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Abstract

We present the description of the essential spectrum of a linear Stokes—type operator
arising from the mathematical model of fluid flow around rotating bodies. The operator
is considered in the space L2(Q) where 1 < ¢ < 0o and Q C R3 is an exterior domain.
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1 Introduction

The problem of motion of a rigid body in a liquid has attracted the attention of scientists
for more than a century. The first systematic study of this subject was initiated by the
pioneering works by Kirchhoff [21] and Kelvin [28], regarding the motion of one or more
bodies in an inviscid liquid. After that many mathematicians have furnished significant
contributions to this field under different assumptions on the body and on the fluid. We
would like to quote the work of Brenner [3] concerning the steady motion of one or more
bodies in a linear viscous liquid in the Stokes approximation as well as Weinberger [29],
[30], Serre [27] regarding the fall of a body in an incompressible Navier—Stokes fluid under
the influence of gravity and Borchers [1] for the existence of a weak solution. Among more
recent articles we refer to Hishida [17], [18], Farwig, Hishida and Miiller [7], Farwig [5], [6],
Farwig, Neustupa [9], Farwig, Krbec, Necasova [8], Galdi [11], [12], Galdi, Silvestre [13], [14],
Geissert, Heck, Hieber [15], Dintelmann, Geissert, Hieber [4], Hishida, Shibata [19], Gunther,
Hudspeth, Thomann [16], Martin, Starovoitov, Tucsnak [24], Kra¢mar, Necasovd, Penel [22],
[23] and references in these papers.

In this paper we consider a three—dimensional rigid body rotating with the constant
angular velocity w = (0,0, 1) and we assume that its complement in R3 (denoted by Q(t) at
time t) is filled with a viscous incompressible fluid. The velocity v = v(y, t) of the moving
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fluid and the pressure ¢ = ¢(y,t) solve the nonlinear problem

8tv—l/Av+v-Vv+Vq:}’ for y € Q(t),
dive = 0 for y € Q(t), (1.1)
v(y,t) = wxy for y € 0Q(t),
v(y,t) — 0 as |y| — oo

where ¢ > 0. The coefficient of viscosity is denoted by v and }' = }(y, t) is an external body
force. The time—dependent exterior domain Q(t) is defined, due to the rotation of the body
with the angular velocity w, by the formula

where Q C R3 is the exterior of the body at time t = 0 and O(t) denotes the orthogonal
matrix

cost, —sint, 0
O(t) = | sint, cost, 0]. (1.2)
0, 0, 1
After the change of variables
=0ty

and passing to the new functions

u(z,t) =0t) v(y,t), plx.t)=q(y,t)

as well as to the new force term f(x,t) = O()T f(y,t), we arrive at the modified Navier—
Stokes problem

ou —vAu+u-Vu— (wxx) - Vut+wxu+Vp = f for x € Q,
divu =0 for ¢ € Q,
(1.3)
u(x,t) =wxx for x € 09,
u(x,t) — 0 as || — oo

where ¢ > 0. The first equation in (1.3) contains two new linear terms, the classical Coriolis
force term w X u (up to a multiplicative constant) and the term (w x x) - Vu which is not
subordinate to the Laplace operator in the unbounded domain 2. The associated linearized
steady problem represents the modified Stokes system

—vAu— (wxz) - Vu+wxu+Vp = f in Q,
0

divu = in Q,
(1.4)
u(x) =0 for & € 09,
u— 0 as x| — oc.

The problem (1.4) was analyzed for Q = R? in L%-spaces, 1 < ¢ < oo, in [7], proving the
estimate

[vV2aully + [[(w x ) - Vu —w xaullg+ [Vollg < e || £l (1.5)



where || . ||, denotes the norm in L9(2)3 or in L(Q)? and ¢; is a positive constant independent
of f, wand p. Similar results were obtained in [5] and [6] in the case when the last condition in
(1.4) was replaced by u — s (for |x| — 00) where uq is a non—zero constant translational
velocity, parallel to w. For related L?-results on weak solutions to (1.3) we refer to [17], for
the investigation of several auxiliary linear problems to [25], [26], and for weak solutions to
the Oseen system corresponding to (1.4) with anisotropic weights see [22] (¢ = 2) or [23]
(1<g<+00).

In this paper, assuming 1 < ¢ < oo, we describe the essential spectrum oess(Lg) of the
Stokes-type operator Ly, defined by the equation

Lyu = vl Au+ 11, [(w x x) - Vu] — I, w x u. (1.6)

The symbol II, denotes the Helmholtz projection of L(£2) onto the subspace of v € L(Q)3
such that dive = 0 in the sense of distributions and v -n = 0 on 02 in the sense of traces.
This subspace is usually denoted by LZ(£2). Thus L, is a linear operator in L&(Q) with
domain

D(Ly) = {v e W2UQ)> N W, 4Q)° N LLQ); (w x @) - Vv € LI(Q)*}.

We shall further treat D(L,) as a Banach space with the norm

[olp,) = Ill2g + [[(w x 2) - Vo,
where ||. ||2,; denotes the norm in W29(Q2)3. The essential spectrum is already known from
[9] for ¢ = 2:
Oess(L2) = {A=a+ik e C; a <0, k€ Z}. (1.7)

We are going to show that the same identity holds in the case of a general ¢ € (1, 00).

2 The case ) = R?

If @ = R3 and u € D(L,), then both terms vAu and [(w x x) - Vu] — w x u belong to
LE(R?). Therefore, the projection I, in (1.6) can be omitted and the operator L, can be
simplified to

Loy = vAu+ [(w x ) - Vu] —w x u.
The next theorem provides information on solutions of the resolvent equation
Lyu—Xu = f (2.1)
for f € LL(R3).

Theorem 2.1 Suppose that 1 < q < oo, f € LE(R?) and A = a+if (a, B € R) where either
a >0 or B #k forall k € Z. Then the equation (2.1) has a unique solution w € D(Ly).
There exists a real constant co depending only on A and q such that w satisfies the estimate

[ully < el £llq- (2.2)

Consequently, A belongs to the resolvent set of the operator L.



Proof. Equation (2.1) can be written in the form
vAu+ (wxx)-Vu—w xu—Iu = f. (2.3)

Of course, u is also required to satisfy the condition dive = 0. Due to the geometry of
the problem it is reasonable to use cylindrical coordinates (r,#,x3) in R®. Then the term
(w X @) - Vu, which equals —z9 01u + x1 O2u, can be expressed as

(wx x)-Vu = Jpu.

At first suppose that f belongs to Schwartz’ space S(R?)? of so-called rapidly decreasing
functions. We shall denote by F the Fourier transform, by F_; its inverse, by ~— Fourier
images of functions, by & = (£1,&2,&3) their Cartesian variables, and we put s = |€|. Then
we look for a solution u of (2.1) in the form

_ 1 ot~
u(z) = Falal(e) = | st ae (2.4)
Substituting (2.4) to (2.3), we obtain
A+ vs)) — Oyt +w x U = —f. (2.5)

Here 0,u denotes the angular derivative

o, v

28—£1+§1 9,

when using cylindrical coordinates (p, ¢,&3) in the space of Fourier variables. The equation
divu = 0 leads to the condition i - u = 0. Now u can be considered to be a solution of
the first order ordinary differential equation (2.5) with respect to the angular variable ¢.
Writing @ in the form

0pti = (wx &) Vi = —&

a(pv o, £3) = O(¢) 6(pv o, 53)a

one verifies that dpu = O(¢) 04V + w x [O(¢)v] and that (2.5) is equivalent to the equation
—9505 4+ (A +vs?)D = —0(¢)" .

Its solution ¥ satisfies

¢+27 N
B(p, ¢+ 2m,63) = TOHNG(p 6, 63) + / MO0 O\ F(p, t, £3) dt
¢

2m
_ 6271'()\4-1/32) 6(,0, &, 53) + / e()\+1/$2)(271’—t) O(t + ¢)Tf(p, t+ ¢, 53) dt.
0

Since v is a 2n—periodic function in the variable ¢, we have

- 1 o vs ™ 7

'U(,O, ¢7 53) = W /0 e(A—i_ 2)(2 t) O(t + ¢)Tf(:0a t+ ¢a £3) dta

N 27 e()\+u32)(27r—t) .

u(p,¢,83) = /0 PR s O@)" fp,t+,&3) dt. (2.6)
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Note that s? = [€|? = p? + £3. Returning to the Cartesian variables & = (&1, &, &3) in (2.6),
we obtain

27 N 2w
u(§) :/0 T(XE1) O F(O)E) dt :/0 V(A€ 1) OWTFIF(O() )](€) At (2.7)

where oM vs?) (2m—t)

TN 1) = T o)

As is easily seen, the function ¥ satisfies the estimate

e—27ra
. o—vs?t —dist(e%iﬁ' ) if <0, 8¢7,
[T\, &, )] = e | — ; _| < P
e—2m(atvs?) _ o27if 1
i—:TEZE;E if « >'0;

here R, denotes the positive part of the real axis. Thus, for fixed A = o + i3 satisfying the
assumptions of the theorem, |¥(), -,t)| is bounded in R? with an upper bound independent
of t and &. Further, if i € {1; 2; 3}, then

O ot (271‘ _ t) [e()\+1/52)(47r—t) _ e()\+1/82)(27r—t)] — o e()\+1/52)(47r—t)

_ = v&;

0&; [1— e2r(Atvs?)] 2

(271' — t) e_()‘+V82)(27T+t) 4t e—()\+l/52)t

= g [e-2m(tvs?) — 1)

)

and |§;] |0W/8¢;| can be estimated as follows:

|£| o ) (271' _ t) e—(a+1/52)(27r+t) + te—(a+1/82)t
7 8& ~ Vs |e_2ﬂ_()\+l,82) B 1‘2
< 5 ot (271‘ _ t) 82 e—27r1/s2 e—27ra 4 SQt e—I/SQt
< ve |e—27riﬁ|2 |e—27l'(a+1152) o eQwiﬁ‘Z
_ 2T 32T fo¢y
U e 2T . if <0, Z,
ve [dist(e2m18; R, )]2 if <0, 5¢
o 2w ey + ¢y .
2V'Fft?g:§;5q§ if a > 0.

The upper bound of |&;] |8‘I’ / 8&‘ does not depend on t and on €. We can similarly estimate
all other terms of the form

ot +r2+K3 U

K1 K2 K3

where k1, k2, k3 are equal to zero or one.
Let us now define the function u by

2w

(@) = [ 0T F[U(0&,8) FIFOW®) ))E)] (@) dt. (2:8)

0



Applying Lizorkin’s multiplier theorem (see e.g. [10], p. 375) and using the estimates of ¥
and its derivatives discussed above, we derive the inequality

Hf—l[\I/()\,€7t) FIF(O(t) - )](5)} Hq < es|flle (2.9)

where c5 = c5(), ¢). Then (2.8) and (2.9) imply that u € LE(R3) and that it satisfies (2.2).
Moreover, by construction, u is a solution of (2.3) in the sense of distributions. In order to
show that w is a strong solution, we still need to verify that it belongs to the domain of the
operator L,. Consider the auxiliary problem

vVAv+ (wxx) - Vv —wxv—Vp = f+\u in R3,

2.10
dive = 0 in R3 (2.10)

for the unknown function v. Theorem 1.1 in [7] says that the problem (2.10) has a locally
integrable solution (v, p) which satisfies

|20l + 1850 — w x vllg + [1Vpllg < e (I1F]lq+ Al ullg) (2.11)

where ¢g = c6(q). Moreover, the set of all solutions of (2.10) has the structure (v + w,p)
where

w = aw + bw X T + c(x1,x2, —213); a, b, ccR.

Therefore, u and v differ at most in the additive linear vector field aw+bw x x+c(x1, 22, —23)
which, however, does not affect the validity of (2.11) because VZw = 0 and dyw —w xw = 0.
Hence u satisfies (2.11), too, and this inequality and (2.2) yield

9l + 85 — w x ully + [Vplly < (o + A e2) | £l (2.12)

In particular, u defined by (2.8) lies in D(L,) and is a strong solution of (2.1).

The extension of this result from f € S(R3)? to all f € L4(R?)3 follows from the density
of S(R3)? in L(R3)3. O

Theorem 2.2 Suppose that 1 < q < oo and A = a+ i where a <0 and 8=k € Z. Then
A belongs to the essential spectrum of the operator L.

Proof. Transforming the problem (2.3) to cylindrical coordinates (r,6,z3) and denoting
by u (respectively f) the triplet (u,,ug,us) (respectively (f,, fo, f3)), we obtain that

vAu + Ogpu — du = f, Or(ruy) + Ogug + 03(ruz) = 0. (2.13)

Suppose that A = a + ik where a < 0 and k € Z. Let n € C*°([0, 1]) be equal to zero on
[0, %], increasing on [1, 3] and equal to one on [2,1]. We put

0 for 0<r <n,
n(r—n) for n<r <2n,
n
o (r) = coS [C(r — 2n)] for 2n <r < 2n+ n?T,

3 T —
U<M> for 2n+n?T <r < 3n+n’T,

n

L 0 for 3n+n’T <r,



where ( = /—a/v and T = 27/ is the period of the function cos [C(r - 2n)] (as a function
of the variable r). Moreover, let ¢ € C§°(—00,+00) be equal to 1 on [—1,4] and to 0 on

(—00,—1] U[1,+00). Then we define u™ = (ul’, ug, uj) by

ur(r,0,x3) = p v (r) @(%) okt
n . 1 n ~TIn n dq):}(r) T3 o
ug (r,0,x3) = % O [rul(r,0,23)] = i [Ur (r) + 7 o } W(z) ikt

Ug(T‘, 97 1’3) = 0,

where the constant -, is chosen so that ||[u"||, = 1. Note that the function u” satisfies the
second equation in (2.13), the equation of continuity. If we calculate 7,, then the decisive
term for large n comes from uy(r, 6, x3) for 2n < r < 2n+ n?T, to be more precise, it comes
from —(v,/ik) r (dv?/dr) pe*?. All other terms are of lower order in powers of n. Now the
Li—norm of the mentioned term can be estimated from below as follows:

n
I duy' (r) <§> eikeH
ik dr n q

= %] (/22n+n2T rd ‘% cos[¢(r — 2n)] ‘qrdr /O27T e*)9 g /_—:O‘SD<%> ‘qd$3>1/q

n

2n4+n2T 1/ 1 1/
= 1 (/2 ' ratl ‘sin[{(r — 2n)] ‘qdr) ! (n/_l \go(s)\qu> !

n

n?  on 4T )
— s (Z / s
= Jont(i-n)T

2

q 1/q
sin[¢(r — 2n)]‘ dr) nt/4

n 2n+iT q 1/q
> Cc8Yn (Z [2n + (i — 1)T])7! / sin [C(r - 2n)] ‘ dr> nl/a
i=1 2n+(i—1)T
n’ 1/q
> 9 (Z (i — 1)q+1> nl/a
i=1
> cipynt

The constant c1g is independent of n. It is even easier to derive the upper estimate

From these estimates and from the condition ||u"||; = 1, we obtain the inequalities

ﬁrdvf(r) <ﬁ> eikeH < ey 025/
ik dr n q

C12 C13

where c13 = c12(a, k, q) and c13 = c13(a, k, q) are appropriate positive constants.

Substituting ™ to the left hand side in the first equation of (2.13), we calculate that the

corresponding right hand side is " = g" ¢'*? where g" = (g7, 9y, 9%) depends only on the



variables r, z3. To be more precise,

g (r,zs) = 0 for 0 <r <n, (2.15)
TYnV r—mn x3 Yl (T — N x3
s = T (50) e (5 + 0l (5 ()
n n n n n n
Yavk? r—n x YoV (T =N\ (%3
()4 B () (2
r n n n n n
—’ynow](r_n)go(ﬁ) for n <r < 2n, (2.16)
n n
TnV L3 TnV 3
gr(r,x3) = % cos[((r — 2n)] 30"<E> — % ¢ sm[{(r — 2n)] 90(?)
kv

cos[¢(r — 2n)] gp(%) for 2n < r < 2n +n*T, (2.17)

and

" TV g 3n+n2T—r x3 TV 3n 4+ n?T —r T3
gr(riws) = — 77( )w( ) (—)w(—)

n n n n

_%yk2n<3n+n2T r) < ) % <3n+n2T—r>@,,<ﬁ>
r2 n n

n
ZT_
(3"+" TW(?) for 2n + n2T < r < 3n +n2T, (2.18)

—Tn 1]
gr(r,zg) = 0 for 3n + n*T <. (2.19)

By analogy with the relation between w;' and uy, the function gy equals —0. [r gr(r, xg)] /ik.
Furthermore, g% (r,z3) = 0 for all » > 0 and z3 € (—o00, +00).
Now we need to estimate the norm of £ in LI(R3)3 and to show that

| f™*lg — O for n — oc. (2.20)
Let us begin with the first term on the right hand side of (2.16), multiplied by ¢*?. This

term is defined for n < r < 2n, 0 < 0 < 27 and —co < x3 < +0o. Thus its contribution to
the upper bound of || f"||, is

N
<ol (/nn

< Clgn3/q;
n

nl ” ;n) go(%) eike‘q r dzs dé dr) v

0 () () )

o

1/q

here C' is a generic constant which is independent of n € N. The right hand side tends to zero
as n — oo due to (2.14). We arrive at the same conclusion when dealing with other terms on
the right hand sides of (2.15)—(2.19) and also with all corresponding terms in the expression
of gg. (Naturally, all terms must be multiplied by ¢'*?) Let us consider one more example:
the first term on the right hand of (2.17) defined for 2n < r < 2n +n2T, 0 < § < 27 and



—00 < x3 < 400; its contribution to an upper bound of || f"||, is

( 2n+n2T/27r/+oo
2n 0 —00
~ 2n+n?T +o00
< C —g (/ rdr/
n
2n —00

< C’Py—nn5/q.

1/q

% cos[¢(r — 2n)] go"(%) eike‘q r dasdé dr)

mn
() )

1/q

Due to (2.14), the right hand side again tends to zero as n — +o00. In this way we successively
verify (2.20).

Thus we have constructed a sequence {u"} in the unit sphere in LZ(R3) such that
|(Ly — A)u"||; — 0 as n — oo. The sequence {u"} is not compact in L& (R?) because
the intersection of supports of any infinite family of functions chosen from this sequence is
empty. This proves that the chosen number A = a + ik (o < 0, k € Z) is in the essential
spectrum of the operator L,. Due to the closedness of the essential spectrum, each A of this
form belongs to the essential spectrum of L, even if a < 0. U

Theorems 2.1 and 2.2 imply that
0(Lg) = 0ess(Lg) = A := {A=a+ik; a €R, a <0, k€ Z} (2.21)

where 0(Lg) denotes the full spectrum of L,.

3 The case of an exterior domain ) C R3

Theorem 3.1 Let Q be an exterior domain in R3. Then the essential spectrum of the
operator Ly, 1 < q < 0o, has the same form as in the case {) = R3, i.e., Oess(Lq) = A where
the set A is defined in (2.21).

Proof. At first let us show that A C oess(Lg). Let A € C have the form A = a + ik where
«a < 0 and k € Z. The supports of the functions u", constructed in the proof of Theorem 2.2,
are subsets of {x = (z1,22,23) € R® +/2} + 23 > n} and consequently of Q for n > ng, ng
sufficiently large. It means that the sequence {u"} (starting from n = ng) is a non—compact
sequence in the unit sphere in L(Q) satisfying

|(Lg — ADu"||g — 0 as n — oo. (3.1)

Consequently, A € o¢ss(Lg). The inclusion A C 0e5(Lg) now follows from the closedness of
Oess(Lyq)-

Now let us verify the opposite inclusion, i.e. oess(Lg) C A, by contradiction: Suppose
that there exists A € oess(Lg) such that A € A. Then the approximate nullity of the operator
L, — M equals +oo. Using this information we will construct by mathematical induction a
sequence {u"} in LL(Q) satisfying ||u"|, =1, (3.1) and

dist(u™; L) = 1 (3.2)
for all m € N, where £,, denotes the linear hull of the functions w!, ..., u™. Suppose that
we have already constructed w!, ..., u” satisfying ||(L, — A)u’|, < 1/j for j =1,...,n and



(3.2) forallm=1,...,n—1. To €n41 = 1/(n+ 1) there exists an infinite dimensional linear
manifold M, 11 in LI(Q) such that |[(Ly — M)ully < €n41 for all u € M,4q. Then due to
Lemma IV.2.3 in [20], we find «"*! € My such that |[u™™!||; = 1 and dist(u"™; £,,) = 1.

The sequence {u"} obviously satisfies
1
|(Lqg — AD)u"||y < - for all n € N. (3.3)

Denote f™ := (Ly; — AI)u™. Then there exists Vp™ € L9(Q)3 such that
vAU" 4+ (w x ) - Vu" —w x u" — " — Vp" = ", divu" =0 (3.4)
in Q. Using Theorem 1.1 in [7], see also estimate (1.5) in Section 1, we deduce that

WPy + (@ x @) - V' —w < wlly + 1V g < e (Il M) < e (35)

where the constant ¢14 > 0 does not depend on n. Due to (3.5) and the identity ||u"|, = 1,
the sequence {u"} is bounded in the space D(L,). Hence there exists a subsequence which
is weakly convergent in D(Ly). In order not to complicate the notation, we shall denote the
subsequence again by {u"}. The subsequence naturally preserves the property (3.2).

Put v" := (u"*! — u")/8, where &, = |u""! —um|, > 1. Then {v"} is a sequence in
the unit sphere in L& () which converges weakly to zero in D(L,). Hence {v"} converges
strongly to zero in W14(Q2 N Bg(0))? for each R > 0. Note that the function v" satisfies the
equation

1 1

VAV + (w x ) - Vo' —w x " — \" — 5 vprtt —pt) = 5 (F - (3.6)

in Q. This equation, together with the information on the weak convergence of {v"} to zero
in D(L,), implies that the sequence {V(p"*1 — p")} weakly converges to zero in LI(£2)3.
Thus, the functions p™, which are given uniquely up to an additive constant, can be chosen

so that p"*! — p™ — 0 strongly in L9(Q2 N Br(0)) for each R > 0.

The sequence {v"} does not contain any subsequence, convergent in L({2). Let us prove
this statement by contradiction: Assume that {v*7} is a convergent subsequence of {v"}
in LL(Q). This subsequence has the same weak limit as {v"}, hence v*» — 0 in LL(Q) as
n — o0o. The strong limit in LZ(Q) cannot differ from the weak limit, hence v*» — 0 in
L%(Q) as n — +oo. However, this is impossible because ||vfn |, = |[uf+1 — ukn||, > 1.

Suppose that R > 0 is so large that the domain {x € R3; |x| > R} is a subset of Q. Let
) be an infinitely differentiable cut-off function defined in R? such that

0 for 0<|z| < %R,
P(x) = 7
1 for FR<|x|

Put w"(x) := ¢(x) v"(x) — V" (x) where V" is a function which corrects the divergence of
1™ so that w” is divergence—free, i.e., div V" = V4 - v™. Since the support of Vi - v” is
contained in {x € R; 2R < |z| < IR}, it follows e.g. from [2] that an appropriate function
V" with support in {x € R; R < |z| < 2R} can be constructed. Moreover, there exist
positive constants c¢15 and c1¢4, independent of n, such that

v

24 < c15||VY - 0" 1,4 < ci6 for all n € N. (3.7)
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Using equation (3.6), we derive that w"™ satisfies

vVAW" + (w x ) - V" —w x w" — \w" — (%V[l/f(pnﬂ _pn)]

n

= % (frt = - % VY (p" T = p") + v (AY) v + 20 Vi - Vo' — v AV
+t(wxx) (VYouv")—(wxz) - VV"+wx V"4 AV™ (3.8)

The right hand side converges strongly to zero in LI(Q)? as n — oo. (This follows from the
strong convergence of {v"} to zero in W12(QNBg(0))3, the strong convergence of {p"+1—p"}
to zero in L1(Q2 N Br(0)), from (3.7) and from the information on the support of Vi) and
Aq).) Hence

|(Lg — ADw"||g — 0 as n — oo. (3.9)

In order to estimate the norm of w,, for large n, let us choose € > 0 arbitrarily small. Then
for all n sufficiently large

1/q 1/q
[w"]lg < (/ o™ — anqdzc) + (/ ek dm) < e+1,
|lz|<2R 2R<|z|

1/q
oy > (/ |v”|qdm)
2R<|z|
1/q 1/q
- ([ ([ o)
Q |z|<2R
> 1—c€.

Let us now normalize the sequence {w"} by dividing each of the functions w” by its norm in
LL(Q). In order to preserve a simple notation, let us denote the normalized functions again
by w". If we finally put w"(z) = 0 for & € R3 — (2, we obtain a sequence in the unit sphere
in LL(R?), which does not contain any subsequence converging in LE(R3), satisfying (3.9)
with || - ||, being the norm in LI(R3)3. The existence of the sequence {w"} with all these
properties implies that A belongs to the essential spectrum of the operator L,, considered
as an operator in LI(R3). However, we know from Section 3 that this essential spectrum
coincides with the set A, see (2.21). Hence A € A, which is the desired contradiction.

The theorem is proved. g

Remark 3.1 Note that in the case Q = R? the identity (2.21) describes not only the essential
spectrum of the operator L,, but also its full spectrum. However, we have not proved the
same proposition in the case of a general exterior domain : Theorem 3.1 describes the
essential spectrum of L, and not its whole spectrum. The reason is that we can construct a
solution of the resolvent equation (2.1) in Q = R? by means of the Fourier transform which
cannot be used in the case of a general exterior domain §2.

Remark 3.2 We remind that the body in R? has so far been supposed to rotate with the
angular velocity w = (0,0, 1). If the angular velocity w equals the vector (0,0,w) where w is
a non—zero scalar constant, then we can prove in the same way that

Oess(Lg) = {A=a+ikw; a €R, <0, k€ Z}; (3.10)

this identity holds both in the case of the whole space R? and in the case of an exterior
domain €.
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