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Abstract

This paper proposes an extension of the ML mod-
ule system with recursion that keeps a flexible use of
nested structures and functors. For the purpose of for-
mal study, we design a calculus, called PathCal, which
has a module system with nested structures and sim-
ple functors along with recursion. It is important for
this calculus to guarantee resolvability of recursive ref-
erences between modules. We present a decidable type
system to ensure this resolvability.

1 Introduction

When building a large software system, it is indispens-
able to decompose the system into smaller parts and to
reuse them in different contexts. Module systems play
an important role in facilitating such factoring of pro-
grams. Many modern programming languages provide
some forms of module systems.

The family of the ML programming languages such
as SML and Objective Caml provides a powerful mod-
ule system [10, 1, 9]. Nested structures of modules
allow hierarchical decomposition of programs. Func-
tors can be used to express advanced forms of param-
eterization, which ease code reuse. Abstraction can
be controlled by signatures with transparent, opaque,
or translucent types [8]. However, despite the flexibil-
ity of the module language, mutual recursion between
modules is prohibited as dependencies between mod-
ules must accord with the order of definitions.

There has been much work on recursive module ex-
tensions of the module system in recent years [3, 2,
6, 5, 14]. Their concern for side-effects imposes a se-
vere restriction on access to inner components of such
recursive modules, resulting in a less flexible use of
nested structures and functors. There are many situa-
tions where their restriction seems unnecessarily strict,
in particular when modules have no side-effects.

In this paper, we propose an extension of the module
system with lenient recursion. We evaluate effectless
modules in a free order to retrieve the flexible use of
nested structures and functors in the presence of recur-

sion. In such a system, it is important to guarantee
well-definedness of modules, as recursion might intro-
duce cyclic or dangling references that end up with
uninitializable modules.

We design a calculus, called PathCal, to investigate
this problem. PathCal has a module system, which
supports nested structures and simple functors along
with recursion. A key feature of our calculus is a flex-
ible referencing mechanism given by paths. Paths can
refer to any modules at any levels of nested structures
regardless of the order of definitions. Moreover, sim-
ple cases of functor applications are allowed in paths,
where the functor and its arguments themselves are
paths. We expand paths, i.e. resolve the references of
paths based on a “lazy evaluation mechanism” of the
module language. This laziness allows liberal layout of
mutually recursive modules into hierarchies, but intro-
duces possibilities of defining ill-defined modules that
have unexpandable paths, i.e. paths that have cyclic
or dangling references. We propose a decidable type
system that guarantees the well-definedness of mod-
ules, ensuring that the expansion of paths always suc-
cessfully terminates. The type system also designates
a right order for evaluating modules, which is of prac-
tical importance.

Interestingly enough, what we discuss in this pa-
per is also important for introducing the ML module
system into object-oriented languages. The recursion
extension is highly desirable in such systems as mutual
recursion is intrinsic to class definitions. Then we meet
a similar situation when we try to ensure the absence
of cyclic inheritance. Our previous work [11] exploited
the usefulness of the combination of a module system
and object-oriented mechanisms, and proposed a de-
cidable type system that ensures the absence of cyclic
inheritance. This paper also serves as a generalization
of our previous work.

The remainder of this paper is organized as follows.
In the next section, we present the formal definition
for PathCal. In Section 3, we give examples of Path-
Cal. Section 4 discusses well-definedness of modules.
Section 5 and Section 6 present our approach to the
well-definedness. A soundness result of our calculus
appears in Section 7. In Section 8, we review related



E ::= (module expression)
struct L end (structure)

| functor (X)E (functor)
| p (path)
| X (module variable)

L ::= ε | DL
D ::= module M = E (module definition)

| val l = e (term definition)
p ::= ε | p.M | p(p) | p(X) (path)
e ::= (e, e) | p.l | X.l | i (expression)
i ::= 1 | 2 | . . . (integer)
P ::= struct L end (program)

Figure 1: Syntax

work. Section 9 concludes.

2 Syntax

The syntax for PathCal is given in Figure 1.
We reserve M and N for metavariables ranging over

module names, l for a metavariable over value names,
X for a metavariable over module variables. We let
MNames and VNames be the sets of module names
and value names, respectively.

A module expression E is either a structure, a func-
tor, a path, or a module variable. A structure is a
sequence of module definitions and term definitions.
A functor is a module expression parameterized by a
module variable. Functors can be seen as functions
over module expressions. A path is a reference to an-
other module. A flexible referencing mechanism given
by paths is a key feature of our calculus. Paths can
locate any modules at any levels of nested structures
by specifying their locations relative to the top-level
structure. Moreover, simple cases of functor applica-
tions are allowed in paths, where the functor and its
arguments themselves are paths. Formally, paths com-
prise four constructs: ε denotes the top-level structure;
p.M expresses access to inner module M of the mod-
ule referred to by p; p(p) and p(X) are functor appli-
cations. We usually omit the leading ε. when writing
paths.

To obtain a decidable type system, we impose a
restriction on functor arguments that forbids 1) ac-
cessing their inner modules, and 2) applying them to
other modules. Hence, we do not include paths of the
forms X(p) and X.M in the syntax. This restriction
means that our functors are first-order and that we
have to pass inner modules as independent parame-
ters for functors instead of passing a module which
contains all of them.

struct
module Even = struct
val compare = function ...
val add = function x y − >

if x% 2 = 0 then add impl x y
val add impl = EvenSet.add

end
module EvenSet = MakeSet(Even)
module MakeSet = functor (X) struct
val compare = X.compare
val add = function ...compare ...
val remove = function ...

end
end

Figure 2: Modules for even numbers

An expression is either a pair (e, e), or aliases p.l
and X.l, which denote value l in the module referred
to by p and X respectively, or an integer.

We call a top-level structure a program, and reserve
P for a metavariable ranging over programs. “P ≡
struct L end” means that a program P is a top-level
structure defined by struct L end.

We consider this leanest calculus as a minimal core
of the ML module system for theoretical study.

We assume the following two conditions: 1) any se-
quence of module definitions and term definitions that
defines a structure does not contain duplicate defini-
tions for module names and value names; 2) a program
does not contain free module variables, and all bound
module variables differ from each other.

3 Example

In this section, we overview our calculus concentrating
on use of nested structures, functors with recursion.

We start with the example given in Figure 2. To
make the example more familiar one, we assume
that we have extended our calculus with a construct
function for function definition.

The program in Figure 2 consists of structures Even,
EvenSet, and a functor MakeSet. Even and EvenSet
mutually refer to each other. On the one hand, Even
contains a function add impl, defined as EvenSet.add,
which is an alias for the function add contained in
EvenSet. On the other hand, EvenSet, which is de-
fined by applying the MakeSet functor to Even, con-
tains a function compare as an alias for the function
compare in Even.

Here we define aliases when using functions defined
in other modules. The intension is to make explicit
linking of module components required by initializa-



struct
module Number = struct

val compare = function ...
module Even = struct

val compare = Number.compare
val add = function x y − >

if x% 2 = 0 then add impl ...
val add impl = NumberSet.EvenSet.add

end
module Odd = struct

val compare = Number.compare
val add = function x y − >

if x% 2= 1 then add impl...
val add impl = NumberSet.OddSet.add

end
end
module NumberSet = struct

module EvenSet = MakeSet(Number.Even)
module OddSet = MakeSet(Number.Odd)

end
module MakeSet = functor (X) struct

val compare = X.compare
val add = function ... compare ...

end
end

Figure 3: Modules for even and odd numbers

tion of recursive modules.
Now, we flesh out the first example with modules

Odd and OddSet as shown in Figure 3. This time,
we pack two modules Even and Odd into Number, and
EvenSet and OddSet into NumberSet, using nested
structures of modules.

Here we used a bit more involved paths. For ex-
ample, the function add impl in Even is defined as
NumberSet.EvenSet.add, which refers to the function
add contained in EvenSet, which in turn contained in
NumberSet.

Actually, a program can be thought of a bunch of
recursive modules, wherein paths offer a recursive ref-
erencing mechanism. It might be helpful getting in-
tuition behind paths to compare our calculus without
functors with the Unix file system. Then, paths in
PathCal correspond to absolute paths, with which you
can locate any directories and files in the file system.
Functors add to the flexibility of our modules, yet raise
some technical difficulties discussed later.

Returning to the example, module Even refers to the
module EvenSet, having a function add impl aliased
for add in EvenSet. At the same time, EvenSet refers
to this Even, having a function compare as an alias for
compare in Even. Similarly, modules Odd and OddSet

mutually refer to each other. As such you can have
liberal layout of mutually recursive modules into hi-
erarchies, using the referencing mechanism offered by
paths.

4 Well-definedness

While we can enjoy liberal recursion along with a flex-
ible use of nested structures and functors, we should
be careful not to introduce ill-defined programs.

Continuing to the example in Figure 3, we consider
adding functions plus into modules Even and Odd. We
might carelessly implement them as follows.

module Even = struct
val plus = Number.Odd.plus
val compare = ...
...

end
module Odd = struct

val plus = Number.Even.plus
val compare = ...
...

end

The function plus in Even is defined as an alias for
the function plus in Odd, while plus in Odd is defined
as an alias for plus in Even. As the two aliases make
a cycle, they cannot be resolved, meaning that linking
of these functions would result in a meaningless cycle.

The motivation of our work is to statically reject
such ill-defined programs and to ensure that aliases
are always resolved.

To achieve our purpose, we have to be careful about
nested structures and functors. We observe in Exam-
ple 1 and 2 typical cases which give rise to technical
difficulties.

Example 1 The alias M1.l cannot be resolved in the
following program.

struct
module M1 = M2.M3

module M2 = M1

end

To resolve M1.l, we first have to know the module re-
ferred to by M1. The expansion of the path M1 gives
rise to the following infinite sequence.

M1 → M2.M3 → M1.M3 → M2.M3.M3 → . . .

To expand M1, we first have to expand M2.M3, which
is the definition of M1. As M2 is an alias for M1, we
reduce M2.M3 into M1.M3.Then we replace M1 with
M2.M3 again, following the definition of M1. Now it is



struct
module M1 = struct
val l11 = M2.l22
val l12 = 3

end
module M2 = struct
val l21 = M1.l12
val l22 = 4

end
end

Figure 4: A program with safe mutually recursive
modules

obvious that we are wandering into an infinite rewrit-
ing procedure.

Example 2 The alias M1(M2).l, which defines l in
the module M2, cannot be resolved in the following pro-
gram.

struct
module M1 = functor (X) X
module M2 = struct val l = M1(M2).l end

end

To resolve M1(M2).l, we first have to expand the path
M1(M2). As M1 is the identity functor, M1(M2) ex-
pands to M2. Thus, M1(M2).l refers to M2.l, which is
defined as M1(M2).l, making a cycle.

We would like to emphasize that, while programs in
Example 1 and 2 should be rejected, we do not want to
give up mutually recursive modules such as in Figure 4.
This program is harmless. Under our lazy evaluation
mechanism of modules, we can resolve aliases M2.l22
and M1.l12 into 4 and 3, respectively.

Our overall approach to ensure the well-definedness
consists of the following two steps.

• We first check that a program P has finite path
dependencies by considering well-foundedness of a
binary relation on paths constructed from P .

• Then, the type system checks that the program
are well-defined, ensuring resolvability of aliases.
The finite path dependencies ensure the decidabil-
ity of the type checking.

5 Finite path dependency

Let P be a program. We extract a path dependency
relation from P by conservatively approximating the
dependencies between modules.

dp(p, struct module M1 = E1 . . . module Mn = En

val l1 = e1 val lm = em end)
=

⋃n
i=1 dp(p.Mi, Ei)

dp(p, functor (X)E end) = dp(p,E)
dp(p, q) = {(p, r) | r ∈ flatsSet(q)}
dp(p,X) = ∅

Figure 5: Extraction of the base relation

flatsSet(p) = {flat(p)} ∪⋃
q∈args(p) flatsSet(q)

flat(ε) = ε
flat(p.M) = flat(p).M
flat(p(p′)) = flat(p)
flat(p(X)) = flat(p)

args(ε) = ∅
args(p.M) = args(p)
args(p(q)) = {q} ∪ args(p)
args(p(X)) = args(p)

Figure 6: Auxiliary functions

The path dependency relation of P is a binary rela-
tion on flat paths, where a flat path is a path contain-
ing no functor application. The construction of this
relation takes two steps: 1) extract a base relation
from P ; 2) expand the base relation in order to take
into account the dependencies that do not explicitly
appear in P .

The base relation of P is extracted by the function
dp given in Figure 5 with auxiliary functions in Fig-
ure 6. Given a flat path p and a module expression E,
dp calculates dependencies assuming that p depends
on E. When E is of the form struct module M1 =
E1 . . . module Mn = En val l1 = e1 val lm = em end,
dp recursively calculates dependencies assuming that
p.Mi depends on Ei. Note that, instead of regard-
ing p as depending on Ei, it employs more precise
dependencies. Although this makes the dependencies
more complex, it gives more freedom for recursion be-
tween modules. When E is of the form functor (X)E,
p depends on E. If E is a path q, dp approxi-
mates functor applications in q by making p depend
on all flat paths appearing in q. The function flats-
Set returns the set of flat paths appearing in a path.
For example, flatsSet(M1.M2(M3(M4.M5)(X)).M6) =
{M1.M2.M6, M3, M4.M5}. Finally, if E is a module
variable, dp returns the empty set.

Definition 1 The path dependency relation of a pro-
gram P is the postfix and transitive closure of dp(ε, P ).



P ≡ struct L end
` ε 7→ (id, struct L end)

` p 7→ (θ, struct . . . , module M = E, . . . end)
` p.M 7→ (θ, E)

` p 7→ (θ, functor (X)E)
` p(q) 7→ (θ[X 7→ q], E)

` p 7→ (θ, functor (X ′)E)
` p(X) 7→ (θ[X ′ 7→ X], E)

Figure 7: Source form

Definition 2 Let D be a binary relation on flat paths.
The postfix and transitive closure of D, denoted as D̃,
is the smallest transitive relation which contains D and
meets the postfix condition that if (p, q) is in D̃ and M
in MNames, then (p.M, q.M) is also in D̃.

We call postfix closure of D the smallest relation
that contains D and satisfies the postfix condition.

Definition 3 Let D be a binary relation on flat paths.
D is well-founded if and only if D does not contain an
infinite descending sequence, i.e. there is no infinite
sequence {pi}∞i=1 such that, for all natural number i,
(pi, pi+1) is in D.

Definition 4 A program P has finite path dependen-
cies if and only if the path dependency relation of P is
well-founded.

Proposition 1 It is decidable whether a program P
has finite path dependencies or not.

Example 3 Consider the following program P.

struct
module M1 = struct
module M11 = struct . . . end
module M12 = M1.M13.N
module M13 = M2.M21

end
module M2 = struct
module M21 = struct
module N = struct . . . end

end
module M22 = M1.M11

end
end

The base relation of P is:
{(M1.M12, M1.M13.N), (M1.M13, M2.M21),
(M2.M22, M1.M11)}.

Then the path dependency relation is the postfix closure
of the following set:
{(M1.M12, M1.M13.N), (M1.M13, M2.M21),
(M2.M22, M1.M11), (M1.M13.N, M2.M21.N),
(M1.M12, M2.M21.N)}.
In the following sections, we fix a program P having

finite path dependencies.

struct
module M1 = functor(X1) functor(X2)
struct
module M11 = struct val l = X1.l end
module M12 = X2

end
module M2 = struct val l = 2 end
module M3 = M1(M2)(M2)

end

Figure 8: Program P1

6 Type System

The type system checks that the program P is well-
defined by checking resolvability of aliases. It resolves
aliases through normalization of paths. Normalization
reduces paths into source forms.

A path p is of source form if it allows us to look up
its definition from P .

Definition 5 A path p is of source form if and only if
` p 7→ (θ,E) holds for some θ and some E other than
a path.

The judgment ` p 7→ (θ,E) is defined in Figure 7,
where θ is a metavariable ranging over substitutions
of module variables for paths.1 ` p 7→ (θ, E) says
that p is defined by module expression E with module
variables X in E bound to θ(X).

For example, consider a program P1 given in
Figure 8. M1(M2)(M2).M11 is of source form,
since ` M1(M2)(M2).M11 7→ ([X1 7→ M2; X2 7→
M2], struct val l = X1.l end) holds, but M3.M2 is
not, as there is no θ and E such that ` M3.M2 7→ (θ, E)
holds.

Figure 9 gives an axiom and inference rules for the
normalization. The judgment “` p . q” denotes that q
is a source form of p.

1This judgment (and other judgment which we are to define)
should also take the program we are considering as a parameter,
but we omit it throughout this paper, supposing a fixed program
having finite path dependencies.



[nlz-root]

` ε . ε

[nlz-dot]
` p . p′ ` p′.M 7→ (θ, E) E 6≡ q

` p.M . p′.M

[nlz-dot-path]
` p . p′ ` p′.M 7→ (θ, q) ` θ(q) . r

` p.M . r

[nlz-app]
` p1 . p′1 ` p′1(p2) 7→ (θ,E) E 6≡ q

` p1(p2) . p′1(p2)

[nlz-app-path]
` p1 . p′1 ` p′1(p2) 7→ (θ, q) ` θ(q) . r

` p1(p2) . r

[nlz-vapl]
` p1 . p′1 ` p′1(X) 7→ (θ, E) E 6≡ q

` p1(X) . p′1(X)

[nlz-vapl-path]
` p1 . p′1 ` p′1(X) 7→ (θ, q) ` θ(q) . r

` p1(X) . r

Figure 9: Normalization of paths

[T-int]

∆ ` i ok

[T-pair]
∆ ` e1 ok ∆ ` e2 ok

∆ ` (e1, e2) ok

[T-var]
` p . p1 ` p1 7→ (θ, X) ∆ ` θ(X).l ok

∆ ` p.l ok

[T-def]
` p . p1 ` p1 7→ (θ, struct . . . , l = e, . . . end) p1.l 6≺ ∆ ∆, p1.l ` θ(e) ok

∆ ` p.l ok

Figure 10: Typing rules

ε is of source form([nlz-root]). [nlz-dot] says that
p′.M is a source form of p.M , if p′ is a source form
of p, and the definition of p′.M is not a path. [nlz-

dot-path] says that r is a source form of p.M , if p′

is a source form of p, and p′.M is defined by a path
q, and r is a source form of θ(q). Normalization for
paths of the forms p1(p2) p(X) is defined in the simi-
lar way. Following these rules, M1(M2)(M2).M11 is a
source form of M3.M11 in P1.

Note that we consider p.M to be of source form if the
definition of p.M is a module variable. Hence, taking
P1 as an example, the normalization reduces M3.M12

into M1(M2)(M2).M12, not into M2.

As mentioned in Section 2, we impose a restric-
tion on functor arguments that forbids accessing their
inner modules and applying them to other modules.
Our calculus does not explicitly include paths of the
forms X(p) and X.M , this is not, however, enough
to enforce our restriction due to the liberal aliases.
For example, in P1, we would not like to normal-
ize M1(M2)(M2).M12.N into M2.N even if module
N is defined in M2. For that purpose, we regards
M1(M2)(M2).M12 as of source form. Since there is no
rules that are applicable to M1(M2)(M2).M12.N, we

cannot deduce ` M1(M2)(M2).M12.N . M2.N.

The type system is given in Figure 10. ∆ is a finite
set of value access paths, where a value access path
is a path followed by .l for some l in VNames. The
judgment ∆ ` e ok denotes that e is well-defined with a
lock on ∆. We use ∆ to keep the type system decidable
as detailed later.

An integer is well-defined with a lock on any ∆ ([T-

int]). A pair (e1, e2) is well-defined with a lock on ∆, if
both of e1 and e2 are well-defined with a lock on ∆([T-

pair]). The rule [T-var] says that p.l is well-defined,
if p1 is a source form of p, and the definition of p1 is
a module variable X, and θ(X).l is well-defined with
a lock on∆. This rule takes care of substitution of
paths for module variables on behalf of normalization,
ensuring that the substitution is required for access-
ing a value component of a functor argument, not a
module component. The rule [T-def] says that p.l is
well-defined with a lock on ∆, if p1 is a source form of
p, and the definition of p1 is a structure in which l is
defined by an expression e, and p1.l is not locked in ∆,
and θ(e) is well-defined under ∆, p1.l. We say a value
access path p.l is not locked in ∆, denoted p.l 6≺ ∆, if



[op-int]

` i ⇓ i

[op-pair]
` e1 ⇓ v1 ` e2 ⇓ v2

` (e1, e2) ⇓ (v1, v2)

[op-var]
` p . p1 ` p1 7→ (θ, X) ` θ(X).l ⇓ v

` p.l ⇓ v

[op-def]
` p . p1 ` p1 7→ (θ, struct . . . , l = e, . . . end) ` θ(e) ⇓ v

` p.l ⇓ v

Figure 11: Evaluation of expressions

and only if ∆ does not contain value access path p′.l
such that flat(p) = flat(p′) holds. The intention of
this locking is to disable the type system from looking
up the exactly same term definition twice during type
checking. For example, the type system does not judge
M.l well-defined in the following program

struct module M = struct val l = M.l end end

owing to the locking, while M.l1 in the following pro-
gram

struct
module M = struct
val l1 = M.l2
val l2 = 2

end
end

is well-defined.

Proposition 2 If the program P has finite path de-
pendencies, then, for any expression e, it is decidable
whether ` e ok holds or not.

7 Soundness

We introduce an operational semantics for PathCal
which reduces an expression into a value.

A value v is either an integer or a pair of values.

v ::= i | (v, v)

The judgment ` e ⇓ v denotes that e is reduced
into v. An axiom and inference rules for the judgment
are given in Figure 11, which mimic typing rules except
that they do not lock value access paths.

The rule [op-int] is obvious. A pair (e1, e2) is re-
duced into (v1, v2), if e1 and e2 are reduced into v1

and v2, respectively([op-pair]). The rule [op-var] says
that p.l is reduced into v, if p1 is a source form of p,
and the definition of p1 is a module variable X, and
θ(X).l is reduced into v. The rule [op-def] says that
p.l is reduced into v, if p1 is a source form of p, and
the definition of p1 is a structure in which l is defined

by an expression e, and θ(e) is reduced into v. Fol-
lowing these rules, we can judge ` M3.M11.l ⇓ 2 and
` M3.M12.l ⇓ 2 in the program given in Figure 8.

The following proposition says that we can statically
ensure resolvability of aliases.

Proposition 3 If the program P has finite path de-
pendencies and ` e ok holds, then e is reduced into a
value, i.e we have an algorithm calculating v such that
` e ⇓ v holds.

We can give another view that this proposition con-
cerns a safety of initialization of programs. By check-
ing resolvability of all value definitions in a program,
we can be sure that linking of aliases does not cause
cyclic or dangling links.

8 Related work

Recursive module extensions of the ML module system
are investigated in [14, 2, 6, 5]. Boudol [2], Hirschowitz
& Leroy [6], and Dreyer [5] also proposed type sys-
tems to ensure a safety of the recursion. Their type
systems ensure the safety property that recursively de-
fined variables are not dereferenced before their con-
tents are completely evaluated. On the one hand, their
type systems accept the following program (suppose
we have extended our calculus with some constructs)

struct
module M = functor (X)
struct
val f x = . . . ; X.f (x− 1)

end
module N = M(N)

end

which we reject, since the path dependency relation
of this program contains (N, N), which makes a cycle.
Their approach relies on the knowledge that M is non-
strict, i.e. it does not dereference its argument when
applied. We could accept this program, if we can build
path dependency relations using this information of



the non-strictness. However, such non-strictness anal-
ysis itself is generally hard in our system. It would
require normalization of paths, whose termination in
turn relies on path dependency relations, while we need
the non-strictness analysis to build this relations. On
the other hand, the program given in Figure 4 is re-
jected by their systems, since one cannot complete the
evaluation of M1 nor M2 without dereferencing itself.

νObj [12] is a calculus for objects and classes. It sup-
ports recursion and nesting, and provides an operator,
called “merging”, which can serve as functors. νObj
allows to define modules as fix points of functors, but
does not to define modules as in Figure 4.

Objective Caml [7] and Moscow ML [13] are real lan-
guages, that support recursion between modules. As
their type systems do not guarantee the safety of the
recursion, run-time errors might occur due to access
to uninitialized values.

In our previous work [11] we designed a calculus,
called Room, which unifies modules (with nested struc-
tures and first-order functors) with classes. Room
allows recursion between modules and ensures well-
definedness of modules by requiring functor arguments
to have the exactly same inner modules as their upper
type bounds. As types are modules in [11], this re-
quirement means that we have no way to access to
inner modules that are specific to actual functor argu-
ments. From the perspective of PathCal, Room can be
viewed as a calculus unifying a module language with a
term language and forbidding access to both of module
and value components of functor arguments. Contrary
to Room, PathCal separates a module language from
a term language and relaxes the restriction to allow
accessing to value components of the arguments. This
was made possible by a stratified approach to decid-
ability of the type system. In PathCal, we first ensure
termination of the normalization of paths by construct-
ing path dependency relations. Then, decidability of
the type system is obtained using locking of value ac-
cess paths in addition to reliance on the termination
of the normalization. We think such stratification is a
promising approach to have more flexible functors.

9 Conclusions

In this paper, we proposed a lenient recursion exten-
sion of the ML module system to allow flexible use of
nested structures and functors in the presence of re-
cursion. We designed a calculus, called PathCal, and
investigated in detail a safety property that ensures
resolvability of recursive references. This safety is en-
sured in PathCal by first checking that a program has
finite path dependencies, then type checking it. Our
approach is provably decidable.

We have at least two directions for future work.
One is to make it possible to define modules as fix
points of functors, i.e. to allow module definitions like
module M = N(M), for some functor N. With such
an extension, we need to be careful about the way
in which M is used inside N to ensure termination of
the normalization of N(M). Possible approaches are
to construct more involved path dependency relations,
or, in an easier way, to introduce another construct
like box(M), prohibiting dereference of M during the
normalization. The other direction for future work is
relaxing the restriction on functor arguments to sup-
port higher-order functors. As our decidability result
essentially relies on this restriction, this is more chal-
lenging.

We are also considering separate compilation and
modules with side-effects. More work seems left to be
done for their support. To support separate compila-
tion, we would need to introduce signatures enriched
with information about module dependencies so as to
ensure that linking of independently compiled modules
does not produce ill-defined programs. We are seeking
such appropriate signatures that unnecessitate recheck
on well-definedness of the overall program. For effect-
ful modules, we first have to decide how to resolve
aliases if they are aliases for effectful expressions, i.e.
should we evaluate the effects before the resolution of
aliases or not? This is an important design issue we
have not yet resolved.
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A Proof

This section briefs the proof. We reserve u for a
metavariable ranging over flat paths, and let FPaths
be the set of flat paths.

Sketch of proof.(Proposition 1) This proposition can
be reduced into Lemma 1. 2

Lemma 1 Let A be a finite set of alphabets, and R
be a finite set of binary relations on strings of A. It is
decidable whether the binary relation→ is well-founded
or not, where s → t holds if and only if there exists

strings s′, t′, u such that (s′, t′) is in R, and s = s′u
and t = t′u hold.

Proof. This Lemma has been proved [4]. 2

To prove Proposition 2, we first define a well-
founded relation Â2 on paths. The relation Â2 re-
lies on two well-founded relations Â3 and Â4. We will
present these relations in order.

In the following, we fix a program P having finite
path dependencies. By definition, the postfix and tran-
sitive closure of dp(ε, P ) is well-founded.

Definition 6 The relation Â3 on flat paths is the
smallest transitive relation that contains 1) the post-
fix and transitive closure of dp(ε, P ) and 2) {(s.M, s) |
s ∈ FPaths,M ∈ MNames}.

Lemma 2 Â3 is well-founded.

Definition 7 A path tree t is defined as follows.

t ::= u | u(nodes)
nodes ::= t | t,nodes

Definition 8 The relation Â4 on path trees is the
smallest transitive relation satisfying the condition that
u([ti]ni=1) Â4 u′([t′i]

n′
i=1) holds if either of the following

conditions holds.

1. • u Â3 u′

• For all i in {1 . . . n′}, either of the followings
holds.

– u([ti]ni=1) Â4 t′i
– there exists j such that tj = t′i or tj Â4 t′i

holds.

2. • u = u′

• There exist i, j such that ti Â4 t′j holds, and,
for all k in {1, . . . , n′}\{j}, there exists l
such that either of tl Â4 t′k or tl = t′k holds.

3. There exists j such that tj = u′([t′i]
n′
i=1) holds.

4. u = u′ and, there exists j such that
{t1, · · · , tn}\{tj} = {t′1, · · · , t′n′} holds.

Lemma 3 Â4 is well-founded.

Sketch of proof. Â4 is a variant of recursive path or-
dering with precedence Â3. The proof of this lemma
is similar to that of the well-foundedness of recursive
path ordering. 2

Now we define the relation Â2 on paths. Given a
path p, we construct a path tree T (p) as follows,

• T (p) = p where p is in FPaths



• T (p) = u(T (p1), . . . , T (pn)) where flat(p) = u
and args(p) = {p1, . . . , pn}

Then p Â2 p′ holds iff T (p) Â4 T (p′) holds. By
Lemma 3, Â2 is well-founded.

The following two lemmas can be shown by induc-
tion on Â2.

Lemma 4 If ` p . p′ and p 6≡ p′, then p Â2 p′.

Lemma 5 It is decidable, for any path p, whether
there exists a path p′ such that ` p . p′ holds. And
we have an algorithm calculating such p′, if it exists.

Sketch of proof.(Proposition 2) To show the propo-
sition, we construct a well-founded relation on pairs
(∆, e) of a set of value access paths ∆ and an ex-
pression e. In the following, we will assume any ∆
meets the two conditions that: 1) if p.l is in ∆, then
p is of source form; 2) if p.l and p′.l are in ∆, and
flat(p) = flat(p′), then p ≡ p′. Note that this con-
dition is maintained throughout valid type judgments
due to the rule [T-def].

(∆1, e1) Â1 (∆2, e2) holds iff either of the following
conditions holds.

• ∆1 = ∆2, e1 ≡ p1.l, e1 ≡ p2.l, and p1 Â2 p2

• ∆1 is a proper subset of ∆2.

• ∆1 = ∆2, e1 ≡ (e11, e12), and e2 ≡ e1i with i ∈
{1, 2}

The well-foundedness of Â1 is obtained by the follow-
ing two facts.

• Â2 is well-founded

• there does not exists an infinite sequence {∆i}∞i=1

such that, for all natural number i, ∆i ⊂ ∆i+1

Then, the proposition can be shown by induction on
Â1. 2

Sketch of proof.(Proposition 3) This proposition can
be checked by induction on the structure of the deduc-
tion of ` e ok. 2


