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Abstract

In this article we review different approaches to the existence of so‐

lutions of a two‐phase flow of two viscous, incompressible fluids glob‐
ally in time. We compare the known results in the cases with and

without surface tension. In particular, we discuss properties of the

free surface/ the interface between the two fluids.
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1 Introduction

We study the flow of two incompressible, viscous and immiscible fluids like

oil and water inside a bounded domain  $\Omega$\subseteq \mathbb{R}^{d} or in  $\Omega$=\mathbb{R}^{d}, d=2
, 3.

For simplicity we assume that the densities of both fluids are the same and

equal to one. The fluids fill disjoint domains $\Omega$^{+}(t) and $\Omega$^{-}(t) , t>0 ,
and

the interface between both fluids is denoted by  $\Gamma$(t)=\partial$\Omega$^{\pm}(t) . Hence  $\Omega$=

$\Omega$^{+}(t)\cup$\Omega$^{-}(t)\cup $\Gamma$(t) . The flow is described using the velocity  v: $\Omega$\times(0, \infty)\rightarrow
\mathbb{R}^{d} and the pressure p: $\Omega$\times(0, \infty)\rightarrow \mathbb{R} in both fluids in Eulerian coordinates.

We assume the fluids to be of a generalized Newtonian type, i.e., the stress

tensors are of the form T^{\pm}(v, p)=2$\nu$^{\pm}(|Dv|)Dv-pI with viscosities $\nu$^{\pm}

depending on the shear rate |Dv| of the fluid, 2Dv=\nabla v+\nabla v^{T} . Moreover, we

consider the cases with and without surface tension at the interface. Precise
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2 1 INTRODUCTION

assumptions are made below. Under suitable smoothness assumptions, the

flow is obtained as solution of the system

\partial_{t}v+v\cdot\nabla v-\mathrm{d}\mathrm{i}\mathrm{v}T^{\pm}(v, p)=0 \mathrm{i}\mathrm{n}$\Omega$^{\pm}(t) , t>0 , (1.1)
\mathrm{d}\mathrm{i}\mathrm{v}v=0 \mathrm{i}\mathrm{n}$\Omega$^{\pm}(t) , t>0 , (1.2)

n\cdot T^{+}(v, p)-n\cdot T^{-}(v, p)= $\kappa$ Hn on  $\Gamma$(t) , t>0 , (1.3)
V=n\cdot v \mathrm{o}\mathrm{n} $\Gamma$(t) , t>0 , (1.4)
v=0 on \partial $\Omega$, t>0 , (1.5)

v|_{t=0}=v_{0} in  $\Omega$
, (1.6)

together with  $\Omega$^{+}(0)=$\Omega$_{0}^{+} . Here V and H denote the normal velocity and

mean curvature of  $\Gamma$(t) , resp., taken with respect to the exterior normal n of

\partial$\Omega$^{+}(t) ,
and  $\kappa$\geq 0 is the surface tension constant ( $\kappa$=0 means no surface

tension present). Equations (1.1)-(1.2) describe the conservation of linear

momentum and mass in both fluids, (1.3) is the balance of forces at the

boundary, (1.4) is the kinematic condition that the interface is transported
with the flow of the mass particles, and (1.5) is the non‐slip condition at the

boundary of  $\Omega$ . Moreover, it is assumed that the velocity field  v is continuous

along the interface.

Most publications on the mathematical analysis of free boundary value

problems for viscous incompressible fluids study quite regular solutions and

often deal with well‐posedness locally in time or global existence close to equi‐
librium states, cf. e.g. Solonnikov [23, 24], Beale [4, 5], Tani and Tanaka [26],
Shibata and Shimizu [21] or Abels [1]. These approaches are a priori limited

to flows, in which the interface does not develop singularities and the domain

filled by the fluid does not change its topology. In the present contribution

we discuss certain classes of generalized solutions, which allow singularities of

the interface and which exist globally in time for general initial data. For this

purpose, we need a suitable weak formulation of the system above. Testing
(1.1) with a divergence free vector field  $\varphi$ and using in particular the jump
relation (1.4), we obtain

-(v, \partial_{t} $\varphi$)_{Q}-(v_{0},  $\varphi$|_{t=0})_{ $\Omega$}+(v\cdot\nabla v,  $\varphi$)_{Q}

+(S( $\chi$, Dv), D $\varphi$)_{Q}= $\kappa$\displaystyle \int_{0}^{\infty}\langle H_{ $\Gamma$(t)},  $\varphi$(t)\rangle dt (1.7)

for all  $\varphi$\in C_{(0)}^{\infty}( $\Omega$\times[0, \infty))^{d} with \mathrm{d}\mathrm{i}\mathrm{v} $\varphi$=0 ,
where Q= $\Omega$\times(0, \infty) ,  $\chi$=$\chi$_{ $\Omega$+},

S(1, Dv)=2$\nu$^{+}(|Dv|)Dv, S(0, Dv)=2$\nu$^{-}(|Dv|)Dv ,
and

\displaystyle \langle H_{ $\Gamma$(t)},  $\varphi$(t)\rangle :=\int_{ $\Gamma$(t)}Hn\cdot $\varphi$(x, t)d\mathcal{H}^{d-1}(x) . (1.8)
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Here \mathcal{H}^{d-1} denotes the (d-1) ‐dimensional Hausdorff measure and $\chi$_{A} denotes

the characteristic function of a set A.

Now the aim is to construct generalized solutions in a class of functions

determined by the energy estimate. If v and  $\Gamma$(t) are sufficiently smooth,
then choosing  $\varphi$=v$\chi$_{[0,T]} in (1.7) one obtains the energy inequality

\displaystyle \frac{1}{2}\Vert v(T)\Vert_{L^{2}( $\Omega$)}^{2}+ $\kappa$ \mathcal{H}^{d-1}( $\Gamma$(T))
+\displaystyle \int_{0}^{T}\int_{ $\Omega$}S (  $\chi$ ,

 Dv ) : Dv dxdt\displaystyle \leq\frac{1}{2}\Vert v_{0}\Vert_{L^{2}( $\Omega$)}^{2}+ $\kappa$ \mathcal{H}^{d-1}($\Gamma$_{0}) (1.9)

for all T>0 (even with equality), where $\Gamma$_{0}=\partial$\Omega$_{0}^{+}. - Note that

\displaystyle \frac{d}{dt}\mathcal{H}^{d-1}( $\Gamma$(t))=-\int_{ $\Gamma$(t)}HVd\mathcal{H}^{d-1}=-\langle H_{ $\Gamma$(t)}, v(t)\rangle (1.10)

due to (1.4), cf. [11, Equation 10.12]. Now assuming that

$\nu$^{\pm}(|Dv|)\geq c|Dv|^{q-2}

for some q>1 the equality above gives a uniform bound of

v\in L^{\infty}(0, \infty;L_{ $\sigma$}^{2} and Dv\in L^{q}((0, \infty)\times $\Omega$) . (1.11)

Here L^{p}(M) ,  1\leq p\leq\infty ,
denotes the usual Lebesgue space,  L_{loc}^{p}(M) its

local and L^{p}(M;X) its vector‐valued analog for a given Banach space X.

Moreover, if A\subset \mathbb{R} ,
then L^{p}(M;A) consists of all f\in L(M) with f(x)\in A

for a.e. x\in M . Finally, L_{ $\sigma$}^{p}( $\Omega$) is the set of all divergence free vector fields

f\in L^{p}
As will be shown below, if  $\kappa$>0 ,

then (1.9) yields an a priori bound of

 $\chi$\in L^{\infty}(0, \infty;BV( $\Omega$)) ,

where BV() =\{f\in L^{1}() : \nabla f\in \mathcal{M} denotes the space of functions

with bounded variation, cf. e.g. [3, 9] and \mathcal{M}()=C_{0}( $\Omega$)' is the space of

finite Radon measures. In the case without surface tension, i.e.,  $\kappa$=0
,

we

only obtain that  $\chi$\in L(Q) is a priori bounded by one. This motivates to

look for weak solutions (v,  $\chi$) lying in the function spaces above, satisfying
(1.9) with a suitable substitute of (1.8), such that (v,  $\chi$) solve (1.7) as well

as the transport equation

\partial_{t} $\chi$+v\cdot\nabla $\chi$=0 in Q , (1.12)
 $\chi$|_{t=0}=$\chi$_{0} in  $\Omega$ (1.13)
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for  $\chi$_{0}=$\chi$_{$\Omega$_{0}^{+}} in a suitable weak sense. Note that (1.12) is a weak formulation

of (1.4), cf. [15, Lemma 1.2].
In the following we will discuss the known mathematical results for the

case with and without surface tension. Throughout the paper we make the

following assumption:

Assumption 1.1 We assume that  $\kappa$>0 and  $\Omega$=\mathbb{R}^{d} or that  $\kappa$=0 and

either  $\Omega$\subseteq \mathbb{R}^{d} is a bounded domain with Lipschitz boundary or  $\Omega$=\mathbb{R}^{d}
,

where

d=2
, 3. Moreover, let q>1 and let  $\nu$(j, s) , j=0 , 1, be twice continuously

diffe rentiable for s>0 such that  $\nu$(j, s)s^{2} is continuous at 0 and  $\nu$(j, s)
satisfy

c_{0}s^{q-2}\leq $\nu$(j, s)\leq C_{0}s^{q-2}, \displaystyle \frac{d}{ds}( $\nu$(j, s)s)>0, \displaystyle \frac{d^{2}}{ds^{2}}( $\nu$(j, s)s^{2})>0 (1.14)

for some constants c_{0}, C_{0}>0 . Finally, we set S( $\theta$, A)= $\theta \nu$(1, |A|)A+(1-
 $\theta$) $\nu$(0, |A|)A for every A\in \mathbb{R}_{sym}^{d\times d},  $\theta$\in[0 ,

1 ] ,
and V_{q}( $\Omega$)=W_{q,0}^{1}( $\Omega$)^{d}\cap L_{ $\sigma$}^{q}() if

 $\Omega$ is a bounded domain and  V_{q}(\mathbb{R}^{d})=\{v\in L_{loc}^{q}(\mathbb{R}^{d})^{d}:\nabla v\in L^{q}(\mathbb{R}^{d}), \mathrm{d}\mathrm{i}\mathrm{v}v=0\}.
Note that (1.14) imply that

F(v)=\displaystyle \int_{ $\Omega$}S (  $\chi$ , Dv) : Dv  dx, v\in W_{q}^{1}()^{d},

is a bounded, coercive, and strictly convex functional on W_{q}^{1}() for every

 $\chi$\in L^{\infty}(;\{0,1\}) and that the mapping A\mapsto S( $\theta$, A) is strictly monotone.

2 Two‐Phase Flow Without Surface Tension

Throughout this section we assume that  $\kappa$=0
, i.e., no surface tension is

present. Then the two‐phase flow consists of a coupled system of the Navier‐

Stokes equation with variable viscosities and a transport equation for the

characteristic function  $\chi$(t)=x_{ $\Omega$+}(t) . In the Newtonian case, i.e., q=2 and

 $\nu$(j, s)=$\nu$_{j} ,
this is a special case of the so‐called density‐dependent Navier‐

Stokes equation, cf. f.e. Desjardins [6] and references given there. For

given  $\chi$ it is easy to construct a weak solution of the Navier‐Stokes equation
(1.7),  q=2 ,

with the aid of a suitable approximation scheme (f.e. Galerkin

approximation). No difficulties arise due to non‐linear mean curvature term

\langle H_{ $\gamma$}, \rangle.
For the coupled system (1.7) together with (1.12)-(1.13) there are two

different approaches. The essential difference is in which sense the trans‐

port equation is solved. One approach is due to Giga and Takahashi [10],
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who solved (1.12)-(1.13) in the sense of viscosity solutions, where the char‐

acteristic functions ( $\chi$(t), $\chi$_{0}) are replaced by continuous level‐set functions

( $\psi$(t), $\psi$_{0}) such that

$\Omega$_{0}^{\pm}=\{x\in $\Omega$:$\psi$_{0}(x)\gtrless 0\}.

For simplicity they consider periodic boundary conditions, i.e.,  $\Omega$=\mathrm{T}^{d} . Since

v is in general not Lipschitz continuous, the existence of a viscosity solution

of (1.12)-(1.13) with ( $\chi,\ \chi$_{0}) replaced by continuous level‐set functions ( $\psi,\ \psi$_{0})
is not known. There are only a least super‐solution $\psi$^{+}(t) and a largest sub‐

solution $\psi$^{-}(t) of the transport equation. Then one defines

$\Omega$^{\pm}(t)=\{x\in $\Omega$:$\psi$^{\pm}(x, t)\gtrless 0\}.

With this definition $\Omega$^{\pm}(t) are disjoint open sets but the ((\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}
�

 $\Gamma$(t)=
\mathrm{T}^{d}\backslash ($\Omega$^{+}(t)\cup$\Omega$^{-}(t)) might have interior points and might have positive
Lebesgues measure. Giga and Takahashi call this possible effect �boundary
fattening�. With this definition they construct weak solutions of a two‐phase
Stokes flow, i.e., q=2 and the convective term v\cdot\nabla v is neglected in (1.7),
assuming that the viscosity difference |$\nu$^{+}-$\nu$^{-}| is sufficiently small; see [10]
for details. This approach was adapted to the case of a Navier‐Stokes two‐

phase flow by Takahashi [25] and to a one‐phase flow for an ideal, irrotational

and incompressible fluid by Wagner [28].
The other approach was established by Nouri and Poupaud [15] and Nouri

et. al. [16] and is based on the results of DiPerna and Lions [7] on renor‐

malized solutions of the transport equation (1.12)-(1.13) for a velocity field v

with bounded divergence. Here  $\chi$\in L(Q) is called a renormalized solution

of (1.12)-(1.13) if for all  $\beta$\in C^{1}(\mathrm{R}) which vanish near 0 $\beta$( $\chi$) solves (1.12)‐
(1.13) with initial values  $\beta$($\chi$_{0}) ,

cf. [7] for details. In particular, this implies
that  $\chi$(t, x)\in\overline{\{$\chi$_{0}(x)}:  x\in $\Omega$ } for almost all  t>0,  x\in $\Omega$ . Due to [7, The‐

orem II.3], for every  $\chi$_{0}\in L(R) there is a unique renormalized solution

of (1.12)-(1.13) under general conditions on v
,

which are weaker than the

condition (1.11). Based on this notion the following result for the two‐phase
flow without surface tension holds true:

THEOREM 2.1 Let Assumption 1.1 hold. Moreover, we assume that  q\geq

\displaystyle \frac{2d}{d+2}+1 or that q=2 and  $\nu$(j, s)=$\nu$_{j}, j=1 ,
2. Then for every v_{0}\in L_{ $\sigma$}^{2}

$\chi$_{0}\in L^{\infty}( $\Omega$;\{0,1 and f\in L^{q'}(0, \infty;V_{q} there are  v\in L^{\infty}(0, \infty;L_{ $\sigma$}^{2}( $\Omega$))\cap
 L^{q}(0, \infty;V_{q} and  $\chi$\in L^{\infty}(Q;\{0,1\}) that are a weak solution of the two‐

phase flow without surfa ce tension in the sense that

-(v, \partial_{t} $\varphi$)_{Q}-(v_{0},  $\varphi$(0))_{ $\Omega$}+(v\cdot\nabla v,  $\varphi$)_{Q}+(S( $\chi$, Dv), D $\varphi$)_{Q}=\langle f,  $\varphi$\rangle (2.1)
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for all  $\varphi$\in C_{(0)}^{\infty}( $\Omega$\times[0, \infty))^{d} with \mathrm{d}\mathrm{i}\mathrm{v} $\varphi$=0,  $\chi$ is the unique renormalized

solution of the transport equation of (1.12)-(1.13) ,
and (1.9) holds for almost

all t>0 with  $\kappa$=0.

Notes on the proof: The Newtonian case, q=2 and  $\nu$(j, s)=$\nu$_{j} ,
was

proved by Nouri and Poupaud [15] for the case of a bounded domain  $\Omega$ with

Lipschitz boundary. The generalized Newtonian case  q\displaystyle \geq\frac{2d}{d+2}+1 is proved
in [2].

In order to prove the latter theorem, a key step is to show strong compact‐
ness of the sequence $\chi$_{k} in L^{p}(Q_{T}) ,  1\leq p<\infty ,

where  Q_{T}= $\Omega$\times(0, T) , T>0,
and (v_{k}, $\chi$_{k}) is a suitably constructed approximation sequence. This is done

by using the fact that

\displaystyle \Vert$\chi$_{k}(t)\Vert_{L^{p}( $\Omega$)}^{p}=\int_{ $\Omega$}$\chi$_{k}(t, x)dx=\int_{ $\Omega$}$\chi$_{0}(x)dx
if $\chi$_{k} are solutions of (1.12)-(1.13) with v replaced by v_{k} and \mathrm{d}\mathrm{i}\mathrm{v}v_{k}=0.
Using that

$\chi$_{k}\rightarrow*k\rightarrow\infty^{x}
\nabla v_{k}\rightarrow*k\rightarrow\infty^{\nabla v}

in L^{\infty}(Q) ,

in L(Q)

for a suitable subsequence one shows that  $\chi$ solves (1.12)-(1.13) ,
cf. [2,

Lemma 5.1]. Here \rightarrow* denotes the \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-* convergence. Therefore

\displaystyle \Vert $\chi$(t)\Vert_{L^{p}( $\Omega$)}^{p}=\int_{ $\Omega$} $\chi$(t, x)dx=\int_{ $\Omega$}$\chi$_{0}(x)dx=\Vert$\chi$_{k}(t)\Vert_{L^{p}( $\Omega$)}^{p}.
This implies strong convergence  $\chi$_{k}\rightarrow k\rightarrow\infty $\chi$ in  L^{p}(Q_{T}) ,  1\leq p<\infty ,

for

every  T>0 . Based on this, one can pass to the limit in all terms in (1.7)
using the Minty‐Browder method for S (  $\chi$ , Dv).

Remark 2.2 Using the solution of Theorem 2.1, we can define the sets

 $\Omega$^{+}(t)=\{x\in $\Omega$ :  $\chi$(t)=1\} and $\Omega$^{-}(t)=\{x\in $\Omega$ :  $\chi$(t)=0\} . Then

we know that |$\Omega$^{+}(t)|=|$\Omega$_{0}^{+}| and  $\Omega$\backslash ($\Omega$^{+}(t)\cup$\Omega$^{-}(t)) has Lebesgue mea‐

sure zero. But, since only  $\chi$\in L(Q) is known, it is not clear whether

$\Omega$^{\pm}(t) have interior points. In particular, it is not excluded that \overline{$\Omega$^{+}(t)}= $\Omega$
and int  $\Omega$^{+}(t)=\emptyset . Therefore it is not immediately clear what the ((inter‐

face� between both fluids should be. If one naively defines the interface as

 $\Gamma$(t)=\partial$\Omega$^{+}(t) ,
then  $\Gamma$(t) can have positive Lebesgue measure as in the result

by Giga and Takahasi.

It seems that by neglecting surface tension in the two phase flow, on looses

\mathrm{a} �good control� of the interface between both fluids.
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Remark 2.3 In the case of a two‐dimensional periodic domain  $\Omega$=\mathrm{T}^{2} and

 $\nu$(0, s)= $\nu$(1, s)\equiv const . it can be shown that there is a weak solution of the

two‐phase flow with v\in L^{2}(0, T;H^{2}( $\Omega$)) . Based on this result Desjardin [6]
showed that the associated flow map defined by

\displaystyle \frac{d}{dt}X(t, x)=v(X(t, x), t) , 0<t<T,
X(0, x)=x

satisfies X\in L^{\infty}(0, T;C^{ $\alpha$}(\mathrm{T}^{2})) with  $\alpha$\in(0,1) and T>0 arbitrary. In

particular, the Hausdorff dimension of  $\Gamma$(t)=\partial$\Omega$^{+}(t) , t>0 ,
is not greater

than 1 if \partial$\Omega$_{0}^{+} has Hausdorff dimension 1.

3 Case With Surface Tension: Varifold Solu‐

tions

As discussed in the previous section, a deficit of the two‐phase flow without

surface tension is that there is no good information on the properties of the

interface. As mentioned in the introduction, if  $\kappa$>0 ,
the energy equality

(1.9) for sufficiently smooth solutions provides an a priori estimate of the

interface:

\displaystyle \sup_{0\leq t<\infty}\mathcal{H}^{d-1}( $\Gamma$(t))\leq(\frac{1}{2 $\kappa$}\Vert v_{0}\Vert_{2}^{2}+\mathcal{H}^{d-1}($\Gamma$_{0})) . (3.1)

This implies an a priori bound of  $\chi$ in the space  BV( $\Omega$) as follows: Note

that, if  $\Gamma$(t)=\partial$\Omega$^{+}(t) is sufficiently smooth, Gauss� theorem yields

-\displaystyle \langle\nabla $\chi$(t) ,  $\varphi$\rangle=\int_{ $\Omega$(t)}\mathrm{d}\mathrm{i}\mathrm{v} $\varphi$(x)dx=\int_{ $\Gamma$(t)}n\cdot $\varphi$(x)d\mathcal{H}^{d-1}(x)
for all  $\varphi$\in C_{0}^{\infty}( $\Omega$)^{d} . Hence the distributional gradient \nabla $\chi$(t) is a finite Radon

measure and

\Vert\nabla $\chi$(t)\Vert_{\mathcal{M}( $\Omega$)}=\mathcal{H}^{d-1}( $\Gamma$(t)) .

Thus, if  $\kappa$>0 ,
then  $\chi$(t)\in BV( $\Omega$) for all t>0 and (3.1) gives an a priori

estimate of

 $\chi$\in L^{\infty}(0, \infty;BV 

Conversely, if  $\chi$(t)=$\chi$_{E}\in BV( $\Omega$) for some set E=E(t) ,
then E is said to

be of finite perimeter and the following characterisation holds, cf. [9, Section

5.7, Theorem 2]:

-\displaystyle \langle\nabla $\chi$(t) ,  $\varphi$\rangle=\int_{\partial^{*}E}$\nu$_{E}\cdot $\varphi$(x)d\mathcal{H}^{d-1}(x) ,
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where \partial^{*}E is the reduced boundary of E
,

cf. [9, Definition 5.7], and \partial^{*}E is

countably (d-1) ‐rectifiable in the sense that

\displaystyle \partial^{*}E=\bigcup_{k=1}^{\infty}K_{k}\cup N,
where K_{k} are compact subsets of C^{1} ‐hypersurfaces S_{k}, k\in \mathbb{N}, \mathcal{H}^{d-1}(N)=0,
and $\nu$_{E}|_{S_{k}} is normal to S_{k} . Moreover, by [9, Section 5.8, Lemma 1] \partial_{*}E\subseteq\partial^{*}E
and \mathcal{H}^{d-1}(\partial^{*}E\backslash \partial_{*}E) ,

where \partial_{*}E is the measure theoretic boundary of E

consisting of all  x\in $\Omega$ such that

\displaystyle \lim_{r\rightarrow}\sup_{0}\frac{\mathcal{L}^{d}(B(x,r)\cap E)}{r^{d}}>0 and \displaystyle \lim_{r\rightarrow}\sup_{0}\frac{\mathcal{L}^{d}(B(x,r)\backslash E)}{r^{d}}>0,
where \mathcal{L}^{d} is the Lebesgue measure on R.

Based on these properties, one can define the mean curvature functional

of a set of finite perimiter E as

\langle H_{\partial^{*}E},  $\varphi$\rangle\equiv\langle H_{$\chi$_{E}},  $\varphi$\displaystyle \rangle:=-\int_{\partial^{*}E} Tr (P_{ $\tau$}\nabla $\varphi$)d\mathcal{H}^{d-1},  $\varphi$\in C_{0}^{1}()^{d} , (3.2)

where P_{ $\tau$}=I-$\nu$_{E}(x)\otimes$\nu$_{E}(x) . Note that \mathrm{T}\mathrm{r}(P_{ $\tau$}\nabla $\varphi$) corresponds to the

divergence of  $\varphi$ along the �surface� \partial^{*}E and that by integration by parts (3.2)
coincides with the usual definition if \partial^{*}E is a C^{2}‐surface, cf. f.e. Giusti [11,
Chapter 10].

Motivated by the considerations above, we define weak solutions of the

two‐phase flow in the case of surface tension as follows:

Definition 3.1 (Weak solutions)
Let  $\kappa$>0 and let Assumption 1.1 hold. Then  v\in L^{\infty}(0, \infty;L_{ $\sigma$}^{2}(\mathbb{R}^{d}))\cap
 L^{q}(0, \infty;V_{q}(\mathbb{R}^{d})) ,  $\chi$\in L^{\infty}(0, \infty;BV(\mathbb{R}^{d};\{0,1 are called a weak solution

of the two‐phase flow for initial data v_{0}\in L_{ $\sigma$}^{2}(\mathbb{R}^{d}) , $\chi$_{0}=$\chi$_{$\Omega$_{0}^{+}} for a bounded

domain $\Omega$_{0}^{+}\subset \mathbb{R}^{d} of finite perimeter if the following conditions are satisfied:

1. (1. 7) holds for all  $\varphi$\in C_{(0)}^{\infty}(\mathbb{R}^{d}\times[0, \infty))^{d} with \mathrm{d}\mathrm{i}\mathrm{v} $\varphi$=0 , where H_{ $\Gamma$(t)}
is replaced by H_{ $\chi$(t)} defined as in (3.2).

2. The energy inequality

\displaystyle \frac{1}{2}\Vert v(t)\Vert_{2}^{2}+ $\kappa$\Vert\nabla $\chi$(t)\Vert_{\mathcal{M}}
+\displaystyle \int_{Q_{t}}S (  $\chi$ ,

 Dv ) : Dv d(x,  $\tau$)\displaystyle \leq\frac{1}{2}\Vert v_{0}\Vert_{2}^{2}+ $\kappa$\Vert\nabla$\chi$_{0}\Vert_{\mathcal{M}} (3.3)

holds for almost all t\in(0, \infty) .
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Unfortunately, the existence of weak solutions as defined above is open.

The reason are possible oscillation and concentration effects related to the

interface, which cannot be excluded so far. This prevents us from passing
to the limit in the mean curvature functional (3.2) during an approximation
procedure used to construct weak solutions.

In order to demonstrate these effects, let E_{k} be a sequence of sets of finite

perimeter such that $\chi$_{k}\equiv$\chi$_{E_{k}} is bounded in BV( $\Omega$) and let  $\Omega$=\mathbb{R}^{d} . Then

after passing to a suitable subsequence, we can assume that

 $\chi$_{k}\rightarrow_{k\rightarrow\infty} $\chi$ in  L_{loc}^{1}(\mathbb{R}^{d}) ,

\nabla$\chi$_{k}\rightarrow*k\rightarrow\infty^{\nabla $\chi$} in \mathcal{M}(\mathbb{R}^{d}) ,

|\nabla$\chi$_{k}|\rightarrow^{*}k\rightarrow\infty $\mu$ in \mathcal{M}(\mathbb{R}^{d}) .

But then the question arises how |\nabla $\chi$| and  $\mu$ are related and whether

\displaystyle \lim_{k\rightarrow\infty}\langle H_{$\chi$_{$\epsilon$_{k}}},  $\psi$\rangle=\langle H_{ $\chi$},  $\psi$\rangle (3.4)

holds. The continuity result due Reshetnyak, cf. [3, Theorem 2.39], gives a

sufficient condition for (3.4): If

\displaystyle \lim_{k\rightarrow\infty}|\nabla$\chi$_{k}|(\mathbb{R}^{d})=|\nabla $\chi$|(\mathbb{R}^{d}) , (3.5)

then (3.4) holds. But in general (3.5) will not hold for example because of

the following oscillation/concentration effects at the reduced boundary of E :

1. Several parts of the boundary \partial^{*}E_{k} might meet.

2. Oscillations of the boundary might reduce the area in the limit.

3. There might be an �infinitessimal emulsification�

These effects are sketched in Figure 1.

So far it is not known how to exclude such kind of oscillation/concentration
effects. — This might even not be possible in general since our model might
not describe the behavior of both fluids appropriately when f.e. a lot of small

scale drops are forming. — One way out of this problem is to define so‐called

varifold solution of a two‐phase flow, which was first done by Plotnikov [18].
Here a general (oriented) varifold V on a domain  $\Omega$ is simply a non‐negative
measure in \mathcal{M}( $\Omega$\times \mathbb{S}^{d-1}) ,

where \mathbb{S}^{d-1} denotes the unit sphere in R. By
disintegration, cf. [3, Theorem 2.28], a varifold V can be decomposed in

a non‐negative measure |V|\in \mathcal{M}() and a family of probability measures

V_{x}\in \mathcal{M}(\mathbb{S}^{d-1}) ,  x\in $\Omega$ ,
such that

\langle V,  $\psi$\displaystyle \rangle=\int_{ $\Omega$}\int_{\mathrm{S}^{d-1}} $\psi$(x, s)dV_{x}(s)d|V|(x) for all  $\psi$\in C_{0}( $\Omega$\times \mathbb{S}^{d-1}) .
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1. $\Omega$^{+}(t) $\Omega$^{+}(t)
\vec{k\rightarrow\infty} 11

$\Omega$_{k}^{-}(t)

2.

\displaystyle \approx\frac{1}{k}
$\Omega$_{k}^{+}(t)

\displaystyle \approx\frac{1}{k}

3.
\mathrm{k} \rightarrow \infty

$\Omega$^{-}(t)

 k\rightarrow\infty

$\Omega$^{+}(t)

Figure 1: Some possible oscillation/concentration effect
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Here |V| corresponds to the measure of �area of the interface� and V_{x} defines

a probability for the �normal at the interface�

The reduced boundary \partial^{*}E of a set of finite perimeter induces naturally
a varifold by setting |V|=|\nabla$\chi$_{E}| and V_{x}=$\delta$_{$\nu$_{E}(x)} for x\in\partial^{*}E ,

where $\delta$_{ $\nu$}
denotes the Dirac measure at  $\nu$\in \mathbb{S}^{d-1} . Hence the associated varifold V_{E} is

\langle V_{E},  $\psi$\displaystyle \rangle=\int_{ $\Omega$} $\psi$(x, $\nu$_{E}(x))d|V|(x) for all  $\psi$\in C_{0}( $\Omega$\times \mathbb{S}^{d-1}) .

Now let E_{k} be a sequence of sets of finite perimeter as above. Then by the

\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-* compactness of \mathcal{M}( $\Omega$\times \mathbb{S}^{d-1}) ,
there is a limit varifold  V\in \mathcal{M}( $\Omega$\times

\mathbb{S}^{d-1}) such that

\langle V,  $\psi$\displaystyle \rangle=\lim_{k\rightarrow\infty}\langle V_{E_{k}},  $\psi$\rangle for all  $\psi$\in C_{0}( $\Omega$\times \mathbb{S}^{d-1})

for a suitable subsequence. Hence using  $\psi$(s, x)=\mathrm{T}\mathrm{r}((I-s\otimes s)\nabla $\varphi$(x)) for

 $\varphi$\in C_{0}^{1}( $\Omega$)^{d} we conclude that

\displaystyle \lim_{k\rightarrow\infty}\langle H_{$\chi$_{E_{k}}},  $\psi$\displaystyle \rangle=\int_{ $\Omega$\times \mathrm{S}^{d-1}}\mathrm{T}\mathrm{r}((I-s\otimes s)\nabla $\varphi$(x))dV(s, x)=:-\langle $\delta$ V,  $\varphi$\rangle (3.6)

for all  $\varphi$\in C_{0}^{1} Here  $\delta$ V\in C_{0}^{1}(; \mathbb{R}^{d})' defined as above is called the first
variation of the generalized varifold V . Moreover,

-\langle\nabla$\chi$_{E},  $\varphi$\rangle = -\displaystyle \lim_{k\rightarrow\infty}\langle\nabla$\chi$_{E_{k}},  $\varphi$\rangle

= \displaystyle \lim_{k\rightarrow\infty}\int_{ $\Omega$}$\nu$_{E}(x)\cdot $\varphi$ d|V_{E_{k}}|(x)=\int_{ $\Omega$\times \mathrm{S}^{d-1}}s\cdot $\varphi$(x)dV(x, s) .

Hence V can be used to describe the limit of H_{$\chi$_{E_{k}}} as well as the limit of

\nabla$\chi$_{E_{k}}.
Now we define a varifold solution of the two‐phase flow as follows:

Definition 3.2 (Varifold solutions)
Let  $\kappa$>0 and let Assumption 1.1 hold. Then

v\in L^{\infty}(0, \infty;L_{ $\sigma$}^{2}(\mathbb{R}^{d}))\cap L^{q}(0, \infty;V_{q}(\mathbb{R}^{d})) ,

 $\chi$\in L^{\infty}(0, \infty;BV(\mathbb{R}^{d})\cap L^{\infty}(\mathbb{R}^{d};\{0,1 ,

V\in L_{ $\omega$}^{\infty}(0, \infty;\mathcal{M}( $\Omega$\times \mathbb{S}^{d-1}))

are called a varifold solution of the two‐phase flow for initial data v_{0}\in L_{ $\sigma$}^{2}(\mathbb{R}^{d})
and $\chi$_{0}=$\chi$_{$\Omega$_{0}^{+}} for a bounded domain $\Omega$_{0}^{+}\subset \mathbb{R}^{d} of finite perimeter if the

following conditions are satisfied:
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1. (1. 7) holds for all  $\varphi$\in C_{(0)}^{\infty}(\mathbb{R}^{d}\times[0, \infty))^{d} with \mathrm{d}\mathrm{i}\mathrm{v} $\varphi$=0 , where H_{ $\Gamma$(t)}
is replaced by- $\delta$ V(t) where

\displaystyle \langle $\delta$ V(t) ,  $\varphi$\rangle=\int_{ $\Omega$\times \mathrm{S}^{d-1}}\mathrm{T}\mathrm{r}((I-s\otimes s)\nabla $\varphi$(x))dV(s, x) ,  $\varphi$\in C_{0}^{1}()^{d}
2. The modified energy inequality

\displaystyle \frac{1}{2}\Vert v(t)\Vert_{2}^{2}+ $\kappa$\Vert V(t)\Vert_{\mathcal{M}}+\int_{Q_{t}}S (  $\chi$ , Dv) : Dv  d(x,  $\tau$)\displaystyle \leq\frac{1}{2}\Vert v_{0}\Vert_{2}^{2}+ $\kappa$\Vert\nabla$\chi$_{0}\Vert_{\mathcal{M}}
(3.7)

holds for almost all t\in(0, \infty) .

3. The compatibility condition

-\displaystyle \langle\nabla $\chi$(t) ,  $\varphi$\rangle=\int_{ $\Omega$\times \mathrm{S}^{d-1}}s\cdot $\varphi$(x)dV(x, s) ,  $\varphi$\in C_{0}()^{d} , (3.8)

holds for almost all t>0.

Here L_{ $\omega$}^{\infty}(0, T;X') denotes the space of \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-* measurable essentially bounded

functions f:(0, T)\rightarrow X'

Remark 3.3 1. Let (V_{x}(t), |V(t)|) , x\in \mathbb{R}^{d} ,
denote the disintegration of

V(t)\in \mathcal{M}(\mathbb{R}^{d}\times \mathbb{S}^{d-1}) as described above. Then (3.8) implies that

|\nabla $\chi$(t)|(A)\leq|V(t)|(A) for all open sets A and almost all t\in(0, \infty) .

Hence |\nabla $\chi$(t)| is absolutely continuous with respect to |V(t)| and

\displaystyle \int_{\mathbb{R}^{d}}f(x)d|\nabla $\chi$(t)|=\int_{\mathbb{R}^{d}}f(x)$\alpha$_{t}(x)d|V(t)|, f\in C_{0}(\mathbb{R}^{d}) ,

for a |V(t)| ‐measurable function $\alpha$_{t}:\mathbb{R}^{d}\rightarrow[0, \infty ) with |$\alpha$_{t}(x)|\leq 1
almost everywhere. In particular, this implies supp \nabla$\chi$_{t}\subseteq supp V(t)
and \Vert\nabla $\chi$(t)\Vert_{\mathcal{M}}\leq\Vert V(t)\Vert_{\mathcal{M}} for almost all t\in(0, \infty) . Hence every

varifold solution satisfies the energy inequality (3.3) for almost every

t>0.

Moreover, if E(t)=\{x\in \mathbb{R}^{d}: $\chi$(x, t)=1\}, t>0 ,
then (3.8) yields the

relation

\displaystyle \int_{\mathrm{S}^{d-1}}sdV_{x}(t)(s)=\left\{\begin{array}{ll}
$\alpha$_{t}(x)$\nu$_{E(t)}(x) & \mathrm{i}\mathrm{f} x\in\partial^{*}E_{t}\\
0 & \mathrm{e}\mathrm{l}\mathrm{s}\mathrm{e}
\end{array}\right.
for |V(t)| ‐almost every x\in \mathbb{R}^{d} and almost every t>0 . —In other

words, the expectation of V(t) is proportional to the normal n on the

interface described by \nabla $\chi$ and zero away from it.
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2. In general, it is an open problem whether  V(t) is a so‐called countably
(d-1) ‐rectifiable varifold, which implies that up to orientation V(t)
is a Dirac measure for |V(t)| ‐almost every x . Then V(t) can naturally
be identified with a countably (d-1) ‐rectifiable set -\mathrm{a} �surface� ‐

equipped with a density $\theta$_{t}\geq 0 . So far we can only give a sufficient

condition for the rectifiability of V(t) in terms of the first variation

 $\delta$ V(t) ,
cf. Section 4 below.

3. As noted above, the existence of weak solutions to the two‐phase flow

with surface tension is open. But a general porperty of varifold solu‐

tions is that a varifold solution is a weak solution if the energy equality
holds, i.e., (3.3) holds with equality for almost every t>0 . See [2,
Proposition 1.5] for details.

THEOREM 3.4 (Existence of Varifold Solutions)
Let  $\kappa$>0, d=2

, 3, and let Assumption 1.1 hold. Moreover, assume that

q=2 and  $\nu$(j, s)=$\nu$_{j}>0 forj=0 , 1, or assume that q>d=2 . Then

for every v_{0}\in L_{ $\sigma$}^{2}() and $\chi$_{0}=$\chi$_{$\Omega$_{0}^{+}} where $\Omega$_{0}^{+}\subset \mathbb{R}^{d} is a bounded C^{1} ‐domain

there is a varifolds solution of the two‐phase flow with surfa ce tension  $\kappa$>0

in the sense of Definition 3.2.

Remark 3.5 For q>d=2 existence of varifold solutions was proven by
Plotnikov [18]. But his definition of varifold solutions is different from Defi‐

nition 3.2, cf. [2, Remark 1.7] for details. Moreover, we refer to [2, Theorem

1.6] for further properties, which can be shown for the constructed varifold.

Remark 3.6 Generalized solutions for the two‐phase flow with surface ten‐

sion were also constructed by Salvi [20]. But in the latter work the meaning
of the mean curvature functional is not specified and can be chosen arbitrar‐

ily within in a certain function space. Moreover, we note that a Bernoulli

free boundary problem with surface tension was discussed by Wagner [27].

Remarks on the proof of Theorem 3.4: As usual varifold solutions are

constructed by approximation with solutions to an approximative (smoothed)
problem. This can be done by solving the system

-(v_{ $\epsilon$}, \partial_{t} $\varphi$)_{Q_{T}}-(v_{0},  $\varphi$(0))_{\mathbb{R}^{d}}-($\Psi$_{ $\epsilon$}v_{ $\epsilon$}\otimes$\Psi$_{ $\epsilon$}v_{ $\epsilon$}, \nabla$\Psi$_{ $\epsilon$} $\varphi$)_{Q_{T}}

+(S($\chi$_{ $\epsilon$}, Dv_{ $\epsilon$}), D $\varphi$)_{Q_{T}}= $\kappa$\displaystyle \int_{0}^{T}\langle H_{$\chi$_{ $\epsilon$}(t)}, $\Psi$_{ $\epsilon$} $\varphi$(t)\rangle dt (3.9)

for all  $\varphi$\in C_{(0)}^{\infty}(\mathbb{R}^{d}\times[0, T))^{d} with \mathrm{d}\mathrm{i}\mathrm{v} $\varphi$=0 , together with the transport
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equation

\partial_{t}$\chi$_{ $\epsilon$}+($\Psi$_{ $\epsilon$}v_{ $\epsilon$})\cdot\nabla$\chi$_{ $\epsilon$}=0 in Q_{T} , (3.10)

$\chi$_{ $\epsilon$}|_{t=0}=$\chi$_{0} in \mathbb{R}^{d} . (3.11)

Here  $\epsilon$>0, T=$\epsilon$^{-1}, $\Psi$_{ $\epsilon$}f=$\psi$_{ $\epsilon$}*f ,
and $\psi$_{ $\epsilon$}(x)=$\epsilon$^{-d} $\psi$(x/ $\epsilon$) is a standard

smoothing kernel with $\psi$_{ $\epsilon$}(-x)=$\psi$_{ $\epsilon$}(x) . Since $\Psi$_{ $\epsilon$}v_{ $\epsilon$} is smooth, the transport

equation (3.10)-(3.11) can be solved explicitely with the method of charac‐

teristics. Moreover, the boundary $\Gamma$_{ $\epsilon$}(t) of the domain described by $\chi$_{ $\epsilon$} is as

smooth as \partial$\Omega$_{0}^{+} . Therefore the mean curvature functional \langle H_{$\chi$_{ $\epsilon$}(t)}, \rangle can be

defined in the classical sense. Furthermore, solutions (v_{ $\epsilon$}, $\chi$_{ $\epsilon$}) of the system

(3.9)-(3.11) satisfy the energy inequality (1.9) with  $\Gamma$(t) replaced by $\Gamma$_{ $\epsilon$}(t)
because of

\displaystyle \int_{0}^{T}\langle H_{$\chi$_{ $\epsilon$}(t)}, $\Psi$_{ $\epsilon$}v_{ $\epsilon$}(t)\rangle dt=\int_{0}^{T}\int_{$\Gamma$_{ $\epsilon$}(t)}HVd\mathcal{H}^{d-1}dt
= -\displaystyle \int_{0}^{T}\frac{d}{dt}\mathcal{H}^{d-1}($\Gamma$_{ $\epsilon$}(t))dt=\mathcal{H}^{d-1}($\Gamma$_{0})-\mathcal{H}^{d-1}($\Gamma$_{ $\epsilon$}(T))

where we have used that the normal velocity of $\Gamma$_{ $\epsilon$}(t) is  $\nu$\cdot$\Psi$_{ $\epsilon$}v_{ $\epsilon$}|_{$\Gamma$_{ $\epsilon$}(t)} due (3.9).
Therefore we have uniform bounds of

v_{ $\epsilon$}\in L^{\infty}(0, T;L_{ $\sigma$}^{2}(\mathbb{R}^{d})) , Dv_{ $\epsilon$}\in L^{q}(Q_{T}) , $\chi$_{ $\epsilon$}\in L^{\infty}(0, T;BV(\mathbb{R}^{d})) .

Hence one can use similar arguments as in the proof of Theorem 2.1 to pass

to the limit in the system (3.9)-(3.11) . New arguments are only needed for

the mean curvature term \langle H_{$\chi$_{ $\epsilon$}(t)}, $\Psi$_{ $\epsilon$}\cdot\rangle and the non‐linearity  S (  $\chi$ , Dv) in the

non‐Newtonian case, i.e.,  $\nu$(j, s)\not\equiv const., j=0 ,
1. But as explained above

the mean curvature term \langle H_{$\chi$_{ $\epsilon$}(t)}, \rangle can be expressed by the first variation

of  V_{$\Omega$_{ $\epsilon$}^{+}(t)} ,
where V_{$\Omega$_{ $\epsilon$}^{+}(t)} is the varifold associated to the boundary of $\Omega$_{ $\epsilon$}^{+}(t) if

$\chi$_{ $\epsilon$}(t)=$\chi$_{$\Omega$_{ $\epsilon$}^{+}(t)} . Then

 V_{$\Omega$_{$\epsilon$_{k}}}\rightarrow^{*}Vk\rightarrow\infty in  L_{ $\omega$}^{\infty}(0, \infty;\mathcal{M}(\mathbb{R}^{d}\times \mathbb{S}^{d-1}))

for a suitable subsequence $\epsilon$_{k}\rightarrow_{k\rightarrow\infty}0 . With this definition it easily follows

that

\displaystyle \lim_{k\rightarrow\infty}\int_{0}^{T}\langle H_{$\chi$_{$\epsilon$_{k}}(t)}, $\Psi$_{$\epsilon$_{k}} $\varphi$(t)\rangle dt=-\int_{0}^{\infty}\langle $\delta$ V(t) ,  $\varphi$(t)\rangle dt
for all  $\varphi$\in C_{(0)}^{\infty}(\mathbb{R}^{d}\times[0, \infty)) and that (3.8) holds. In the non‐Newtonian case

one also has to show

\displaystyle \lim_{k\rightarrow\infty}(S($\chi$_{$\epsilon$_{k}}, Dv_{$\epsilon$_{k}}), D $\varphi$)_{Q}=(S( $\chi$, Dv_{$\epsilon$_{k}}), D $\varphi$)_{Q}
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for all  $\varphi$\in C_{0}^{\infty}(\mathbb{R}^{d}\times(0, \infty))^{d} . By the strong convergence of $\chi$_{$\epsilon$_{k}} in L^{p}(Q_{T})
for all T>0,  1\leq p<\infty ,

this reduces to showing that

\displaystyle \lim_{k\rightarrow\infty}(S( $\chi$, Dv_{$\epsilon$_{k}}), D $\varphi$)_{Q}=(S( $\chi$, Dv_{$\epsilon$_{k}}), D $\varphi$)_{Q} (3.12)

for all  $\varphi$ as above. Since  d=2 in that case, one can show that the sequence

of interfaces $\Gamma$_{$\epsilon$_{k}(t)} converges to a set $\Gamma$^{*}(t) in the Hausdorff distance and

that \mathcal{H}^{1}($\Gamma$^{*}(t))\leq C . Using this convergence and the Minty‐Browder trick

for (v_{$\epsilon$_{k}}, $\chi$_{$\epsilon$_{k}}) in space‐time zylinders $\Omega$'\times(t_{1}, t_{2}) away from the interface one

can show (3.12).

Remark 3.7 The existence of generalized solutions can be extended to ar‐

bitrary q>\displaystyle \frac{2d}{d+2}, d=2
, 3. But under these assumptions we were not able to

verify (3.12). This means that we cannot exclude possible additional oscilla‐

tion and concentration effect of Dv_{ $\epsilon$} . But modifying the definition of varifold

solution by replacing S (  $\chi$ , Dv) in (1.7) by

\displaystyle \int_{\mathbb{R}_{sym}^{d\times d}}S( $\chi$,  $\lambda$)d$\mu$_{x,t}( $\lambda$) ,

where $\mu$_{x,t}\in L_{ $\omega$}^{\infty}(Q;\mathcal{M}(\mathbb{R}_{sym}^{d\times d})) is the Young measure generated by Dv_{ $\epsilon$}(x, t)
it is still possible to prove existence of measure‐valued varifold solutions. We

obmit the precise definitions and statements and refer to [2, Section 1] for

more details. This combines varifold solutions with the notion of (Young‐
)measure‐valued solution for non‐Newtonian fluids, cf. e.g. Málek et. al. [12].

4 Discussion and Comparision
In the following it will be important to forget the orientation of the general
varifold. This means that instead of V(t) we consider the unoriented general
varifold \overline{V}(t)\in \mathcal{M}(\mathbb{R}^{d}\times G_{d-1}) defined by

\displaystyle \langle\overline{V},  $\varphi$\rangle=\int_{\mathbb{R}^{d}\times \mathrm{S}^{d-1}} $\varphi$(x, [s])dV(x, s) ,  $\varphi$\in C_{0}(\mathbb{R}^{d}\times G_{d-1}) . (4.1)

Here G_{d-1}\cong \mathbb{S}^{d-1}/\{ $\nu$\equiv- $\nu$\} denotes the space of all unoriented (d-1)-
dimensional subspaces of \mathbb{R}^{d} and [s] denotes the (d-1) ‐dimensional linear

subspace of \mathbb{R}^{d} with s as normal. It is an open problem whether there are

varifold solutions such that the unoriented general varifold \overline{V}(t) is \mathrm{a}(d-1)-
rectifiable varifold for almost all t>0 , i.e., V_{x}(t)=$\delta$_{P(x,t)} and

\langle\overline{V_{x}}(t) ,  $\varphi$\displaystyle \rangle=\int $\varphi$(x, P(x, t))$\theta$_{t}(x)d\mathcal{H}^{d-1}\lfloor M_{t}(x) ,  $\varphi$\in C_{0}( $\Omega$\times G_{d-1}) ,
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for some countably (d-1) ‐rectifiable set M_{t} and a \mathcal{H}^{d-1}\lfloor M_{t} ‐measurable

positive function $\theta$_{t} ,
cf. [22]. In particular, the case that $\theta$_{t}(x) is a positive

integer for almost all (x, t) would give a more satisfactory answer to the

existence of varifold solutions.

As noted by Plotnikov [17], the major problem is that (1.7) with H_{ $\Gamma$(t)}
replaced by - $\delta$ V(t) gives only information of \langle $\delta$ V,  $\psi$\rangle for  $\psi$\in C_{0}^{\infty}(Q)^{d} with

\mathrm{d}\mathrm{i}\mathrm{v} $\psi$=0 . But in order to apply techniques from geometric measure theory
it is necessary to have a good estimate of \langle $\delta$ V,  $\psi$\rangle for  $\psi$\in C_{0}^{\infty}(Q)^{d} with

\mathrm{d}\mathrm{i}\mathrm{v} $\psi$\neq 0 or at least for suitable gradients.
Because of the rectifiability result by Luckhaus [14], it would be sufficent

to show

 $\delta$ V\in L^{1}(0, \infty;W_{s}^{-1}(\mathbb{R}^{d})) for some s>1

and \mathrm{a}(d-1\underline{)}‐density bound of |V(t)| from below in order to prove the rec‐

tifiability of V(t) for almost every t>0 ,
cf. [2, Appendix \mathrm{A} ] for the details.

At this point let us note a crutial difference between the two‐phase flow

for incompressible viscous fluids and parabolic surface evolution problems
as f.e. the mean curvature flow or the Stefan problem with Gibbs‐Thomsen

law. This concerns the a priori estimates for sufficiently smooth solutions.

If  $\Gamma$(t)\subseteq \mathbb{R}^{d}, t\in[0, T) ,
is a family of smooth embedded closed (d-1)-

dimensional surfaces solving the mean curvature equation

V(t, x)=H(t, x) for all t\in(0, T) , x\in $\Gamma$(t)

where V(t, x) , H(t, x) are the normal velocity and mean curvature of  $\Gamma$(t) ,

resp., then due to the first equality in (1.10) the �energy equality�

\displaystyle \mathcal{H}^{d-1}( $\Gamma$(t))+\int_{0}^{t}\int_{ $\Gamma$(t)}|H( $\tau$)|^{2}d\mathcal{H}^{d-1}d $\tau$=\mathcal{H}^{d-1}( $\Gamma$(0))
holds for all t\in(0, T) ,

cf. Ecker [8, Chapter 4]. Hence the mean curva‐

ture H and therefore the first variation of  $\delta$ V(t) are a priori bounded in

L^{2}(0, T;L^{2}( $\Gamma$(t);d\mathcal{H}^{d-1})) . This is fundamentally used in order to construct

Brakke�s varifold solutions to the mean curvature flow, cf. e.g. [8] for more

details.

In the case that u:\mathbb{R}^{d}\times(0, T)\rightarrow \mathbb{R} and  $\Gamma$(t)\subset \mathbb{R}^{d}, t\in(0, T) ,
are a

smooth solution of the Stefan problem with Gibbs‐Thomsen law:

\partial_{t}u-\triangle u=0 in $\Omega$^{\pm}(t)\times(0, T) (4.2)
u= $\kappa$ H on  $\Gamma$(t)\times(0, T) (4.3)

n\cdot\nabla u^{+}-n\cdot\nabla u^{-}=V on  $\Gamma$(t)\times(0, T) (4.4)
(u,  $\Gamma$)|_{t=0}=(u_{0}, $\Gamma$_{0}) (4.5)
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the identity

\displaystyle \frac{1}{2}\Vert u(t)\Vert_{2}^{2}+ $\kappa$ \mathcal{H}^{d-1}( $\Gamma$(t))+\int_{0}^{t}\int_{\mathbb{R}^{d}}|\nabla u|^{2}dxd $\tau$=\frac{1}{2}\Vert u(t)\Vert_{2}^{2}+ $\kappa$ \mathcal{H}^{d-1}( $\Gamma$(0))
holds. This estimate is similar to (1.9), but the crutial difference is that (4.3)
implies an a priori bound of H as well, which was used by Röger [19] in order

to show the rectifiability of the varifold in the construction of weak solution

of the Stefan problem. See also Luckhaus [13].
In the case for the two‐phase flow discussed in this paper, (1.9) does

not imply an a priori bound of the mean curvature since in the equation
(1.3) an estimate of the pressure p is missing. Moreover, as pointed out

by Beale [5, p.312] the free boundary value problem for the Navier‐Stokes

equation with surface tension seems to be more of mixed hyperbolic‐parabolic
character. The interface is merely transported with the flow of fluids and the

presence of surface tension only assures the boundedness of the total area

of the interface. In particular, there is no dissipation term related to the

interface in the energy inequality. — Note that in the absence of friction in

the bulk, i.e.,  $\nu$\equiv 0
,

the energy of the system, consisting of kinetic energy

and potential energy related to the interface  $\kappa$ \mathcal{H}^{d-1}( $\Gamma$(t)) ,
is conserved for

smooth solutions. — Therefore the author believes that it is more instructive

to look at the evolution of the interface in the two‐phase flow as a damped
wave equation rather than a parabolic surface evolution equation. Hence new

techniques are needed to get information on the possible oscillatory behaviour

of the interface.
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