The Stokes Resolvent Problem
in General Unbounded Domains
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Abstract

It is well-known that the Helmholtz decomposition of L%-spaces fails to
exist for certain unbounded smooth domains unless ¢ = 2. Hence also
the Stokes operator is not well-defined for these domains when ¢ # 2. In
this paper, we generalize a new approach to the Stokes problem in general
unbounded smooth domains from the three-dimensional case, see [5], to
the n-dimensional one, n > 2, replacing the space L?,1 < ¢ < oo, by
L7 where LY = LYNL2 for ¢ > 2and LY = L9+ L2 for 1 < ¢ < 2. In
particular, we show that the Stokes operator is well-defined in LY for every
unbounded domain of uniform Cl!-type in R? n > 2, and generates an
analytic semigroup.

2000 Mathematics Subject Classification: Primary 76D05, Secondary 35Q30

Keywords: General unbounded domains; domains of uniform C1'-type; Stokes oper-
ator, Stokes resolvent; Stokes semigroup

1 Introduction

Throughout this paper, Q2 C R™ n > 2, means a general unbounded domain with
uniform CY'-boundary 0Q # 0, see Definition 1.1 below. As is well-known, the
standard approach to the Stokes equations in L?-spaces, 1 < ¢ < 0o, cannot be
extended to general unbounded domains unless ¢ = 2. One reason is the fact that
the Helmholtz decomposition fails to exist for certain unbounded smooth domains
on L4, q # 2, see [3], [10]. On the other hand, in L? the Helmholtz projection
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and the Stokes operator are well-defined for every domain, the Stokes operator is
self-adjoint and generates a bounded analytic semigroup. This observation was
used in [5] to consider in the three-dimensional case the Helmholtz decomposition
in the space

aey ] PEONLAQ), 2<g<oo
)= LYQ)+ L*(Q), 1<qg<?2

and to define and to analyze the Stokes operator in the space

i LU NIA(Q), 2<q< oo
Li(Q) = )
LL(Q)+ LE(Q), 1<qg<?2
It was proved that for every unbounded domain © C R3 of uniform C?-type
the Stokes operator in L? satisfies the usual resolvent estimate, that it generates
an analytic semigroup and has maximal regularity. Moreover, the Helmholtz
decomposition of LI(£2) exists for every unbounded domain 2 C R", n > 2, of
uniform C11-type, see [6].
To describe this result, we introduce the space of gradients
~ G NG*Q), 2<qg< o0
Gy = [ @G, 254
G +G*Q), 1<qg<?2

where G4(Q2) = {Vp € LY(Q) : p € LL ()} and recall the notion of domains of
uniform C*— and C*!-type.

Definition 1.1 A domain Q@ C R™ n > 2, is called a uniform C*-domain of
type (o, B, K), k € Nya > 0,0 >0, K >0, if for each o € 02 we can choose
a Cartesian coordinate system with origin at xo and coordinates y = (V' yn),
v =1, Yn1), and a C*-function h(y'), |y'| < a, with C*-norm ||h|cx < K
such that the neighborhood

Uagn(@o) = {y = (¥, yn) €ER™ ¢ |yn — h(y)| < B, y/] < a}
of xg implies Uy g.n(x0) NOQ = {(v', h(¥)) : V]| < a} and
Uppn(@o) =1{(y" yn) + h(y) =B <yn < h(y), Iy < a} = Uagn(zo) N

By analogy, a domain Q@ C R™, n > 2, is called a uniform C*'-domain of type
(o, 8, K), k € NU{0}, if the functions h mentioned above may be chosen in C*1
such that the C**-norm satisfies ||h||cxa < K.

Theorem 1.2 [6] Let Q@ C R™, n > 2, be a uniform Cl—domain of type (o, 3, K)
and let g € (1,00). Then each u € LY(S2) has a unique decomposition

uw=ug+Vp, ug€ ig(Q), Vp € éq(Q),
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satisfying the estimate
[uollza + VDl e < cflullza, (1.1)

where ¢ = c(a, B, K, q) > 0. In particular, the Helmholtz projection Pq defined by
Pqu = ug 15 a bounded linear projection on I:q(Q) with range ff},(Q) and kernel
G4(Q). Moreover, Li(Q) is the closure in LI(Q) of the space C5o () = {u €
Ce(Q)n : divu =0}, (LL(Q)) = LL(Q) and (P) =Py, ¢ = =5

q—1°

Using the Helmholtz projection ]5q we define the Stokes operator flq as an
operator with domain

- DIQ)N D), 2<g<oo
D(A%) =
DI(Q)+ D*(Q), 1<qg<2
where D9(Q) = W21(Q) N W, (Q) N LL(Q), by setting
At = —P,Au, u € D(A).

Let I be the identity and S, = {0 # A € C; |argA| < § + ¢}, 0 <e < §. Then
our main result reads as follows:

Theorem 1.3 Let Q C R"™ be a uniform CH'-domain of type (o, 3, K) and let
1<g<oo,d>0. Then

Aq = _qu : D(Aq) C EZ(Q) - Eg(Q)

is a densely defined closed operator. For any 0 < e < % and for all A € S, its
resolvent (\I + Ay)™' : LL(Q) — LL(Q) is well-defined and u = (A + A,)7'f,
f € Li(Q), satisfies the resolvent estimate

Nullzs + 1IVPullzs < ClIfllza 1Al >4, (1.2)
where C' = C(q,e,0,a, 3, K) > 0.

Corollary 1.4 Under the assumptions of Theorem 1.3 the Stokes operator flq
satisfies the duality relation

(Agu,v) = (u, Agv) forall u€ D(A,), veD(Ay). (1.3)
and generates an analytic semigroup e~ with bound
le™ % fllzy < Me™ || fllzy, fe Ll t>0, (1.4)

where M = M(q,6,«, 3, K) > 0.



Moreover, let f € L9(Q). Then the Stokes resolvent equation
Me—Au+Vp=f, divu=0inQ, u =0 on 09

has a unique solution (u,Vp) € D(A,) x GU(RQ) defined by u = (A + A,)"'P,f
and Vp = (I — P,)(f + Au) satisfying
Xl zo + 11Vl 20 + VPl 20 < CllS 2o (1.5)

with a constant C = C(q,¢,0,a, 3, K) > 0.

Note that the bound ¢ > 0 in Theorem 1.3 and Corollary 1.4 may be chosen
arbitrarily small, but that it is not clear whether 6 = 0 is allowed for a general
unbounded domain and whether the semigroup e *4¢ is uniformly bounded in Eg
for 0 <t < o0.

2 Preliminaries

Let us recall some properties of sum and intersection spaces known from inter-
polation theory, cf. [2], [13].

Consider two (complex) Banach spaces X, Xo with norms || - || x,, || - [|x2s
respectively, and assume that both X; and X, are subspaces of a topological
vector space V with continuous embeddings. Further, we assume that X; N X,
is a dense subspace of both X; and X,. Then the sum space

X1+ Xo i ={us+ug; ug € Xy, us € Xo} CV
is a well-defined Banach space with the norm
[ullx,4x, = inf{{lusllx, + uallxo; v =1 +uz, w1 € X3, up € X}
The intersection space X; N X5 is a Banach space with norm
[ullx,nx, = max([lullx,, lullx,)-

Suppose that X; and X, are reflexive Banach spaces. Then an argument using
weakly convergent subsequences yields the following property: Given u € X7+ Xs
there exist u; € Xy, uy € Xy with u = u; + uy such that

lullxix: = lluallx, + [[uzllxe-
The dual space (X; + X3)" of X 4+ X5 is given by X| N XY, and we get

(X1 +X0) =X NnX,



with the natural pairing (u, f) = (us, f) + (ug, f) for all u = u; +us € X7 + Xo,
f € X{n X, Thus it holds

[(us, f) + (ua, )]

[ lxpmxy

Jull s+, = sup { 04 fexinx}

and

[(u1, f) + (ua, f)]

[l xx

[ fllxgrxg = sup { O F U=t € X+ X

see [2], [13]. By analogy,
(X1iNXy)' =X + X,

with the natural pairing (u, fi + f2) = (u, f1) + (u, fo) for v € X; N X,y and
f=hHh+fe X+ X5

Consider closed subspaces L1 C X3, Ly C X with norms || - ||z, = || - [|xys
Il - llzs = Il - llx, and assume that L; N L is dense in both L; and L,. Then
llullynes = llullx,nx,, w € Ly N Lo, and an elementary argument using the Hahn-

Banach theorem shows that also

”u”Ll'FLQ = ||UHX1+X27 u € Ll + L2- (21)

In particular, we need the following special case. Let By : D(B;) — Xi,
By : D(Bs) — X be closed linear operators with dense domains D(B;) C X,
D(Bs) C X5 equipped with graph norms

|ullpsy = lullx, + | Biullx,,  Nullpms) = llullx, + || Baul x,-

We assume that D(B;) N D(By) is dense in both D(B;) and D(Bs) in the cor-
responding graph norms. Each functional F' € D(B;)’,i = 1,2, is given by
some pair f,g € X! in the form (u, F') = (u, f) + (Byu,g). Using (2.1) with
L; = {(u,Biu); u € D(B;)} C X; x X;, 7 = 1,2, and the equality of norms
” ’ ||(X1><X1)+(X2><X2) and “ ’ H(X1+X2)><(X1+X2) on (Xl X Xl) + (X2 X X2)7 Wwe CO1l-
clude that for each u € D(B;) + D(B;) with decomposition u = u; + ug, u; €
D(By), us € D(By),

|ull DBy +pBy) = U + Uzl x,4x, + || Biur + Bous||x, 4 x, - (2.2)

Concerning Definition 1.1 for domains of uniform C*!-type we introduce fur-
ther notations and discuss some properties. Obviously, the axese;, i = 1,...,n, of
the new coordinate system (v', y,) may be chosen in such a way that ey, ..., e, 1
are tangential to 02 at xy. Hence at ¥/ = 0 we have h(y') = 0 and V'h(y) =
(Oh/Dy1,...,0h/0y,_1)(y') = 0. Since h € CV!, for any given constant My > 0,
we may choose a > 0 sufficiently small such that ||h|c1 < M, is satisfied.



It is easily shown that there exists a covering of Q by open balls B; = B,(z;)
of fixed radius r > 0 with centers z; € €, such that with suitable functions
h; € CHt of type (a, 8, K)

Fj C Uaﬁyhj(ilfj) if T € 09, Fj cQ if T; € Q. (23)

Here j runs from 1 to a finite number N = N(Q2) € N if © is bounded, and
7 € N if Q is unbounded. Moreover, as an important consequence, the covering
{B;} of Q may be constructed in such a way that not more than a fixed number
No = No(a, 3, K) € N of these balls have a nonempty intersection. Related to
this covering, there exists a partition of unity {¢;}, ¢; € C§°(R™), such that

N o)
0<¢; <1, suppy; C B;, and Zgojzl or Zgojzl on Q. (2.4)

=1 j=1

The functions ¢; may be chosen so that |Vy;(z)| 4+ |V2p;(z)| < C uniformly in
jand x € Q with C = C(«, 3, K).

If ©2 is unbounded, then €2 can be represented as the union of an increasing
sequence of bounded uniform C'!'-domains Q, C 2, k € N,

DN C...CUC Q1 C..., Q:UQk, (2.5)
k=1

where each € is of the same type (o/, ', K’). Without loss of generality we
assume that o =o', =0, K = K.

Using the partition of unity {¢;} we will perform the analysis of the Stokes
operator by starting from well-known results for certain bounded and unbounded
domains. For this reason, given h € CH1(R"™!) satisfying h(0) = 0, V/R(0) = 0
and with compact support contained in the (n — 1)-dimensional ball of radius
r, 0 <r=r(a,0,K) < «a, and center 0, we introduce the bounded domain

H=H,pp, ={y€R": h(y) =B <yn <h(y), |¥] <a}nB.(0);

here we assume that B,.(0) C {y € R": |y, — h(y")| < B, V| < a}.
On H we consider the classical Sobolev spaces W*4(H) and We?(H), k € N,
the dual space W1(H) = (Wol’ql(H))l and the space

Li(H) = {u e LI(H) /Hudx — 0)

of Li-functions with vanishing mean on H.

Lemma 2.1 Let 1 < g < oo and H = H,g .-



(i) There exists a bounded linear operator
R:LY(H) — Wyl (H)"

such that div o R =T on L{(H) and R(Li(H)NWy*(H)) C Wg*(H). Moreover,
there exists a constant C = C(«, 3, K, q) > 0 such that

[Bflwre < Clfllpag — for all f € Ly(H)

2.6
[Bflwes < Cllflweaen for ol ferdmynwyem. 9
(ii) There exists C = C(a, 3, K, q) > 0 such that for every p € L(H)
p, divv /
[plly < ClIVpllw-10 = Csup {W 0AvewTE) @)
q

(iii) For given f € LI(H) let uw € LL(H) "W, (H)NW>9(H), p € WYI(H)
satisfy the Stokes resolvent equation Au — Au + Vp = f with A € S.. More-

over, assume that suppu U suppp C B,(0). Then there are constants \g =
Xol(g, 0, 8,K) >0, C=0C(q,, 3, K) > 0 such that

[Aullzacery + ullwzacey + 1VPllzay < Ol fllzac) (2.8)
if Al > Ao

Proof: (i) It is well known that there exists a bounded linear operator R :
Li(H) — Wy %(H)" such that u = Rf solves the divergence problem divu = f.
Moreover, the estimate (2.6); holds with C' = C(a, 3, K,q) > 0, see [8], III,
Theorem 3.1. The second part follows from [8], III, Theorem 3.2.

(ii) A duality argument and (i) yield (ii), see [6], [11], II.2.1.

(iii) We extend u,p by zero so that (u, Vp) may be considered as a solution
of the Stokes resolvent system in a bent half space; then we refer to [4], Theorem
3.1, (i). n

Now let © C R" be a bounded C*'-domain. Obviously, such a domain is of
type (o, 3, K). We collect several results on Sobolev embedding estimates and
on the Stokes operator A,, 1 < ¢ < oo.

Lemma 2.2 (i) Let 1 < ¢ < o0, 0 < M < 1. Then there exists some C' =
C(q,M,a, 3, K) > 0 such that

|Vulze < M|V re + C|lu|| e (2.9)

for all uw € W24(Q).
(i) If 2 < g < oo, 0 < M < 1, then there exists a constant C' =
C(q,M,a, 3, K) > 0 such that

lull e < M{IV2ullze + C(IV*ul 2 + Jull2) (2.10)
for all u € W4(Q).



Proof: The proofs of (i), (ii) are easily reduced to the case u € W9(Q'), Q C €,
Y a bounded C''-domain, using an extension operator on Sobolev spaces the
norm of which is shown to depend only on ¢ and («, 3, K). In (ii) we choose
an r € [2,q) such that ||ul|ze < M| V?u|rr + C||ur- and use the interpolation
inequality

1IN\ B
Joller < v(2)ollr + (1= 7)o, (211)
with v € (0,1), + =1 + 1_77, for v = v and v = V?u for suitable ¢ > 0 to get
(2.10). For basic details see [1], IV, Theorem 4.28, [7] and [11], I1.1.3. n

Lemma 2.3 Let 1 < g < 0o and let 2 C R™ be a bounded C**-domain.
(i) The Stokes operator A, = —P,A : D(A,) — LL(RY), where D(A4,) =
LL(Q) N Wy (Q) N W29(Q), satisfies the resolvent estimate

[Aullze + [[Agulle < CllfllLe, €= Cle,¢,€) >0, (2.12)

where u € D(Ay), A\u+ Agu = f € LI(Q) and A € S., 0 < e < F. In particular,
it holds the estimate

[ullw=e < CllAqullLs, €' =Clg, Q).
Moreover,
(Aqu,v) = (u, Ayv) forall we D(A,), veDAy)

and A, = Ay.
(ii) If ¢ = 2, then the resolvent problem \u + Asu = f € L2(Q), A € S., has
a unique solution u € D(Ay) satisfying the estimate

[Aullg2 + [[Agull 2 < C| f]| 2 (2.13)

with the constant C' = 1+ 2/ cose independent of 2. Moreover, Ay is selfadjoint

and )
(Aqu,u) = [[AJull3e = [|[Vullz, u € D(Ay). (2.14)

Proof: For (i) see [4], [9], [12]. For (ii) — including even general unbounded
domains — we refer to [11]. n

Note that in the resolvent estimate (2.12) it is not yet clear how the constant
C will depend on the the underlying bounded domain (2.



3 Proofs

3.1 A preliminary result for bounded (2

Lemma 3.1 Let Q C R" be a bounded CY'-domain of type (v, 3, K). Then the
graph norm ||u|lpa,)y = llullze + [|[Aqul|ze is equivalent to the norm |[ullw2s on
D(A,) with constants only depending on q,«, 3, K. More precisely,

Cullullwas < lulloay < Collullwass  w € D(Ay), (3.)
with Cl = Cl(qv&aﬁa K) > O; CQ = CQ(quévﬁaK) > 0.

Proof: We use the system of functions {h;}, 1 < j < N, the covering of €2 by
balls {B;}, and the partition of unity {¢;} as described in Section 2. Let

sz ;Igﬁj(xj)ﬂBj if xjeﬁﬁ ande:Bj if ijQ, 1§j§N

Given f € LZ(Q2) and u € D(A,) satisfying A,u = f, ie. —Au+ Vp =
fodivae = 0in ©Q, let w; = R((Vy;) -u) € W4(U;) be the solution of the
divergence equation divw; = div (p;u) = (Vp;) -u in U;, 1 < j < N. Moreover,
let M; = M;(p) be the constant such that p — M; € L{(U;). By Lemma 2.1
and the equation Vp = f + Au we conclude that [|w;|lwiaw,) < CllullLaw,),
|w;llw2aw,) < Cllullwiaw,) as well as

lp = MjllLow;) < CUS Loy + VUl o))
with C' = C(q,a, 3, K) > 0 independent of j. Finally, let A\g > 0 denote the
constant in Lemma 2.1 (iii). Then ¢,;u — w; satisfies the local resolvent equation

Ao(pju = w;) — Alpju — wy) + V (p;(p — Mj))

=@if + Aw; —2Vp; - Vu — (Apj)u+ (V;)(p — Mj) + do(pju — wy).
in U;. By (2.8) with A = A\ and the previous a priori estimates we get the local
inequalities

les V2l + 16570 = M)lltary < CUL Iy + lallyna, ) (3:2)

1 < j < N. Taking the sum over 7 = 1,..., N and exploiting the crucial property
of the number Ny we are led to the estimate

IV ulloy + 190y = [ (il v2al)" + (X 51901)") da
J J
< [N (Sl + X lval) e (33
J J

< ONY (I My + S Ny, )
j J
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Next we use (2.9) for the term ||uly1.4(y,). Choosing M > 0 sufficiently small in
(2.9), exploiting the absorption principle and again the property of the number
No, (3.3) may be simplified to the estimate

IV2ull agay < C ([ fllag) + 1l Lagey) (3.4)
where C' = C(q, o, 8, K) > 0. Since f = Aju and since the norm of the Helmholtz

projection P, in L%(Q2) is bounded by C' = C(q,a, 3, K) > 0, the proof of the
lemma is complete. [ ]

3.2 The Stokes resolvent in a bounded domain 2 when ¢ > 2

We consider for A € S. the resolvent equation
M+Au= u—-Au+Vp=f in Q

with f € LI(€2), where 1 < ¢ < o0, A € 5., 0 < e < §. Our aim is to prove for
its solution u € D(A,) and Vp = (I — P,)Au, the estimate

[ Xul panrz + [Vl zanzz + | VDl Lanrz < C|If || ranre (3.5)

with |A] > 6 > 0, where 6 > 0 is given, and C = C(q,¢,6,,0,K) > 0.
Note that this estimate is well-known for bounded domains with a constant
C = C(q,£,6,Q) > 0. As in Subsection 3.1 let w; = R((Vy;) -u) € We(U;)
and choose a constant M; = M;(p) such that p — M; € L{(U;). Then we obtain
the local equation

Mpju —w;) — Alpju — wy) + V(;(p — M;)) (3.6)
= ¢if + Aw; — 2V, - Vu — (Apj)u — Aw; + (V;)(p — M;)
Concerning the term Aw;, we choose in an intermediate step r € [2, ¢), use the

interpolation estimate (2.11) for v = w and get by Lemma 2.2 (i) for M € (0,1)
that

[wjllLawy) < Cullwjllwrrw;) < Ml[ullLaw,) + Callullz2w,);
here C; = Ci(M, q,r, o, 3, K) > 0. Moreover, ||V*w;| Lsw, < C|Vu|Law,). For
p — M; we use (2.7) and the equation Vp = —Au + Au + f to see that
[(Au, v)|
IVolly

C=C(q,a,p,K)>0. Again we choose r € [2,¢q), use (2.11) for v = Au and get

Ip=Ml1 5w < C (Il aaqoy+ IVl o +sup { 0 £veWs"(U)}),
lp = Mjll oy < CCINlawy + I Vull o, + 1Ml 2 r,)) + Ml o).

Furthermore, we apply to the local resolvent equation (3.6) the estimate (2.8) with
A replaced by A+ Aj where A, > 0 is sufficiently large such that |+ A\j| > Ag for
|A| > 9, Ao as in (2.8).

10



Now we combine these estimates and are led to the local inequality

IXeullLaqy) + llesull e,y + 0 Viull Law,) + 1105Vl Lo,y (3.7)
< C(If sy + lellpawy) + 1Vl oy + [Aullfa ) + Ml Fo,y

with C = C(M,q,0,¢,c, 3, K) > 0. Taking the sum over j = 1,..., N in the
same way as in (3.2)—(3.4) and using the crucial property of the integer Ny we
get the inequality

I\ull Loy + [[ull Loy + IV2ull Loy + VDl Lo (3.8)
< C(I1Fllzag) + lullza) + Vullza@) + [l z20)) + M Aullf4 0

with C' = C(M,q,d,e,a,3,K) > 0, |A| > d. Applying (2.9) and choosing M
sufficiently small we remove the terms ||Vul||req) and ||Au||raq) in (3.8) by the
absorption principle. The term |u||z¢) is removed with the help of (2.10).

Now we combine this improved inequality (3.8) with the estimate (2.13) for
|A| > ¢ and we apply (3.1) with ¢ = 2. This proves the desired estimate (3.5) for
2 < g < o0.

3.3 The case () bounded, 1 < ¢ < 2

In this case we consider for f € L2 + LI = L% and A € S., |[A\| > 4, the
equation Au — Au+ Vp = f with unique solution u € D(A4,) + D(As) = D(A4,),
Vp = (I — P,)Au. Note that A, = A,, P, = P, and that 55 (82) is dense in
LY(Q)NL*(Q) = LY(Q). Using f = \u— P,Au, the density of D(A,)ND(Ay) =
D(A,) in LY N L2 and (3.5) (with ¢ replaced by ¢’ > 2) we obtain that

[(Au + Aqu, V)|
Iz ne = sup{ ol 074 veD(Ay)ND(A)}
LInL2
v+ Ay
= sup { [, Av + qv)|; 0#£veD(Ay) DD(AQ)}
ol
[{u, 9)] A
= sup = ;0£ge LINL; (3.9)
{ ||()\I - PQ'A)_lg“Lg'ng }

> |ACT! sup {M, 0#£gelLin L?,}
”g”Lg/ng

By Theorem 1.2 the last term sup{...} in (3.9) defines a norm on L% + L? which
is equivalent to the norm | - [| a4 72; the constants in this norm equivalence are

related to the norm of ]5q/ and depend only on ¢ and (a, 3, K'). Hence we proved
the estimate |[Aul[ a4 2 < C||fllr2422 and even

Mellzgscs + lullcaroz + NAgullgrs < Clfligrzz, A€ S N 26 (3.10)

11



From the equivalence of norms || - ||pca,) and || - [|w=2q, cf. (3.1), and from (2.2)
with By = A, By = A,, we conclude that also the norms |lul|y2qiw22 and
llullpgirz + [[Aqullpa1r2 are equivalent with constants depending only on ¢ and
(ar, B, K). Then (3.10) and the identity Vp = f — A+ Au lead to the estimate

Aullzgsrz + llullwaapwe +[Vpllosre < Ol fllzgsrs

with C = C(q,0,¢,a, 3, K) > 0. Hence we proved the inequality

Aullza + lulliiza + [ VDllze < Cllfllzg, v e D(A), (3.11)

with C' = C(q,0,¢,,3,K) > 0 when |A\| > § > 0. Now the proof of Theorem
1.3 is complete for bounded domains.

3.4 The case 2 unbounded

Consider the sequence of bounded subdomains 2; C €, j € N, of uniform ol
type as in (2.5), let f € LI(Q) and f; = qu|Q_. Then consider the solution

(u;, Vp;) of the Stokes resolvent equation
M — P Au; = Muj — Auy +Vp; = 5, Vp; = (I — P,)Au; in Q.
From (3.11) we obtain the uniform estimate
a7y 0y + lellinacayy + 1900y < Ol (312)
with |A] > 6 > 0, C = C(¢,d,¢,,3,K) > 0. Extending u; and Vp; by 0 to
vector fields on 2 we find, suppressing subsequences, weak limits

u= w—jli_)nolo u; in LL(Q), Vp= w—jli_)nolo Vp; in LYQ)
satisfying u € D([lq), A — Au+ Vp = Au — quu = fin ©Q and the a priori
estimate (1.2). Note that each Vp,; when extended by 0 need not be a gradient
field on €2; however, by de Rham’s argument, the weak limit of the sequence
{Vp,} is a gradient field on 2. Hence we solved the Stokes resolvent problem
M+ A= u— Au+Vp=f inQ and proved (1.2).

Finally, to prove uniqueness of u we assume that there is some v € D(flq) and
A € S, satisfying v — quU = 0. Given f’' € I~ﬂ/(§2) let u € D(flq/) be a solution
of A\u — Pq/Au = ]5q/f’. Then

0=\ — ]Squ,u) = (v,(A = PyA)u) = (v, Py f') = (v, )

for all ' € LY(Q); hence, v = 0.
Now Theorem 1.3 is completely proved. [ ]

Proof of Corollary 1.4: The assertions of this Corollary are proved by standard
duality arguments and semigroup theory. ]
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