer. A type system for well-founded recursion. InProc.
POPL’04, 2004.

[5] D. Dreyer. Recursive Type Generativity. InProc. ICFP’05, 2005.

[6] D. Dreyer.Understanding and Evolving the ML Module System. PhD
thesis, Carnegie Mellon University, 2005.

[7] J. Garrigue. Programming with polymorphic variants. InIn Proc. ML
workshop’98, 1998.

[8] J. Garrigue. Private rows: abstracting the unnamed.http://www.
math.nagoya-u.ac.jp/~garrigue/papers/privaterows.
pdf, 2005.

[9] R. Harper and M. Lillibridge. A type-theoretic approach to higher-
order modules with sharing. InProc. POPL’94, 1994.

[10] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and
the phase distinction. InPorc. of POPL’90, pages 341–354, 1990.

[11] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value
setting. InProc. ESOP’02, pages 6–20, 2002.

[12] X. Leroy. Manifest types, modules, and separate compilation. In
Proc. POPL’94, pages 109–122. ACM Press, 1994.

[13] X. Leroy. Applicative functors and fully transparent higher-order
modules. InProc. POPL’95, pages 142–153. ACM Press, 1995.

[14] X. Leroy. A modular module system.Journal of Functional
Programming, 10(3):269–303, 2000.

[15] X. Leroy, D. Doligez, J. Garrigue, D. Ŕemy, and J. Vouillon. The
Objective Caml system, release 3.09. Software and documentation
available on the Web,http://caml.inria.fr/, 2005.

[16] D. MacQueen. Modules for Standard ML. InProc. the 1984 ACM
Conference on LISP and Functional Programming, pages 198–207.
ACM Press, 1984.

[17] R. Milner. Communicating and Mobile Systems: the pi-Calculus.
Cambridge University Press, 1999.

[18] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of
Standard ML (Revised). MIT Press, 1997.

[19] K. Nakata and J. Garrigue. Path resolution for recursive modules.
Technical Report 1545, Kyoto University Research Institute for
Mathematical Sciences, 2006.

[20] K. Nakata and J. Garrigue. Recursive modules for programming.
Technical Report 1546, Kyoto University Research Institute for
Mathematical Sciences, 2006.

[21] D. Rémy and J. Garrigue. On the expression problem.http:
//pauillac.inria.fr/~remy/work/expr/, 2004.

[22] S. Romanenko, C. Russo, N. Kokholm, and P. Sestoft. Moscow
ML, 2004. Software and documentation available on the Web,
http://www.dina.dk/~sestoft/mosml.html.

[23] C. Russo. Recursive Structures for Standard ML. InProc. ICFP’01,
pages 50–61. ACM Press, 2001.

[24] C. Stone. Type definitions. InAdvanced Topics in Types and
Programming Languages, chapter 9. The MIT Press, 2004.

[25] M. Torgersen. The Expression Problem Revisited. InEuropean
Conference on Object-Oriented Programming:LN CS, volume 3086.
Springer-Verlag, 2004.

[26] P. Wadler. The expression problem. Java Genericity maling list,
1998. http://www.cse.ohio-state.edu/~gb/cis888.07g/
java-genericity/20.

[27] M. Zenger and M. Odersky. Independently Extensible Solutions to
the Expression Problem. InProc. FOOL 12, 2005.

Appendices

A. Path resolution algorithms
Here we definePathExpandCtyReconst.

A.1 Module path expansion algorithm

We definePathExpby composingground normalizationandvari-
able normalization, which are defined below.

We define the ground normalization in Figure 23. The judgment
O, Σ ` p ;g q means that the ground normalization expands
p into q whereΣ is locked, with respect toO. We useΣ as a
metavariable for sets of integers.

12 2006/9/7

O, Σ ` X ;g X O, Σ ` Zθ ;g Zθ

O, Σ ` p ;g p′

O ` p′.M 7→ (θ, Ki) K 6∈ ext mid

O, Σ ` p.M ;g p′.M

O, Σ ` p ;g p′ O ` p′.M 7→ (θ, qi)
q 6= X O, Σ] i ` q ;g r

O, Σ ` p.M ;g θ(r)

O, Σ ` p1 ;g p′
1 O, Σ ` p2 ;g p′

2 O ` p′
1(p

′
2) 7→ (θ, Ki) K 6∈ ext mid

O, Σ ` p1(p2) ;g p′
1(p

′
2)

O, Σ ` p1 ;g p′
1 O, Σ ` p2 ;g p′

2

O ` p′
1(p

′
2) 7→ (θ, qi) q 6= X O, Σ] i ` q ;g r

O, Σ ` p1(p2) ;g θ(r)

Figure 23. Ground-normalization with respect toO

ηO(Zθ) = Zθ′

wheredom(θ) = dom(θ′),
and, for allX ∈ dom(θ), θ′(X) = ηO(θ(X))
ηO(X) = X
ηO(p.M) = ζO(ηO(p).M)
ηO(p1(p2)) = ζO(ηO(p1)(ηO(p2)))

ζO(p) =

{
θ(X) whenO ` p 7→ (θ, Xi)
p otherwise

Figure 24. Variable normalization with respect toO

P ; Σ; Γ ` x : Γ(x) P ; Σ; Γ ` () : 1

P ; Σ; Γ ` e1 : τ1 P ; Σ; Γ ` e2 : τ2

P ; Σ; Γ ` (e1, e2) : τ1 ∗ τ2

P ; Σ; Γ ` e : τ1 ∗ τ2

P ; Σ; Γ ` πi(e) : τi

P ; Σ; Γ ` e1 : τ ′ → τ

P ; Σ; Γ ` e1(e2) : τ

TyExp(P, τ ′) = τ

P ; Σ; Γ ` (λx.e : τ ′) : τ

PathExp(P, p) = p′ γ(U, p′, c) = (t, τ1)

P ; Σ; Γ ` p.c e : p′.t

PathExp(P, p) = p′ γ(U, p′, c) = (t, τ1) P ; Σ; Γ, x : τ1 ` e2 : τ

P ; Σ; Γ ` case e1 of p.c x ⇒ e2 : τ

PathExp(P, p) = p′ P ` p′ 7→ (θ, struct . . . val l = e . . . endi)
−−−−P ; Ψ] (i, l); ∅ ` e : τ1 TyExp(P, θ(τ1)) = τ−−−−

P ; Σ; Γ ` p.l : τ

PathExp(P, p) = p′

P ` p′ 7→ (θ, sig . . . val l : τ ′ . . . endi) TyExp(P, θ(τ ′)) = τ

P ; Σ; Γ ` p.l : τ

Figure 25. Core type reconstruction with respect toP

We define the variable normalization with respect to a top-level
O using functionsηO andζO, found in Figure 24.

Then we define the module path expansion algorithmPathExp
such that it takes as argument a top-levelO and a module pathp,
then either returns a module pathq whenO, ∅ ` p ;g p′ and
ηO(p′) = q hold or else raises an error when this cannot be done.

A.2 Core type reconstruction algorithm

We define the core type reconstruction algorithm in Figure 25. The
judgmentP ; Σ; Γ ` e : τ means that the algorithm reconstructs
the typeτ for the expressione whereΨ is locked, with respect to
the programP . We useΨ as a metavariable for pairs(i, l) of an
integeri and a value namel.

Then we defineCtyReconstsuch that it takes as argument a
programP and a core expressione, then either returns a typeτ
whenP ; ∅; ∅ ` e : τ holds or else raises an error when this cannot
be done.

B. Proof sketch of the type soundness
Here, we present our central idea for proving Proposition 6. For
details, see [20].

U ` p
τ
⇀ p′

U ` p.M
τ
⇀ p′.M

U ` p
τ
⇀ p′

U ` p(q)
τ
⇀ p′(q)

U ` q
τ
⇀ q′

U ` p(q)
τ
⇀ p(q′)

U ` p 7→ (θ, qi)

U ` p
τ
⇀ θ(q)

dom(θ) = dom(θ′) ∃X ∈ dom(θ), U ` θ(X)
τ
⇀ θ′(X)

−−−−−∀X ′ ∈ dom(θ)\{X}, θ(X ′) = θ′(X ′)−−−−−

U ` Zθ τ
⇀ Zθ′

Figure 26. Transition rules for module paths with respect toU

U ` 1
1
⇀ 0 U ` τ1 → τ2

ari⇀ τi U ` τ1 ∗ τ2
prdi⇀ τi

U ` p
τ
⇀ p′

U ` p.t
τ
⇀ p′.t

U ` X 7→ (θ, sig . . . type t . . . endi)

U ` X.t
X.t
⇀ 0

U ` p 7→ (θ, sig . . . datatype t = c of τ . . . endi)

U ` p.t
c
⇀ θ(τ)

U ` p 7→ (θ, sig . . . type t = τ . . . endi)

U ` p.t
τ
⇀ θ(τ)

Figure 27. Transition rules for types with respect toU

U `X E : T1 U `X S : T2 U `X T1 < S

U `X (E : S) : (T1 : T2)

Figure 28. A typing rule for sealing with respect toU in TraviataX

Our proof proceeds in the following two steps.

1. We define a type systemTraviataX, whose type equivalence re-
lation is defined by the weak bisimulation relation on a labeled
transition system on types. We establish a soundness result for
TraviataX, by proving subject reduction and progress proper-
ties.

2. We prove that if a programP is type-correct inTraviata, then
P is also type-correct inTraviataX.

We define labeled transition systems on module paths and types
in Figure 26 and 27, respectively.

Typing rules inTraviataXare same as those inTraviata, except
for the rule for sealing, which is given in Figure 28, and for that
a type equivalence relation inTraviataX is defined by the largest
weak bisimulation relation [17] on the labeled transition system on
types. For typing rules inTraviataX, we use the subscriptX.

To prove subject reduction inTraviataX, we break type abstrac-
tion in the lazy program typeU thatReconstPreconstructed. That
is, we build a lazy program typeU] from U by making all abstract
type specifications inU manifest, except for type specifications ap-
pearing in module variable signatures. This is consistent with the
typing rule in Figure 28, since, once type abstraction is broken, we
do not need substitution of self variables. In [20], the reader can
find how to buildU] from U .

PROPOSITION7. AssumeReconstP(P) = U and U] `X P :
U]. We have the following two results.

• If U], ∅ `X e : τ ande → e′, thenU], ∅ `X e′ : τ .
• If U], ∅ `X e : τ then eithere is a value or else there is some

e′ with e → e′.

PROPOSITION8. AssumeReconstP(P) = U and U ` P : U ,
thenU] `X P : U].

13 2006/9/7

