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1 Introduction

Scale analysis, in combination with rigorous estimates of observed data, has become an

important tool in the study of complex systems of equations arising in mathematical

fluid mechanics. Many textbooks as well as research monographs explain how scaling
arguments lead to simplified systems of equations that capture the essential piece of

information on a particular fluid flow suppressing unimportant phenomena. These

systems arise because of a singularity in the governing equations related to the flow

regime in question. As a result of huge scale differences in atmospheric flows, such

an approach has become of particular relevance both on the theoretical level and in

numerical simulations of models arising in meteorology (see the survey paper by Klein

et al. [26]).
Further discussion in the present paper is based on the full Navier‐Stokes‐

Fourier system of equations governing the time evolution of the density  $\rho$= $\rho$(t, x) ,

the velocity \mathrm{u}=\mathrm{u}(t, x) ,
and the temperature  $\theta$= $\theta$(t, x) of a compressible, viscous,

and heat conducting fluid:

\partial_{t} $\rho$+\mathrm{d}\mathrm{i}\mathrm{v}_{x}( $\rho$ \mathrm{u})=0 , (1.1)

\displaystyle \partial_{t}( $\rho$ \mathrm{u})+\mathrm{d}\mathrm{i}\mathrm{v}_{x}( $\rho$ \mathrm{u}\otimes \mathrm{u})+\frac{1}{\mathrm{M}\mathrm{a}^{2}}\nabla_{x}p( $\rho$,  $\theta$)=\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathbb{S}+\frac{1}{\mathrm{F}\mathrm{r}^{2}} $\rho$\nabla_{x}F, (1.2)

\displaystyle \partial_{t}( $\rho$ s( $\rho$,  $\theta$))+\mathrm{d}\mathrm{i}\mathrm{v}(\mathrm{s}(,  $\theta$)\mathrm{u})+\mathrm{d}\mathrm{i}\mathrm{v}_{x}(\frac{\mathrm{q}}{ $\theta$})= $\sigma$ , (1.3)

\displaystyle \frac{d}{\mathrm{d}t}\int_{ $\Omega$}(\frac{\mathrm{M}\mathrm{a}^{2}}{2} $\rho$|\mathrm{u}|^{2}+ $\rho$ e( $\rho$,  $\theta$)-\frac{\mathrm{M}\mathrm{a}^{2}}{\mathrm{F}\mathrm{r}^{2}} $\rho$ F)\mathrm{d}x=0 , (1.4)

where the pressure p ,
the specific entropy s

,
and the specific internal energy e are

interrelated through Gibbs� equation

 $\theta$ Ds=De+pD(\displaystyle \frac{1}{ $\rho$}) . (1.5)
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The viscous stress tensor \mathrm{S} is given by classical Newton�s rheological law

\displaystyle \mathrm{S}= $\mu$( $\theta$)(\nabla_{x}\mathrm{u}+\nabla_{x}\mathrm{u}^{t}-\frac{2}{3} divu \mathrm{I})+ $\eta$( $\theta$) divu I (1.6)

while the heat flux \mathrm{q} is determined through Fourier�s law

\mathrm{q}=- $\kappa$( $\theta$)\nabla_{x} $\theta$ . (1.7)

The entropy production rate  $\sigma$ satisfies

 $\sigma$\displaystyle \geq\frac{1}{ $\theta$} (\mathrm{M}\mathrm{a}\mathrm{S} : \displaystyle \nabla_{x}\mathrm{u}+\frac{ $\kappa$( $\theta$)}{ $\theta$}|\nabla_{x} $\theta$|^{2}) , (1.8)

and the symbol \nabla_{x}F=\nabla_{x}F(x) denotes a given potential driving force.

Problem (1.1‐1.8) will be supplemented with conservative boundary conditions

specified below, compatible with the total energy balance expressed through (1.4).
One can check that (1.8) is equivalent to that standard relation

 $\sigma$=\displaystyle \frac{1}{ $\theta$}(\mathrm{M}\mathrm{a}^{2}\mathbb{S}:\nabla_{x}\mathrm{u}+\frac{ $\kappa$( $\theta$)}{ $\theta$}|\nabla_{x} $\theta$|^{2}) (1.9)

provided all quantities in (1.1‐1.4) are sufficiently smooth (see [16]). On the other

hand, it is well‐known that the physically admissible weak solutions of the inviscid

system do dissipate mechanical energy even though no viscosity is explicitly present
in the equations. Although this is probably less likely to happen in the viscous case,

it is still an outstanding open problem whether or not (1.9) holds even if the fluid is

incompressible (see the classical work of Leray [28], the relevant comments by Galdi

[22], or Nagasawa for the most recent results [36]).
The symbols Ma and Fr stand for dimensionless parameters called Mach number

and Froude number, respectively. The main objective of the present paper is to review

some recent results on the asymptotic behaviour of solutions to system (1.1-1.8) in

the regime when

\mathrm{M}\mathrm{a}\rightarrow 0, \mathrm{F}\mathrm{r}\rightarrow 0.

The �incompressible limit� \mathrm{M}\mathrm{a}\rightarrow 0 for various systems arising in mathematical

fluid dynamics was studied in the seminal work by Klainerman and Majda [25] (see
also Ebin [12]). One can distinguish two kinds of qualitatively different results based

on different techniques. The first approach applies to strong solutions defined on

possibly short time intervals, the length of which, however, is independent of the

value of the parameter \mathrm{M}\mathrm{a}\rightarrow 0 . In this framework, the most recent achievements

for system (1.1-1.8) can be found in the papers by Alazard [2], [1] (for earlier

results see the survey papers by Danchin [8], Métivier and Schochet [34], Schochet

[38], and the references cited therein). The second group of results is based on a

global‐in‐time existence theory for the weak solutions of the underlying primitive
system of equations, asserting convergence towards solutions of the target system
on an arbitrary time interval. Results of this type for the isentropic Navier‐Stokes

system have been obtained by Lions and Masmoudi [30], [31], and later extended by
Desjardins et al. [9], Bresch et al. [5]. Our main aim here is to present a similar

theory that applies to solutions of the complete Navier‐Stokes‐Fourier system.
The paper is organized as follows. In Section 2, we summarize all hypotheses

concerning the structural properties of the nonlinear quantities appearing in the con‐

stitutive relations, and recall the underlying existence theory for system (1.1-1.8)
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supplemented with a suitable set of boundary and initial conditions. The convergence

results for \mathrm{M}\mathrm{a}\rightarrow 0, \mathrm{F}\mathrm{r}\rightarrow 0 are established in Section 3. In particular, we shall see

that for \mathrm{M}\mathrm{a}\approx $\epsilon$, \mathrm{F}\mathrm{r}\approx\sqrt{ $\epsilon$} the corresponding solutions of (1.1‐1.8) tend to a solution

of the Oberbeck‐Boussinesq approximation. Results in the regime \mathrm{M}\mathrm{a}\approx \mathrm{F}\mathrm{r}\approx $\epsilon$ for a

reduced (barotropic) system as well as some open problems are sketched in Section 4.

2 Existence theory

2.1 Hypotheses

Modeling of fluid flows gives rise to a rich variety of mathematical problems with

applications in many fields ranging from engineering to astrophysics. Motivated by the

existence theory developed in [16], [19], we shall assume that the material properties
of the fluid we shall deal with can be characterized through the following list of

hypotheses:

\bullet The fluid is linearly viscous, that means, the vicous stress tensor \mathrm{S} is given by
formula (1.6), where the viscosity coefficients  $\mu$ and  $\eta$ are continuously differen‐

tiable functions of the absolute temperature  $\theta$ satisfying

 0<\displaystyle \underline{ $\mu$}(1+$\theta$^{ $\beta$})\leq $\mu$( $\theta$)\leq\overline{ $\mu$}(1+$\theta$^{3}) , 0\leq $\eta$( $\theta$)\leq\overline{ $\eta$}(1+$\theta$^{3}) ,  $\beta$>\frac{2}{5} . (2.1)

Note that hypothesis (2.1) includes the physically relevant value  $\beta$=\displaystyle \frac{1}{2} (see
Becker [4]).

\bullet The fluid is a heat conductor, the heat flux \mathrm{q} is given by Fourier�s law (1.7),
where the heat conductivity coefficient  $\kappa$ is a continuously differentiable function

of the absolute temperature  $\theta$ such that

 0<\underline{ $\kappa$}(1+$\theta$^{3})\leq $\kappa$( $\theta$)\leq\overline{ $\kappa$}(1+$\theta$^{3}) . (2.2)

Hypothesis (2.2) takes into account the effect of radiation relevant in the high
temperature regimes (see Becker[4], Buet and Després [6], Zel�dovich and Raizer

[41]).

\bullet The fluid behaves like a real monoatomic gas. By this we mean that the pressure

 p can be written in the form

p( $\rho$,  $\theta$)=p_{F}( $\rho$,  $\theta$)+p_{R}( $\theta$) , p_{F}( $\rho$,  $\theta$)=p_{G}( $\rho$,  $\theta$)+p_{E}( $\rho$,  $\theta$) ,

where p_{G} is the classical molecular pressure, p_{E} denotes the pressure of the

electron gas dominating in the high density (degenerate) region, and p_{R} is the

radiation pressure due to the gas of emitted photons. Similarly, the specific
internal energy e can be decomposed as

e( $\rho$,  $\theta$)=e_{F}( $\rho$,  $\theta$)+e_{R}( $\rho$,  $\theta$) ,

where the component e_{F} is related to the pressure p_{F} through the state equation
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while

p_{F}( $\rho$,  $\theta$)=\displaystyle \frac{2}{3} $\rho$ e_{F}( $\rho$,  $\theta$) (2.3)

p_{R}=\displaystyle \frac{a}{3}$\theta$^{4},  $\rho$ e_{R}=a$\theta$^{4}, a>0 . (2.4)

In addition, the electrons are supposed to form a Fermi gas, in particular, the

internal energy remains strictly positive in the vanishing temperature limit:

\displaystyle \lim_{ $\theta$\rightarrow 0}\inf_{+}e_{F}(,  $\theta$)>0 for any given  $\rho$>0 (2.5)

(see Chapters 1, 15 in Eliezer et al. [14], Chapter 4 in Mueller and Ruggeri [35],
Gallavoti [23], among others).

Furthermore, we assume the standard thermodynamics stability hypothesis:

\displaystyle \frac{\partial p( $\rho,\ \theta$)}{\partial $\rho$}>0, c_{v}( $\rho$,  $\theta$)=\frac{\partial e_{F}( $\rho,\ \theta$)}{\partial $\theta$}>0 , (2.6)

together with a technical but physically relevant restriction

\displaystyle \lim_{ $\theta$\rightarrow}\sup_{0+}c_{v}( $\rho$,  $\theta$)<\infty for any fixed  $\rho$>0 (2.7)

(see Bechtel et al. [3]).

2.2 Boundary conditions

In the geometrically simplest but still physically relevant situation, the spatial domain

 $\Omega$ can be taken a horizontal slab bounded above and below by two lateral surfaces  $\Gamma$_{T}
and $\Gamma$_{B} , respectively. All physical quantities are supposed to be periodic with respect
to (x_{1}, x_{2}) , and, accordingly, one can identify

 $\Omega$=\{(x_{1}, x_{2}, X3) |(x_{1}, x_{2})\in \mathcal{T}^{2}, $\Phi$_{B}(x_{1}, x_{2})<x_{3}<$\Phi$_{B}(x_{1}, x_{2} (2.8)

where \mathcal{T}^{2}=((- $\pi$,  $\pi$)|_{\{- $\pi,\ \pi$\}})^{2} is a two‐dimensional torus, and $\Phi$_{B}, $\Phi$_{T} are scalar

functions defined on \mathcal{T}^{2} . Accordingly, we set

$\Gamma$_{B}=\{(x_{1}, x_{2}, x_{3})|(x_{1}, x_{2})\in \mathcal{T}^{2}, x_{3}=$\Phi$_{B}(x_{1}, x_{2} (2.9)

and

$\Gamma$_{T}=\{(x_{1}, x_{2}, x_{3})|(x_{1}, x_{2})\in \mathcal{T}^{2}, x_{3}=$\Phi$_{T}(x_{1}, x_{2} (2.10)

The problem is supplemented with suitable boundary conditions on the lateral

boundaries $\Gamma$_{B}, $\Gamma$_{T} in order to meet the total energy conservation principle expressed
through (1.4). Typically, we can take the no‐flux boundary conditions for the

velocity field and the heat flux

\mathrm{u}\cdot \mathrm{n}=0 on $\Gamma$_{B}\cup$\Gamma$_{T} , (2.11)

\mathrm{q}\cdot \mathrm{n}=0 \mathrm{o}\mathrm{n} $\Gamma$_{B}\cup$\Gamma$_{T} , (2.12)
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where \mathrm{n} denotes the outer normal vector, supplemented either with the Navier com‐

plete slip condition

\mathrm{S}\mathrm{n}\times \mathrm{n}=0 \mathrm{o}\mathrm{n} $\Gamma$_{B}\cup$\Gamma$_{T} , (2.13)
or the standard no‐slip condition

\mathrm{u}=0 \mathrm{o}\mathrm{n} $\Gamma$_{B}\cup$\Gamma$_{T} . (2.14)

2.3 Variational solutions

Definition 2.1

We say that a trio \{ $\rho$, \mathrm{u},  $\theta$\} is a variational solution of Navier‐Stokes‐Fourier

system (1.1-1.8) on (0, T)\times $\Omega$ satisfy ing the boundary conditions (2.11), (2.12),
(2.13) (or (2.14)), together with the initial conditions

 $\rho$(0, \cdot)=$\rho$_{0}, \mathrm{u}(0, \cdot)=\mathrm{u}_{0},  $\theta$(0, \cdot)=$\theta$_{0}

provided the following conditions hold:

\bullet The density  $\rho$ is a non‐negative function,  $\rho$\in L^{\infty}(0, T;L^{\frac{5}{3}} the momentum

 $\rho$ \mathrm{u} belongs to the space L^{\infty}(0, T;L^{q}( $\Omega$;R)) for a certain q>1 ,
and the integral

identity

\displaystyle \int_{0}^{T}\int_{ $\Omega$} ( $\rho$ B( $\rho$)\partial_{t} $\varphi$+ $\rho$ B( $\rho$)\mathrm{u}\cdot\nabla_{x} $\varphi$-b() divu  $\varphi$)\mathrm{d}x\mathrm{d}t= (2.15)

-\displaystyle \int_{ $\Omega$}$\rho$_{0}B($\rho$_{0}) $\varphi$(0, \cdot)\mathrm{d}x
is satisfied for any  $\varphi$\in \mathcal{D}([0, T)\times\overline{ $\Omega$}) ), and any b such that

b\in L^{\infty}\cap C[0, \infty) , B( $\rho$)=B(1)+\displaystyle \int_{1}^{ $\rho$}\frac{b(z)}{z^{2}} dz . (2.16)

\bullet The velocity field \mathrm{u} belongs to L^{2}(0, T;W^{1,p}( $\Omega$;R)) for a certain p>1 and

satisfies the boundary conditions (2.11) (or (2.14)) in the sense of traces, the

absolute temperature  $\theta$ is positive a.a. on the set (0, T)\times $\Omega$,

$\theta$^{ $\nu$}\in L^{2}(0, T;W^{1,2}()) for all v\displaystyle \in[1, \frac{3}{2}],
and the integral identity

\displaystyle \int_{0}^{T}\int_{ $\Omega$} ( $\rho$ \mathrm{u}\cdot\partial_{t} $\varphi$+( $\rho$ \mathrm{u}\otimes \mathrm{u}) : \displaystyle \nabla_{x} $\varphi$+\frac{1}{\mathrm{M}\mathrm{a}^{2}}p( $\rho$,  $\theta$)\mathrm{d}\mathrm{i}\mathrm{v}_{x} $\varphi$)dxdt= (2.17)

\displaystyle \int_{0}^{T}\int_{ $\Omega$}(\mathrm{S}:\nabla_{x} $\varphi$+\frac{1}{\mathrm{F}\mathrm{r}^{2}} $\rho$\nabla_{x}F\cdot $\varphi$)\mathrm{d}x\mathrm{d}t-\int_{ $\Omega$}$\rho$_{0}\mathrm{u}_{0}\cdot $\varphi$(0, \cdot)\mathrm{d}x
holds for any test function  $\varphi$\in \mathcal{D}([0, T)\times $\Omega$;R^{3}) ,  $\varphi$\cdot \mathrm{n}=0 on \partial $\Omega$ (or  $\varphi$=0 on

\partial $\Omega$ if we impose (2.14) instead of (2.13)), where the viscous stress tensor \mathrm{S} is

given through (1.6). Here, we also tacitly assume that all quantities in (2.17)
are integrable.
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\bullet The entropy  $\rho$ s( $\rho$,  $\theta$) belongs to the space L^{\infty}(0, T;L^{1} the terms  $\rho$ s( $\rho$,  $\theta$)\mathrm{u},
\displaystyle \frac{ $\kappa$( $\theta$)}{ $\theta$}\nabla_{x} $\theta$ are integrable on the set (0, T)\times $\Omega$, \log( $\theta$)\in L^{2}(0, T;W^{1,2} and

the integral inequality

\displaystyle \int_{0}^{T}\int_{ $\Omega$}( $\rho$ s( $\rho$,  $\theta$)\partial_{t} $\varphi$+ $\rho$ s( $\rho$,  $\theta$)\mathrm{u}\cdot\nabla_{x} $\varphi$-\frac{ $\kappa$( $\theta$)}{ $\theta$}\nabla_{x} $\theta$\cdot\nabla_{x} $\varphi$)\mathrm{d}x\mathrm{d}t+ (2.18)

\displaystyle \int_{0}^{T}\int_{ $\Omega$}\frac{1}{ $\theta$}(\mathrm{M}\mathrm{a}^{2}\mathrm{S}:\nabla_{x}\mathrm{u}+\frac{ $\kappa$( $\theta$)}{ $\theta$}|\nabla_{x} $\theta$|^{2}) $\varphi$ \mathrm{d}x\mathrm{d}t\leq-\int_{ $\Omega$}$\rho$_{0}s($\rho$_{0}, $\theta$_{0}) $\varphi$(0, \cdot)\mathrm{d}x
holds for any non‐negative test function  $\varphi$\in \mathcal{D}([0, T)\times\overline{ $\Omega$}) .

\bullet The total energy balance

 E( $\tau$)=\displaystyle \int_{ $\Omega$}(\frac{\mathrm{M}\mathrm{a}^{2}}{2} $\rho$|\mathrm{u}|^{2}+ $\rho$ e( $\rho$,  $\theta$)+\frac{\mathrm{M}\mathrm{a}^{2}}{\mathrm{F}\mathrm{r}^{2}} $\rho$ F)\mathrm{d}x= (2.19)

\displaystyle \int_{ $\Omega$}(\frac{\mathrm{M}\mathrm{a}^{2}}{2}$\rho$_{0}|\mathrm{u}_{0}|^{2}+$\rho$_{0}e($\rho$_{0}, $\theta$_{0})+\frac{\mathrm{M}\mathrm{a}^{2}}{\mathrm{F}\mathrm{r}^{2}}$\rho$_{0}F)\mathrm{d}x=E_{0}
holds for a.a.  $\tau$\in(0, T) .

Relation (2.15) says that  $\rho$, \mathrm{u} satisfy equation of continuity (1.1) in the sense of

renormalized solutions introduced by DiPerna and Lions [10]. As already pointed out

in Section 1, an essential ingredience of this concept of weak solutions is replacing
the entropy balance by inequality (2.18) equivalent to (1.8) anticipating possible sin‐

gularities concentrated on sets of zero Lebesgue measure (for relevant dicussion see

[16], [19]). However, as shown in [19], both formulations (classical and variational)
are entirely equivalent provided the variational solutions are sufficiently smooth.

A relevant existence theory of variational solutions of system (1.1-1.8) when

 $\Omega$\subset R^{3} is a bounded regular domain was developed in [19, Theorem 2.4] (see also [16]
for the necessary modifications in order to accommodate the growth conditions (2.1),
and [15] for general framework). The changes to handle the case of spatial domains

given through (2.8) are straightforward. Thus we report the following existence result.

Theorem 2.1 Assume that  $\Omega$ is given by (2.8), where  $\Phi$_{B}, $\Phi$_{T}\in C^{2+ $\nu$}(\mathcal{T}^{2}) , $\Phi$_{B}<
$\Phi$_{T} . Let the initial data satisfy

$\rho$_{0}, $\theta$_{0}\in L^{\infty}( $\Omega$) , \mathrm{u}_{0}\in L^{\infty}( $\Omega$;R^{3}) , \displaystyle \mathrm{e}\mathrm{s}\mathrm{s}\inf_{x\in \mathcal{T}^{2}}$\rho$_{0}>0, \displaystyle \mathrm{e}\mathrm{s}\mathrm{s}\inf_{x\in \mathcal{T}^{2}}$\theta$_{0}>0 . (2.20)

Furthermore, suppose that p, s
,

and e are interrelated through Gibbs� equation (1.5),
and that hypotheses (2.3-2.7) hold. Let \mathrm{S}, \mathrm{q} be given by (1.6), (1. 7), respectively,
where the transport coefficients satisfyy (2.1), (2.2).

Then problem (1.1-1.8) with the boundary conditions (2.11), (2.12), (2.13) (or
(2.14)) admits a variational solution  $\rho$,  $\theta$, \mathrm{u} on the set (0, T)\times $\Omega$ in the sense of
Definition 2.1.
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Hypothesis (2.20) is not optimal. As a matter of fact, the same result can be

proved for any initial data with finite total energy and a non‐negative density and

temperature distribution (see [15, Chapter 7

3 Singular limits

3.1 The Oberbeck‐Boussinesq system

We start our discussion considering a very simple geometry of the underlying physical
space, namely we assume that  $\Gamma$_{B}, $\Gamma$_{T} are flat. Accordingly, we can set

 $\Phi$_{B}\equiv 0, $\Phi$_{T}\equiv $\pi$ . (3.1)

As already pointed out in the introductory part, simplified asymptotic limits de‐

rived trough scale analysis yield often a useful insight into the behaviour of more

complex systems arising in mathematical fluid dynamics. A typical example is the

flow of a heat conducting Newtonian fluid that can be described in the framework of

the Oberbeck‐Boussinesq approximation:

\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathrm{U}=0,

\overline{ $\rho$}(\partial_{t}\mathrm{U}+\mathrm{d}\mathrm{i}\mathrm{v}_{x}(\mathrm{U}\otimes \mathrm{U}))+\nabla_{x}P=\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathrm{S}-r\mathrm{j} , (3.2)

\overline{ $\rho$}\overline{c}_{p}(\partial_{t} $\Theta$+\mathrm{d}\mathrm{i}\mathrm{v}_{x}( $\Theta$ \mathrm{U}))-\mathrm{d}\mathrm{i}\mathrm{v}_{x}( $\kappa$\nabla_{x} $\Theta$)=0,
where \mathrm{U}(t, x) is the velocity at time t\in(0, T) and position x\in $\Omega$,  $\Theta$(t, x) is the

temperature, the symbol P denotes the normal stress (pressure), and \mathrm{j}=[0, 0, 1] is

the unit vector in the X3 direction. Similarly to the above, the viscous stress tensor

\mathrm{S} is given through Newton�s rheological law

\mathrm{S}=\overline{ $\mu$}(\nabla_{x}\mathrm{u}+\nabla_{x}^{\perp}\mathrm{u}) , (3.3)

where the viscosity coefficient \overline{ $\mu$} as well as the heat conductivity coefficient \overline{ $\kappa$}
,

and the

specific heat at constant pressure \overline{c}_{p} are evaluated at constant density \overline{ $\rho$} and constant

temperature \displaystyle \overline{ $\theta$}=\frac{1}{| $\Omega$|}\int_{ $\Omega$} $\Theta$ dx. Consistent with the Boussinesq approximation, the

temperature‐dependent density  r=r( $\Theta$) appears only in the momentum equation
and is assumed to vary with temperature as

r+\overline{ $\rho$}\overline{ $\alpha$}( $\Theta$-\overline{ $\theta$})=0 , (3.4)

where \overline{ $\alpha$} stands for the coefficient of thermal expansion (see Zeytounian [42] or Ra‐

jagopal et al. [37] for more details on the physical background of the problem).
Consistently with Section 2, we consider the periodic boundary conditions with

respect to the spatial coordinates x_{1}, x_{2} , together with the conservative boundary
conditions

\mathrm{u}\cdot \mathrm{j}=0 , (Sj) \times \mathrm{j}=0, \nabla_{x} $\Theta$\cdot \mathrm{j}=F_{b} on the lateral \mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$\Gamma$_{B}\cup$\Gamma$_{T} . (3.5)
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Under these circumstances, the total amount of thermal energy

E_{\mathrm{t}\mathrm{h}}=\displaystyle \int_{ $\Omega$} $\Theta$ \mathrm{d}x=\overline{ $\theta$}| $\Omega$| is a constant of motion.

Following [18] we shall show that the system of equations (3.2‐3.4) supplemented
with the boundary conditions (3.5) can be obtained as an asymptotic limit of the full

Navier‐Stokes‐Fourier system (1.1‐1.8) provided the Mach and Froude numbers tend

to zero. Note that the Oberbeck‐Boussinesq approximation is used when the density is

nearly constant but the density differences exist due to temperature changes, causing
an imbalance of the hydrostatic equilibrium. Such a situation occurs with many

convection problems where the temperature differences are introduced independent
of the flow dynamics. The requirement that the Mach number tends to zero is needed,
allowing the density  $\rho$ to approach a constant \overline{ $\rho$} except in the gravitational body force

rescaled by a suitable choice of the Froude number. Accordingly, the temperature
differences are not caused by the flow but exist independent of the flow.

In order to be more specific, we introduce a small paremeter  $\epsilon$>0 and set

Ma = $\epsilon$ ,
Fr =\sqrt{ $\epsilon$}

in Navier‐Stokes‐Fourier system (1.1‐1.8). Furthermore, we take the initial conditions

in the form

$\rho$_{ $\epsilon$,0}=\overline{ $\rho$}+ $\epsilon \rho$_{ $\epsilon$,0}^{(1)}, \mathrm{u}_{0}=\mathrm{u}_{ $\epsilon$,0}, $\theta$_{ $\epsilon$,0}=\overline{ $\theta$}+ $\epsilon \theta$_{ $\epsilon$,0}^{(1)} (3.6)
where

\displaystyle \overline{ $\rho$}=\frac{1}{| $\Omega$|}\int_{ $\Omega$}$\rho$_{ $\epsilon$,0}\mathrm{d}x>0, \overline{ $\theta$}=\frac{1}{| $\Omega$|}\int_{ $\Omega$}$\theta$_{ $\epsilon$,0}\mathrm{d}x>0 , (3.7)

with the quantities $\rho$_{ $\epsilon$,0}^{(1)}, \mathrm{u}_{ $\epsilon$,0}, $\theta$_{ $\epsilon$,0}^{(1)} bounded uniformly with respect to  $\epsilon$\rightarrow 0.

Relation (3.6) reveals a crucial aspect of the problem: If we desire to recover

the Oberbeck‐Boussinesq system (3.2-3.4) as the asymptotic limit of the complete
system (1.1‐1.8), then we have to deal with the so‐called ill‐prepared initial data, that

means, the functions $\rho$_{ $\epsilon$,0}^{(1)}, $\theta$_{ $\epsilon$,0}^{(1)} must not vanish in the asymptotic limit for  $\epsilon$\rightarrow 0 . In

particular, the solutions develop high frequency acoustic waves considered �harmless�

in the asymptotic limit but still producing large amplitude velocity field oscillations

in the original system (cf. the survey paper by Schochet [38]). In other words,
unless we are satisfied with local solutions existing only on a possibly very short time

interval (see Alazard [2] or Danchin [8] for relevant results and techniques), we have to

consider global‐in‐time large data solutions of the full Navier‐Stokes‐Fourier system,
the existence of which was stated in Theorem 2.1.

If the spatial domain is flat, specifically if $\Phi$_{B}, $\Phi$_{T} are constant as in (3.1), solutions

of (1.1‐1.8) are invariant with respect to the symmetry transformations:

\left\{\begin{array}{lllll}
 &  $\rho$(t,x_{1},x_{2} & -x_{3})= &  $\rho$(t,x_{1},x_{2},x_{3}) & \\
 &  $\theta$(t,x_{1},x_{2} & -x_{3})= &  $\theta$(t,x_{1},x_{2},x_{3}) & \\
u_{1}(t,x_{1},x_{2} & -x_{3})=u_{1}(t,x_{1},x_{2},x_{3}) &  & u_{2}(t,x_{1},x_{2},-x_{3})= & u_{2}(t,x_{1},x_{2},x_{3})\\
 & u_{3}(t,x_{1},x_{2} & -x_{3})= & -u_{3}(t,x_{1},x_{2},x_{3}) & 
\end{array}\right\}
(3.8)
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Accordingly, the boundary conditions (2.11‐2.13) can be conveniently recast in terms

of the additional symmetry properties specified in (3.8) provided all quantities are

considered periodic also in xvariable, that means, one can identify

 $\Omega$\equiv \mathcal{T}^{3}=([- $\pi$,  $\pi$]|_{\{- $\pi,\ \pi$\}})^{3},
with the potential F=|x_{3}| in (1.3) (cf. Ebin [13]).

In order to collect all the preliminary material, we introduce a concept of varia‐

tional solutions to the Oberbeck‐Boussinesq system.

Definition 3.1 We shall say that functions \{r, \mathrm{U},  $\Theta$\} represent a variational

solution of system (3.2-3.4) , supplemented with the boundary conditions (3.5) and

the initial conditions

\mathrm{U}(0, \cdot)=\mathrm{U}_{0},  $\Theta$(0, \cdot)=$\Theta$_{0} , (3.9)

if the following conditions are met:

\bullet

\mathrm{U}\in L^{\infty}(0, T;L^{2}(;R^{3}))\cap L^{2}(0, T;W^{1,2}(;R^{3} r\in L^{\infty}(0, T;L^{2}

\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathrm{U}=0 a.a. on (0, T)\times $\Omega$, \mathrm{u}\cdot \mathrm{n}|_{\partial $\Omega$}=0,

and the integral identity

\displaystyle \int_{0}^{T}\int_{ $\Omega$} (\overline{ $\rho$}\mathrm{U}\cdot\partial_{t} $\varphi$+\overline{ $\rho$}(\mathrm{U}\otimes \mathrm{U}) : \nabla_{x} $\varphi$)dxdt= (3.10)

\displaystyle \int_{0}^{T}\int_{ $\Omega$}(\overline{ $\mu$}(\nabla_{x}\mathrm{U}+\nabla_{x}^{\perp}\mathrm{U}):\nabla_{x} $\varphi$+r\nabla_{x}x_{3}\cdot $\varphi$)\mathrm{d}x\mathrm{d}t-\int_{ $\Omega$}\overline{ $\rho$}\mathrm{U}_{0}\cdot $\varphi$(0, \cdot)\mathrm{d}x
holds for any test function

 $\varphi$\in \mathcal{D}([0, T)\times\overline{ $\Omega$};R^{3}) , \mathrm{d}\mathrm{i}\mathrm{v}_{x} $\varphi$=0,  $\varphi$\cdot \mathrm{n}|_{\partial $\Omega$}=0 ;

\bullet

 $\Theta$\in L^{\infty}(0, T;L^{2}( $\Omega$))\cap L^{2}(0, T;W^{1,2}()) ,

r+\displaystyle \overline{ $\rho$}\overline{ $\alpha$}( $\Theta$-\frac{1}{| $\Omega$|}\int_{ $\Omega$} $\Theta$ \mathrm{d}x)=0 a.a. on (0, T)\times $\Omega$ , (3.11)

and the integral identity

\displaystyle \int_{0}^{T}\int_{ $\Omega$}(\overline{ $\rho$}\overline{c}_{p}( $\Theta$\partial_{t} $\varphi$+ $\Theta$ \mathrm{U}\cdot\nabla_{x} $\varphi$)-\overline{ $\kappa$}\nabla_{x} $\Theta$\cdot\nabla_{x} $\varphi$)\mathrm{d}x\mathrm{d}t= (3.12)

 $\kappa$(\displaystyle \int_{\{x_{3}=0\}}F_{b} $\varphi$ \mathrm{d} $\sigma$-\int_{\{x_{3}= $\pi$\}}F_{b} $\varphi$ \mathrm{d} $\sigma$)-\int_{ $\Omega$}\overline{ $\rho$}\overline{c}_{p}$\Theta$_{0} $\varphi$(0, \cdot)\mathrm{d}x
is satisfied for any test function  $\varphi$\in \mathcal{D}([0, T)\times\overline{ $\Omega$}) .
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We are ready to formulate the main result to be discussed in this section.

Theorem 3.1 In addition to the hypotheses of Theorem 2.1, assume that  $\Omega$ is flat,
that means, the functions  $\Phi$_{B}, $\Phi$_{T} appearing (2. 8) satisfyy (3. 1). Furthermore, sup‐

pose that  $\beta$=1 in (2.1), and F=|x_{3}| in (1.2). Let \{$\rho$_{ $\epsilon$}, \mathrm{u}_{ $\epsilon$}, $\theta$_{ $\epsilon$}\}_{ $\epsilon$>0} be a family of
variational solutions to system (1.1-1.8) supplemented with the boundary conditions

(2.11-2.13) in the sense of Definition 2.1, with

Ma = $\epsilon$ ,
Fr =\sqrt{ $\epsilon$}, a= $\epsilon$.

Assume the the solution \{$\rho$_{ $\epsilon$}, \mathrm{u}_{ $\epsilon$}, $\theta$_{ $\epsilon$}\} emanates from the initial state

$\rho$_{ $\epsilon$,0}=\overline{ $\rho$}+ $\epsilon \rho$_{ $\epsilon$,0}^{(1)}, \mathrm{u}_{ $\epsilon$,0}, $\theta$_{ $\epsilon$,0}=\overline{ $\theta$}+ $\epsilon \theta$_{ $\epsilon$,0}^{(1)}
satisfy ing (3. 7), where

$\rho$_{ $\epsilon$,0}^{(1)}\rightarrow$\rho$_{0}^{(1)}, \mathrm{u}_{ $\epsilon$,0}\rightarrow \mathrm{u}_{0}, $\theta$_{ $\epsilon$,0}^{(1)}\rightarrow$\theta$_{0}^{(1)}weakly-(^{*}) in L^{\infty}( $\Omega$) .

Then

$\rho$_{ $\epsilon$}\rightarrow\overline{ $\rho$}inC([0, T];L^{1}( $\Omega$))\cap L^{\infty}(0, T;L^{\frac{5}{3}} 

$\theta$_{ $\epsilon$}\rightarrow\overline{ $\theta$} in L^{2}(0, T;W^{1,2}

and, passing to a subsequence if necessary,

\mathrm{u}_{ $\epsilon$}\rightarrow \mathrm{U} weakly in L^{2}(0, T;W^{1,2} (; R^{3} (3.13)

$\rho$_{ $\epsilon$}^{(1)}=\displaystyle \frac{$\rho$_{ $\epsilon$}-\overline{ $\rho$}}{ $\epsilon$}\rightarrow$\rho$^{(1)}weakly-(^{*}) in L^{\infty}(0, T;L^{\frac{5}{3}}

$\theta$_{ $\epsilon$}^{(1)}=\displaystyle \frac{$\theta$_{ $\epsilon$}-\overline{ $\theta$}}{ $\epsilon$}\rightarrow$\theta$^{(1)} weakly in L^{2}(0, T;W^{1,2}

where the trio

\displaystyle \mathrm{U}, r=$\rho$^{(1)}+\overline{ $\rho$}(\frac{1}{\partial_{ $\rho$}p_{F}(\overline{ $\rho$},\overline{ $\theta$})}-\frac{\overline{ $\theta$}\overline{ $\alpha$}^{2}}{\overline{c}_{p}})(x_{3}-\frac{ $\pi$}{2}) ,

 $\Theta$=\displaystyle \overline{ $\theta$}+$\theta$^{(1)}+\frac{\overline{ $\theta$}\overline{ $\alpha$}}{\overline{c}_{p}}(x_{3}-\frac{ $\pi$}{2})
represents a (weak) solution of system (3.2-3.5) in the sense of Definition 3.1, with

the initial data

\displaystyle \mathrm{U}_{0}=\mathrm{H}[\mathrm{u}_{0}], $\Theta$_{0}=\overline{ $\theta$}+\frac{\overline{c}_{v}}{\overline{c}_{p}}$\theta$_{0}^{(1)}-\frac{2}{3}\frac{\overline{ $\theta$}\overline{c}_{v}}{\overline{ $\rho$}\overline{c}_{p}}$\rho$_{0}^{(1)},
and the heat flux through the boundary given by

F_{b}=\displaystyle \frac{\overline{ $\theta$}\overline{ $\alpha$}}{\overline{c}_{p}} on the lateral boundary $\Gamma$_{B}\cup$\Gamma$_{T}.

Here the symbol \mathrm{H} stands for the Helmholtz projection onto the space of divergenceless
vector fields.
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Remark 1.1 As already observed, one can get rid of the boundary conditions

(3.5) extending all relevant quantities as periodic functions defined on the torus \mathcal{T}^{3}
in such a way that they belong to the symmetry class specified in (3.8). Accordingly,
the Helmholtz projection can be defined through formula

\mathrm{H}[\mathrm{v}]=\mathrm{v}-\nabla_{x}\triangle^{-1}[\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathrm{v}], \mathrm{H}^{\perp}=\nabla_{x}\triangle^{-1}[\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathrm{v}] for \mathrm{v}\in L^{2}(\mathcal{T}^{3}) ,

where the symbol \triangle stands for the Laplace operator considered on the space of spa‐

tially periodic functions with zero mean. Introducing the Fourier coefficients

[v]_{\mathrm{k}}=\displaystyle \frac{1}{2 $\pi$}<v, \exp(-\mathrm{i}\mathrm{k}\cdot x)>, \mathrm{k}\in Z^{3} ,
for any v\in \mathcal{D}'(\mathcal{T}^{3}) ,

we have

[\displaystyle \mathrm{H}[\mathrm{v}]]_{\mathrm{k}}=[\mathrm{v}]_{\mathrm{k}}-\frac{\mathrm{k}}{|\mathrm{k}|^{2}}\mathrm{k}\cdot[\mathrm{v}]_{\mathrm{k}}, [\mathrm{H}^{\perp}[\mathrm{v}]]_{\mathrm{k}}=\frac{\mathrm{k}}{|\mathrm{k}|^{2}}\mathrm{k}\cdot[\mathrm{v}]_{\mathrm{k}}, \mathrm{k}\in Z^{3}.
Remark 1.2 Let us recall that the standard definition of the thermodynamics

constants:

\displaystyle \overline{c}_{v}=c_{v}(\overline{ $\rho$}, \overline{ $\theta$})=\frac{\partial e_{F}(\overline{ $\rho$},\overline{ $\theta$})}{\partial $\theta$},  $\alpha$=-\overline{ $\rho$}1(\frac{\partial_{ $\theta$}p_{F}(\overline{ $\rho$},\overline{ $\theta$})}{\partial_{ $\rho$}p_{F}(\overline{ $\rho$},\overline{ $\theta$})}) , \overline{c}_{p}-\overline{c}_{v}=\frac{2}{3}\mathrm{c}_{v}\overline{ $\theta$}\overline{ $\alpha$}.
The proof of Theorem 3.1 can be found in [18, Theorem 1.1]. There are two

main issues to be addressed in the proof: (i) suitable uniform estimates independent
of  $\epsilon$\rightarrow 0 , (ii) a precise description of the time oscillations of the �(gradient part�
\mathrm{H}[\mathrm{u}] of the momentum.

The former difficulty can be overcome by means of the dissipation equality:

\displaystyle \frac{1}{$\epsilon$^{2}}(E_{ $\epsilon$}( $\tau$)-\overline{ $\theta$}\int_{ $\Omega$}$\rho$_{ $\epsilon$}s($\rho$_{ $\epsilon$}, $\theta$_{ $\epsilon$})( $\tau$)\mathrm{d}x)+\frac{\overline{ $\theta$}}{$\epsilon$^{2}}$\sigma$_{ $\epsilon$}[[0,  $\tau$)\times $\Omega$]=
\displaystyle \frac{1}{$\epsilon$^{2}}(E_{ $\epsilon$}(0)-\overline{ $\theta$}\int_{ $\Omega$}$\rho$_{ $\epsilon$}s($\rho$_{ $\epsilon$}, $\theta$_{ $\epsilon$})(0)\mathrm{d}x) ,

where

E_{ $\epsilon$}( $\tau$)=\displaystyle \int_{ $\Omega$}(\frac{$\epsilon$^{2}}{2}$\rho$_{ $\epsilon$}|\mathrm{u}_{ $\epsilon$}|^{2}+$\rho$_{ $\epsilon$}e($\rho$_{ $\epsilon$}, $\theta$_{ $\epsilon$})- $\epsilon \rho$_{ $\epsilon$}F)\mathrm{d}x
that can be easily deduced from (1.3), (1.4). Here $\sigma$_{ $\epsilon$} is a positive measure expressing
the rate of entropy production in accordance with (1.3). Using convexity of the

nonlinear quantity on the left‐hand side (Helmholtz free energy), one can deduce the

desired uniform estimates necessary for passing to the limit as stated in the conclusion

of Theorem 3.1 (see Section 2 in [18]).
The answer to the latter question is provided by the acoustic equation

 $\epsilon$\partial_{t}(\mathrm{H}^{\perp}[$\rho$_{ $\epsilon$}\mathrm{u}_{ $\epsilon$}])+\nabla_{x}V_{ $\epsilon$}= $\epsilon$ \mathrm{H}^{\perp}[\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathrm{S}_{ $\epsilon$}]+ $\epsilon$ \mathrm{G}_{1}^{ $\epsilon$} (3.14)
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 $\epsilon$\partial_{t}V_{ $\epsilon$}+M_{0}\mathrm{d}\mathrm{i}\mathrm{v}_{x}(\mathrm{H}^{\perp}[$\rho$_{ $\epsilon$}\mathrm{u}_{ $\epsilon$}])=S_{0}$\sigma$_{ $\epsilon$}+ $\epsilon$ G_{2}^{ $\epsilon$} (3.15)

that can be deduced from (1.1-1.3) . Here the quantities \mathrm{G}_{1}^{ $\epsilon$}, G_{2}^{ $\epsilon$} are uniformly
bounded in suitable function spaces, M_{0}, S_{0} are positive constants, and

V_{ $\epsilon$}=$\Lambda$_{1}(\displaystyle \frac{$\rho$_{ $\epsilon$}-\overline{ $\rho$}}{ $\epsilon$})+$\Lambda$_{2}(\frac{$\rho$_{ $\epsilon$}s($\rho$_{ $\epsilon$},$\theta$_{ $\epsilon$})-\overline{ $\rho$}s(\overline{ $\rho$},\overline{ $\theta$})}{ $\epsilon$})
for certain constants $\Lambda$_{1}, $\Lambda$_{2} . System (3.14), (3.15) represents a linear wave equation
that can be solved explictly yielding a precise description of possible time oscillations

of \mathrm{H}^{\perp}[$\rho$_{ $\epsilon$}\mathrm{u}_{ $\epsilon$}] . Note, however, that (3.15) contains a measure term ‐ the entropy
production $\sigma$_{ $\epsilon$} as a source. This fact makes the analysis of solutions quite delicate

(see Sections 4,5 in [18]).

3.2 The Dirichlet boundary conditions

As we have seen in the preceding section, the motion of a compressible viscous fluid

occupying the domain between two paralel plates features the non‐linear interaction

of fast acoustic waves and slow shear motion. Under appropriate constitutive assump‐

tions, with the relative sound speed approaching infinity, the fluid is driven toward

incompressibility. In the case of flat boundaries, however, the convergence of the

velocity field takes place only in the weak topology due to possible large amplitude
fast oscillations of the acoustic waves (cf. (3.13)). The main issue to be discussed

in this section is the interaction of fast acoustic waves with a boundary layer caused

by a wavy bottom of the physical domain, resulting in the strong convergence of the

velocity field.

In what follows, we take

 $\Phi$_{B}=$\Phi$_{B}(x_{1}, x_{2}) , $\Phi$_{T}= $\pi$

in (2.8) and replace (2.13) by the no‐slip boundary conditions (2.14). In order to

eliminate fast oscillations in the velocity field, we consider spatial domains with wavy

bottoms, specifically, we assume

|$\Phi$_{B}(x_{1}, x_{2})|< $\pi$, $\Phi$_{B}(-x_{1}, x_{2})=-$\Phi$_{B}(x_{1}, x_{2}) for all (x_{1}, x_{2})\in \mathcal{T}^{2} . (3.16)

A rather surprising damping effect resulting from the interaction of fast acoustic

waves with boundaries was discovered in a truly pioneering paper by Desjardins et

al. [9] dealing with a simplified isentropic model. In particular, they showed strong
convergence of the velocity field in the low Mach number regime provided the following
overdetermined eigenvalue problem

\triangle w= $\lambda$ w in  $\Omega$, w|_{\partial $\Omega$}=const, \nabla_{x}w\cdot \mathrm{n}|_{\partial $\Omega$}=0 (3.17)

admits only the trivial solution  $\lambda$=0, w=const.

Solvability of (3.17), being equivalent to the so‐called Pompeiu problem, has been

studied by several authors. In particular, it is known that for a bounded simply
connected domain  $\Omega$\subset R^{2} ,

with Lipschitz but not real analytic boundary, problem
(3.17) admits only the trivial solution (see Garofalo and Segala [24]). The same is true

for an arbitrary bounded Lipschitz domain in R^{N}, N\geq 2 ,
with \partial $\Omega$ homeomorphic to
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the unit sphere but not real analytic (see Williams [40]). Similar results for ellipsoids
and certain tori in  R^{3} were obtained by Dalmasso [7]. On the other hand, it is

relatively easy to check that for balls as well as flat �periodic� objects like \mathcal{T}^{2}\times(0,  $\pi$) ,

problem (3.17) admits non‐constant solutions.

Here we claim that for domains with wavy bottoms whose boundary is determined

by (2.8), (3.16) problem (3.17) admits only the trivial solution as soon as $\Phi$_{B}\neq 0.
More precisely, the following result was proved in [21, Proposition 5.1].

Proposition 3.1 Let  $\Omega$\subset R^{3} be given by (2.8), where the �bottom� part  $\Gamma$_{B}\subset\partial $\Omega$ is

determined by a function  $\Phi$_{B}\in C^{3}(\mathcal{T}^{2}) satisfying (3.16), and  $\Phi$_{T}\equiv $\pi$ . Assume there

is a function  w\not\equiv const solving the overdetermined eigenvalue problem

\triangle w= $\lambda$ w in  $\Omega$, \nabla_{x}w\cdot \mathrm{n}|_{\partial $\Omega$}=0, w=c_{T} on $\Gamma$_{T}, w=c_{B} on $\Gamma$_{B} . (3.18)

Then $\Phi$_{B}\equiv 0.

The principal idea in the pioneering work by Desjardins et al. [9] is to show that

non‐flat boundaries combined with the no‐slip boundary conditions for the velocity
lead to creation of a boundary layer resulting in a faster decay of the acoustic waves

of order \exp(-\sqrt{ $\epsilon$}t) provided \mathrm{M}\mathrm{a}\approx $\epsilon$ . This, in turn, leads to a complete anihilation

of fast sound waves described by the acoustic equation (3.14), (3.15) (see Proposition
2 in [9]) and strong convergence of the velocity field. This observation together with

Proposition 3.1 makes it possible to show the following result (Theorem 3.1 in [21]):

Theorem 3.2 In addition to the hypotheses of Theorem 2.1, assume that  $\Omega$\subset R^{3}
is given by (2.8), where the �bottom� part  $\Gamma$_{B}\subset\partial $\Omega$ is determined by a function
 $\Phi$_{B}\in C^{3}(\mathcal{T}^{2}) satisfy ing (3.16),  $\Phi$_{T}\equiv $\pi$ ,

and  $\Phi$_{B}\neq 0 . Furthermore, suppose that

 $\beta$=1 in (2.1), and F=|x_{3}| in (1.2). Let \{$\rho$_{ $\epsilon$}, \mathrm{u}_{ $\epsilon$}, $\theta$_{ $\epsilon$}\}_{ $\epsilon$>0} be a family of variational

solutions to system (1.1-1.8) supplemented with the boundary conditions (2.11),
(2.12), and 2.14) in the sense of Definition 2.1, with

Ma = $\epsilon$ ,
Fr =\sqrt{ $\epsilon$}, a= $\epsilon$.

Assume the the solution \{$\rho$_{ $\epsilon$}, \mathrm{u}_{ $\epsilon$}, $\theta$_{ $\epsilon$}\} emanates from the initial state

$\rho$_{ $\epsilon$,0}=\overline{ $\rho$}+ $\epsilon \rho$_{ $\epsilon$,0}^{(1)}, \mathrm{u}_{ $\epsilon$,0}, $\theta$_{ $\epsilon$,0}=\overline{ $\theta$}+ $\epsilon \theta$_{ $\epsilon$,0}^{(1)}
satisfy ing (3. 7), where

$\rho$_{ $\epsilon$,0}^{(1)}\rightarrow$\rho$_{0}^{(1)}, \mathrm{u}_{ $\epsilon$,0}\rightarrow \mathrm{u}_{0}, $\theta$_{ $\epsilon$,0}^{(1)}\rightarrow$\theta$_{0}^{(1)}weakly-(^{*}) in L^{\infty}( $\Omega$) .

Then

$\rho$_{ $\epsilon$}\rightarrow\overline{ $\rho$}inC([0, T];L^{1}( $\Omega$))\cap L^{\infty}(0, T;L^{\frac{5}{3}} 
$\theta$_{ $\epsilon$}\rightarrow\overline{ $\theta$} in L^{2}(0, T;W^{1,2}

and, passing to a subsequence if necessary,
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\mathrm{u}_{ $\epsilon$}\rightarrow \mathrm{U} weakly in L^{2}(0, T;W^{1,2}(; R)) and (strongly) in L^{2}(0, T;L^{2}( ; R^{3}

$\rho$_{ $\epsilon$}^{(1)}=\displaystyle \frac{$\rho$_{ $\epsilon$}-\overline{ $\rho$}}{ $\epsilon$}\rightarrow$\rho$^{(1)}weakly-(^{*}) in L^{\infty}(0, T;L^{\frac{5}{3}}

$\theta$_{ $\epsilon$}^{(1)}=\displaystyle \frac{$\theta$_{ $\epsilon$}-\overline{ $\theta$}}{ $\epsilon$}\rightarrow$\theta$^{(1)} weakly in L^{2}(0, T;W^{1,2}

where the trio

\displaystyle \mathrm{U}, r=$\rho$^{(1)}+\overline{ $\rho$}(\frac{1}{\partial_{ $\rho$}p_{F}(\overline{ $\rho$},\overline{ $\theta$})}-\frac{\overline{ $\theta$}\overline{ $\alpha$}^{2}}{\overline{c}_{p}})(x_{3}-\frac{ $\pi$}{2}) ,

 $\Theta$=\displaystyle \overline{ $\theta$}+$\theta$^{(1)}+\frac{\overline{ $\theta$}\overline{ $\alpha$}}{\overline{c}_{p}}(x_{3}-\frac{ $\pi$}{2})
represents a (weak) solution of system (3.2-3.5) in the sense of Definition 3.1, with

the initial data

\displaystyle \mathrm{U}_{0}=\mathrm{H}[\mathrm{u}_{0}], $\Theta$_{0}=\overline{ $\theta$}+\frac{\overline{c}_{v}}{\overline{c}_{p}}$\theta$_{0}^{(1)}-\frac{2}{3}\frac{\overline{ $\theta$}\overline{c}_{v}}{\overline{ $\rho$}\overline{c}_{p}}$\rho$_{0}^{(1)},
and the heat flux through the boundary given by

F_{b}=\displaystyle \frac{\overline{ $\theta$}\overline{ $\alpha$}}{\overline{c}_{p}} on the lateral boundary $\Gamma$_{B}\cup$\Gamma$_{T}.

Here the symbol \mathrm{H} stands for the Helmholtz projection onto the space of divergenceless
vector fields.

4 Strongly stratified flows

The last part of this survey focuses on a qualitatively new situation, where both Mach

and Froude numbers tend to zero at the same rate, specifically,

\mathrm{M}\mathrm{a} =\mathrm{F}\mathrm{r}= $\epsilon$ ; (4.1)

whence the limit flow is strongly stratified, that means, the density depends effectively
on the vertical coordinate.

The results will be given only for the reduced Navier‐Stokes system of equations
governing the time evolution of the density  $\rho$= $\rho$(t, x) and the velocity \mathrm{u}=\mathrm{u}(t, x) of

a compressible viscous fluid:

\partial_{t} $\rho$+\mathrm{d}\mathrm{i}\mathrm{v}_{x}( $\rho$ \mathrm{u})=0 , (4.2)

\displaystyle \partial_{t}( $\rho$ \mathrm{u})+\mathrm{d}\mathrm{i}\mathrm{v}_{x}( $\rho$ \mathrm{u}\otimes \mathrm{u})+\frac{1}{\mathrm{M}\mathrm{a}^{2}}\nabla_{x}p( $\rho$)=\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathbb{S}+\frac{1}{\mathrm{F}\mathrm{r}^{2}} $\rho$\nabla_{x}g , (4.3)

where p denotes the pressure, g=g(x)=-x_{3} represents the gravitational potential,
and the symbol \mathrm{S} stands for the viscous stress tensor assumed to be given through
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Newton�s rheological relation (1.6), with  $\mu$>0 constant and  $\eta$\equiv 0 . In particular, the

effect of temperature changes is neglected.
Keeping in mind possible applications to atmospheric flows we consider  $\Omega$ as in

(2.8) with a flat boundary determined through (3.1), where

\mathrm{u}\cdot \mathrm{n}=0 , (Sn) \times \mathrm{n}=0 on the lateral boundary $\Gamma$_{B}\cup$\Gamma$_{T} . (4.4)

As we have observed in Section 3, such a setting is �equivalent� to the purely periodic
boundary conditions, and may be viewed as a suitable compromise between physical
interpretation and mathematical simplicity of the model.

Similarly to Section 3, we take the initial data

 $\rho$(0, \cdot)=$\rho$_{ $\epsilon$,0}=$\rho$_{s}+ $\epsilon \rho$_{ $\epsilon$,0}^{(1)}, \mathrm{u}(0, \cdot)=\mathrm{u}_{ $\epsilon$,0} , (4.5)
and consider the pressure term in the form and

p=p_{ $\epsilon$}( $\rho$)= $\rho$+ $\epsilon$ p_{d}( $\rho$) . (4.6)
The zeroth order term $\rho$_{s} in (4.5) stands for the (unique) solution of the static

problem

\nabla_{x}p_{ $\epsilon$}(\tilde{ $\rho$})=\tilde{ $\rho$}\nabla_{x}g in  $\Omega$, \displaystyle \int_{ $\Omega$}\tilde{ $\rho$}\mathrm{d}x=m , (4.7)

or, with the  $\epsilon$ dependent perturbation in (4.6) neglected,

\tilde{ $\rho$}=\tilde{ $\rho$}(x_{3})=k\exp(-x_{3}) , (4.8)

where the constant k>0 is uniquely determined by the total mass constraint

\displaystyle \int_{ $\Omega$}\tilde{ $\rho$}\mathrm{d}x=m . Without loss of generality, we shall always assume that m was fixed so

that k=1 . Moreover, we take, for simplicity,

p_{d}\equiv 0 on [0, \overline{ $\rho$}] ,
where \displaystyle \overline{ $\rho$}>\sup_{x\in $\Omega$}\tilde{ $\rho$}(x) . (4.9)

Consequently, the unique solution of (4.7) is independent of  $\epsilon$ and given through
formula (4.8) with  k=1.

Similarly to the weak solutions of the incompressible Navier‐Stokes system intro‐

duced by Leray [28], we restrict our consideration to a class of weak solutions to

problem (4.1-4.5) satisfying the energy inequality

E( $\tau$)+\displaystyle \mathrm{M}\mathrm{a}^{2}\int_{0}^{ $\tau$}\int_{ $\Omega$}\mathrm{S}:\nabla_{x}\mathrm{u}\mathrm{d}x\mathrm{d}t\leq E_{0} for a.a  $\tau$>0 , (4.10)

where

E( $\tau$)\displaystyle \equiv\int_{ $\Omega$}(\mathrm{M}\mathrm{a}^{2} $\rho$|\mathrm{u}|^{2}+P( $\rho$)+\frac{\mathrm{M}\mathrm{a}^{2}}{\mathrm{F}\mathrm{r}^{2}} $\rho$ x_{3})( $\tau$) dx
,

E_{0}\displaystyle \equiv\int_{ $\Omega$}(\mathrm{M}\mathrm{a}^{2}$\rho$_{0}|\mathrm{u}_{0}|^{2}+P($\rho$_{0})+\frac{\mathrm{M}\mathrm{a}^{2}}{\mathrm{F}\mathrm{r}^{2}}$\rho$_{0}x_{3}) dx
,

with

P( $\rho$)\displaystyle \equiv $\rho$\int_{1}^{ $\rho$}\frac{p(z)}{z^{2}} dz . (4.11)

The existence of solutions of this type was proved by Lions [29] for p_{d}( $\rho$)\approx$\rho$^{ $\gamma$},  $\gamma$\displaystyle \geq\frac{9}{5},
and this result was later extended for  $\gamma$>\displaystyle \frac{3}{2} in [20].
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In order to state our result, we need a �(weighted� Helmholtz projection that can

be defined as follows. For any \mathrm{v}\in W^{1,p}( $\Omega$;R^{3}) , \mathrm{v}\cdot \mathrm{n}|_{\partial $\Omega$}=0 ,
we set

\mathrm{H}_{\mathrm{w}}[\mathrm{v}]=\mathrm{v}-\tilde{ $\rho$}\nabla_{x} $\Psi$ and \mathrm{H}_{\mathrm{w}}^{\perp}[\mathrm{v}]=\tilde{ $\rho$}\nabla_{x} $\Psi$ (4.12)

where  $\Psi$ is the unique solution of the Neumann problem

\mathrm{d}\mathrm{i}\mathrm{v}_{x}(\tilde{ $\rho$}\nabla_{x} $\Psi$)= divv in  $\Omega$, \nabla_{x} $\Psi$\cdot \mathrm{n}|_{\partial $\Omega$}=0, \displaystyle \int_{ $\Omega$} $\Psi$ \mathrm{d}x=0 . (4.13)

Note that \mathrm{H}[\mathrm{v}] and \mathrm{H}_{\mathrm{w}}^{\perp}[\mathrm{v}] are orthogonal in the weighted Hilbert space L^{2}
1/\tilde{ $\rho$}

en‐

dowed with the scalar product

<\displaystyle \mathrm{u}, \mathrm{v}>_{L_{1/\overline{ $\rho$}}^{2}}=\int_{ $\Omega$}\mathrm{u}(x)\cdot \mathrm{v}(x)\frac{\mathrm{d}x}{\tilde{ $\rho$}}.
Similarly to the properties of the standard Helmholtz projection, it can be shown

that \mathrm{H}_{\mathrm{w}} is a bounded linear operator on W_{n}^{1,p}( $\Omega$;R^{3}) as well as on L^{p}( $\Omega$;R^{3}) for any

 1<p<\infty , provided that we identify, in the latter case, divv with a linear form

 $\phi$\displaystyle \mapsto\int_{ $\Omega$}\mathrm{v}\cdot\nabla_{x} $\phi$ \mathrm{d}x bounded on W^{1,p}( $\Omega$) . Here, we have set

W_{n}^{1,p}( $\Omega$;R^{3})=

\{\mathrm{v}\in W^{1,p}(\mathcal{T}^{2}\times(0,  $\pi$))|v_{3}(x_{1}, x_{2},0)=v_{3}(x_{1}, x_{2},  $\pi$)=0 for a.a. (x_{1}, x_{2})\in \mathcal{T}^{2}\}.
The necessity to work with a �weighted� Helmholtz decomposition reflects the

fact that we have to deal with an acoustic equation, similar to system (3.14), (3.15),
where the wave speed depends on the vertical coordinate.

Having collected all the preliminary material, we are ready to formulate our main

result (see Theorem 1.1 in [17]).

Theorem 4.1 Assume that \{$\rho$_{ $\epsilon$}, \mathrm{u}_{ $\epsilon$}\}_{ $\epsilon$>0} is a sequence of finite energy weak solutions

to problem (4\cdot 1-4\cdot 5) (defined in a similar way as in Definition 2.1 above), where

Ma =\mathrm{F}\mathrm{r}= $\epsilon$,

the initial data are given by (4\cdot 5) , with

\displaystyle \int_{ $\Omega$}$\rho$_{ $\epsilon$,0}^{(1)}\mathrm{d}x=0, \{$\rho$_{ $\epsilon$,0}^{(1)}\}_{ $\epsilon$>0} bounded in L^{\infty}() and \mathrm{u}_{ $\epsilon$,0}\rightarrow \mathrm{u}_{0} weakly in L^{2}( $\Omega$;R^{3}) ,

and the pressure can be written as p_{ $\epsilon$}( $\rho$)= $\rho$+ $\epsilon$ p_{d}( $\rho$) ,
with  p_{d}\in C^{1}[0, \infty ) such that

 p_{d}'\geq 0 on [0, \infty)

p_{d}( $\rho$)=\left\{\begin{array}{l}
0 for  $\rho$\in[0, \overline{ $\rho$}],\\
$\rho$^{\frac{5}{3}} for  $\rho$\geq 2\overline{ $\rho$},
\end{array}\right.
where \displaystyle \overline{ $\rho$}>\sup_{x\in $\Omega$}\tilde{ $\rho$}(x) .

Then
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$\rho$_{ $\epsilon$}\rightarrow\tilde{ $\rho$} in L^{\infty}(0, T;L^{\frac{5}{3}}

and, at least for a subsequence,

\mathrm{u}_{ $\epsilon$}\rightarrow \mathrm{u} weakly in L^{2}(0, T;W^{1,2} (; R^{3}

where \tilde{ $\rho$} satisfies (4\cdot 7) , and the limit velocity field \mathrm{u} is a weak solution (in the sense

of Definition 4.1 below) to problem

\partialt(ũ) + div(ũ \otimes u) +\tilde{}p = $\mu$ \displaystyle \mathrm{d}\mathrm{i}\mathrm{v}_{x}(\nabla_{x}\mathrm{u}+\nabla_{x}\mathrm{u}^{t}-\frac{2}{3}\mathrm{d}\mathrm{i}\mathrm{v}_{x}\mathrm{u}\mathrm{I}) , (4.14)

div(ũ) =0 , (4.15)

supplemented with the boundary conditions (4\cdot 4) , and satisfy ing the initial conditions

ũ(0,) =\mathrm{H}_{\mathrm{w}} [ũ]. (4.16)

System (4.14-4.16) is usually termed anelastic approximation. In the present
setting, it can be viewed as a simple model of an isothermal atmosphere with the

background temperature  $\Theta$\equiv 1 (see Durran [11], Lipps and Hemler [32], among

others). Related models and further discussion can be found in the monograph by
Majda [33]. Note that a suitable definition of weak solutions of system (4.14-4.16)
reads as follows:

Definition 4.1 We shall say that a function \mathrm{u}\in L^{2}(0, T;W_{n}^{1,2}(; R)) is a weak

solution of system (4\cdot 14-4\cdot 16) if the following conditions hold:

\bullet

div(ũ) =0 a.a. on (0, T)\times $\Omega$ ;

\bullet momentum equation (4\cdot 14) , together with initial condition (4\cdot 16) , are satisfied
in the sense of distributions, more specifically, the integral identity

\displaystyle \int_{0}^{T}\int_{ $\Omega$} (ũ \cdot \partial_{t} $\varphi$+ ũ \otimes u: \displaystyle \nabla_{x} $\varphi$)\mathrm{d}x\mathrm{d}t=\int_{0}^{T}\int_{ $\Omega$}\mathrm{S}:\nabla_{x} $\varphi$ \mathrm{d}x\mathrm{d}t-\int_{ $\Omega$}\tilde{ $\rho$}\mathrm{u}_{0}\cdot $\varphi$ \mathrm{d}x
holds for any test function

 $\varphi$\in \mathcal{D}([0, T);\mathcal{D}(\overline{ $\Omega$};R^{3}  $\varphi$\cdot \mathrm{n}|_{\partial $\Omega$}=0, \mathrm{d}\mathrm{i}\mathrm{v}_{x}(\tilde{ $\rho$} $\varphi$)=0 in (0, T)\times $\Omega$ . (4.17)

This can be viewed as a natural generalization of the standard definition of a

weak solution in the spirit of Leray�s original paper [28] (see also Ladyzhenskaya
[27] or Temam [39] for more recent exposition). Accordingly, the satisfaction of the

initial conditions reduces to (4.16), reflecting our inability to control the pressure that

appears only implicitly through the choice of test functions (4.17).
Let us note, on the point of conclusion, that a suitable generalization of the above

result to the complete Navier‐Stokes‐Fourier system is far from being obvious and will

be the main topic of future work.
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