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Abstract

We study the motion of a viscous incompressible fluid filling the whole

3‐dimensional space exterior to a rigid body that is rotating with con‐

stant angular velocity  $\omega$ . By using a frame attached to the body, the

problem is reduced to an equivalent one in a fixed exterior domain.

Then the linear part of the reduced equation is

\partial_{t}u=\triangle u+( $\omega$\times x)\cdot\nabla u- $\omega$\times u-\nabla p, \mathrm{d}\mathrm{i}\mathrm{v}u=0.

For the exterior problem with the Dirichlet boundary condition, we

develop the L_{p}-L_{q} estimates (and the L_{p,1}-L_{q,1} estimates as well) of

the generated semigroup, which is no longer analytic due to the drift

operator with the coefficient  $\omega$\times x . We next apply them to the Navier‐

Stokes equation to prove the global existence of a unique solution which

goes to a stationary flow as  t\rightarrow\infty with some definite rates when both

the stationary flow and the initial disturbance are sufficiently small in

 L_{3,\infty} ( \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-L_{3} space).

1 Introduction

Let us consider the motion of a viscous fluid filling an infinite space exterior

to a rigid body, that moves in a prescribed way such as rotation and transla‐

tion. In order to understand the rotation effect mathematically, this article

studies the purely rotating case. Thus, suppose that the body is rotating
about y_{3} ‐axis with constant angular velocity  $\omega$=(0,0, a)^{T}, a\in \mathbb{R}; here and

hereafter, all vectors are column ones. Let  $\Omega$ be an exterior domain in \mathbb{R}^{3}
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with boundary \partial $\Omega$\in C^{1,1} Unless the body is axisymmetric, the domain

occupied by the fluid varies with time t
,

and it is described as

 $\Omega$(t)=\{y=\mathcal{O}(at)x;x\in $\Omega$\}, \mathcal{O}(t)=\left(\begin{array}{lll}
\mathrm{c}\mathrm{o}\mathrm{s}t & -\mathrm{s}\mathrm{i}\mathrm{n}t & 0\\
\mathrm{s}\mathrm{i}\mathrm{n}t & \mathrm{c}\mathrm{o}\mathrm{s}t & 0\\
0 & 0 & 1
\end{array}\right)
We consider the Navier‐Stokes equation

\partial_{t}\overline{u}+\overline{u}\cdot\nabla_{y}\overline{u}=\triangle_{y}\overline{u}-\nabla_{y}\overline{p}, \mathrm{d}\mathrm{i}\mathrm{v}_{y}\overline{u}=0,

for y\in $\Omega$(t) , t>0 , subject to the boundary and initial conditions

\overline{u}|_{\partial $\Omega$(t)}= $\omega$\times y, \overline{u}\rightarrow 0\mathrm{a}\mathrm{s}|y|\rightarrow\infty, \overline{u}(y, 0)=u_{0}(y) ,

where \overline{u}(y, t)=(\tilde{u}^{1},\tilde{u}^{2},\tilde{u}^{3})^{T} and \overline{p}(y, t) are respectively unknown veloc‐

ity and pressure of the fluid; u_{0} is the given initial velocity;  $\omega$\times y=

a(-y_{2}, y_{1},0)^{T} is the velocity of the rotating body so that the boundary
condition is the usual nonslip one. A reasonable way from both mathemat‐

ical and physical points of view is to take the frame x=\mathcal{O}(at)^{T}y attached

to the body ([3], [13], [21]). The following change of functions is thus made:

u(x, t)=\mathcal{O}(at)^{T}\overline{u}(y, t) , p(x, t)=\overline{p}(y, t) .

The problem is then reduced to

\partial_{t}u+u\cdot\nabla u=\triangle u+M_{a}u-\nabla p, \mathrm{d}\mathrm{i}\mathrm{v}u=0 (1.1)

in the fixed domain  $\Omega$\times(0, \infty) subject to

u|_{\partial $\Omega$}= $\omega$\times x, u\rightarrow 0\mathrm{a}\mathrm{s}|x|\rightarrow\infty, u(x, 0)=u_{0}(x) , (1.2)

where

M_{a}=( $\omega$\times x)\cdot\nabla- $\omega$\times,  $\omega$=(0,0, a)^{T} (1.3)

Our goal is to prove that the problem (1.1)-(1.2) possesses a unique
global solution u(t) which goes to a stationary flow u_{s} as  t\rightarrow\infty when  $\omega$

and  u_{0}-u_{s} are small in a sense. Thus the first step is to find a solution u_{s}

of the stationary problem

-\triangle u_{s}-M_{a}u_{s}+\nabla p_{s}+u_{s}\cdot\nabla u_{s}=0, \mathrm{d}\mathrm{i}\mathrm{v}u_{s}=0
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in  $\Omega$ subject to

 u_{s}|_{\partial $\Omega$}= $\omega$\times x, u_{s}\rightarrow 0 as |x|\rightarrow\infty.

Look at the linear part of the first equation of (1.1). The crucial drift

operator ( $\omega$\times x)\cdot\nabla has a variable coefficient growing at infinity and causes

some difficulties, which indicate that the term ( $\omega$\times x)\cdot\nabla u is never subor‐

dinate to the viscous term \triangle u even if | $\omega$| is small. In fact, the semigroup
generated by the operator \triangle+M_{a} is not an analytic one in, say, L_{2} ([21],
[22], [10]). And also, the pointwise estimate of the fundamental solution of

the operator \triangle+M_{a} is slightly worse than 1/|x-y| for large (x, y) ([9],
[25]).

Up to now, particularly in the last decade, a lot of efforts have been

made on the problems above or some related ones; see [3], [6], [15], [17], [18],
[21] for the nonstationary flow, [7], [8], [9], [13], [14], [16], [25], [38] for the

stationary one. Among them, the stationary solutions of [14] and [8] can

be taken as the basic flow around which a global solution exists since their

solutions enjoy so good asymptotic behavior at infinity that one can expect
the stability. In fact, Galdi [14] derived pointwise estimates

|u_{s}(x)|\leqq c/|x|, |\nabla u_{s}(x)|+|p_{s}(x)|\leqq c/|x|^{2}

of a unique stationary solution provided that  $\omega$ is small enough and that, in

case the external force  f=\mathrm{d}\mathrm{i}\mathrm{v}F is present, it has some decay properties
and is also small in a sense. Another outlook on the pointwise estimates

above in a different framework by use of function spaces has been recently
provided by Farwig and Hishida [8] when the external force f=\mathrm{d}\mathrm{i}\mathrm{v}F is

taken from a larger class F\in L_{3/2,\infty}( $\Omega$) ,
where L_{q,\infty}( $\Omega$) is the weak‐Lq

space, one of the Lorentz spaces introduced below. To be more precise, \mathrm{a}

stationary solution of class

u_{s}\in L_{3,\infty}( $\Omega$) , (\nabla u_{s},p_{s})\in L_{3/2,\infty}( $\Omega$) (1.4)

has been uniquely constructed for small  $\omega$ and \Vert F\Vert_{L_{3/2,\infty}}( $\Omega$) � subject to

\Vert u_{s}\Vert_{L_{3,\infty}( $\Omega$)}+\Vert(\nabla u_{s},p_{s})\Vert_{L_{3/2,\infty}}( $\Omega$)\leqq C(| $\omega$|+\Vert F\Vert_{L_{3/2,\infty}}( $\Omega$)) . (1.5)

This result can be ragarded as a generalization of [29] and [37] to the rotating
body problem.

The solvability of the initial value problem (1.1)-(1.2) was studied in [3],
[15], [18] and [21]. Borchers [3] constructed weak solutions for u_{0} in L_{2}( $\Omega$) .

As usual, we do not know the uniqueness of weak solutions. Later on, in [21]
the existence of a unique solution locally in time was proved when, roughly
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speaking, u_{0} possesses the regularity W_{2}^{1/2}( $\Omega$) . This local existence result

has been recently extended to the general L_{q}‐theory by Geissert, Heck and

Hieber [18] to replace W_{2}^{1/2}( $\Omega$) by L_{3}( $\Omega$) . Galdi and Silvestre [15] showed

the unique existence of local and global strong solutions by the Galerkin

method. Their global solution was constructed around a stationary solution

u_{s} of Galdi [14] and the stability of the solution u_{s} was also proved. To be

more precise, if  $\omega$ is small and if  u_{0}-u_{s} is taken from W_{2}^{2}( $\Omega$) with small

W_{2}^{1} ‐norm, together with u_{0}|_{\partial $\Omega$}= $\omega$\times x and ( $\omega$\times x)\cdot\nabla(u_{0}-u_{s})\in L_{2}( $\Omega$) ,

then there is a global solution u(t) which satisfies \Vert\nabla(u(t)-u_{s})\Vert_{L_{2}( $\Omega$)}\rightarrow 0
as t\rightarrow\infty.

In this article we prove the stability of the stationary solution u_{s} of [8],
[14] for small  $\omega$ and  u_{0}-u_{s}\in L_{3,\infty}( $\Omega$) . Although the global solution of [15]
is more regular than ours, new contribution of our global existence theorem

is to deduce the definite decay rates of the disturbance u(t)-u_{s} ,
see (9.4),

which seem to be optimal.
For the proof, the most difficult step is to derive some decay estimates

of the solution to the following Stokes equation with rotation effect, which

is of own interest:

\partial_{t}u=\triangle u+M_{a}u-\nabla $\pi$, \mathrm{d}\mathrm{i}\mathrm{v}u=0 (1.6)

in  $\Omega$\times(0, \infty) subject to u|_{\partial $\Omega$}=0 and u(x, 0)=u_{0}(x) . The strategy based

on some cut‐off techniques together with spectral analysis is traced back to

Shibata [34] and is similar to that of Iwashita [27] and also Kobayashi and

Shibata [28], however, we need several new ideas because the semigroup gen‐

erated by the problem above is never analytic unlike [27], [28]. In particular,
it is important to derive the behavior of the associated resolvent for large  $\lambda$

along the imaginary axis in the complex plane as well as its regularity for

small  $\lambda$.

We give a remark on the case of time‐dependent angular velocity  $\omega$=

 $\omega$(t) ,
which was discussed by [3], [6] on weak solutions, by [23] on a local

unique solution and by [17] on time‐periodic solutions. For the global ex‐

istence and large time behavior of a unique solution as in this article, we

need two difficult steps. One is to find a suitable basic flow instead of sta‐

tionary solutions, the other is not only the asymptotic behavior of evolution

operator generated by (1.6) with M_{a}=M_{a}(t) but also the analysis of full

linearization around the basic flow above. Although the method developed
in this article cannot be directly employed, some ideas could be applied and

the problem will be an interesting object in the future.

Finally, we would like to mention a physical example which has relation

to our theory, that is, the particle sedimentation in a viscous fluid. This is

of practical interest and the problem is to find a falling motion of a rigid
body under its own weight in an infinite fluid, see Weinberger [39] and Galdi
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[13] for details. The body undergoes a rotation and a translation which are

to be determined from equilibrium conditions on the boundary; that is, \mathrm{a}

fluid‐body interaction system has to be solved. Indeed the present article

is devoted to the fluid motion around a body which moves in a prescribed
way, but our study is certainly a step toward an analysis of that problem.

This article is organized as follows. The next section provides the main

results on some decay estimates of the solution to (1.6), namely the Stokes

semigroup with rotation effect. In sections 3 and 4 the resolvent problems in

the whole space \mathbb{R}^{3} and in a bounded domain are respectively studied. We

construct, in section 5, a parametrix of the resolvent in exterior domains.

Section 6 provides the reconstruction and some estimates near t=0 of the

semigroup when the initial velocity has a bounded support. In section 7 the

local energy decay estimate of the semigroup is deduced. In section 8 we

derive L_{p}-L_{q} estimates of the semigroup. The final section is devoted to an

application of decay estimates of the semigroup to the Navier‐Stokes flow.

In each section only some ideas and key points are explained. For details,
see [26].

This work was partially supported by Grand‐in‐Aid for Scientific Re‐

search (B) 15340204, (C) 16540143, from the Japan Society for the Promo‐

tion of Science.

2 Main results on the Stokes flow

To state our results, we introduce some function spaces. We adopt the same

symbols for vector and scalar function spaces. Let C_{0}^{\infty}( $\Omega$) consist of all

C^{\infty} ‐functions with compact supports in  $\Omega$ . For  1\leqq q\leqq\infty and  0\leqq k\in \mathbb{Z},
we denote by W_{q}^{k}( $\Omega$) ,

with W_{q}^{0}( $\Omega$)=L_{q}( $\Omega$) ,
the usual L_{q}‐Sobolev space of

order k . Let  1<q<\infty and  1\leqq r\leqq\infty . Then the Lorentz spaces are

defined by

 L_{q,r}( $\Omega$)=(L_{1}( $\Omega$), L_{\infty}( $\Omega$))_{1-1/q,r},
where ) is the real interpolation functor, see [1]. It is well known that f
is in L_{q,\infty}( $\Omega$) if and only if

\displaystyle \sup a |\{x\in $\Omega$;|f(x)|> $\sigma$\}|^{1/q}<\infty

and that  L_{q,\infty}( $\Omega$) is the dual space of L_{q/(q-1),1}( $\Omega$) . Note that C_{0}^{\infty}( $\Omega$) is

not dense in L_{q,\infty}( $\Omega$) . We next introduce some solenoidal function spaces.

Let C_{0, $\sigma$}^{\infty}( $\Omega$) be the class of all C_{0}^{\infty} ‐vector fields f which satisfy \mathrm{d}\mathrm{i}\mathrm{v}f=0 in

 $\Omega$ . For  1<q<\infty we denote by  J_{q}( $\Omega$) the completion of C_{0, $\sigma$}^{\infty}( $\Omega$) in L_{q}( $\Omega$) .

Then the Helmholtz decomposition of L_{q}‐vector fields holds, see Miyakawa
[32]:

L_{q}( $\Omega$)=J_{q}( $\Omega$)\oplus\{\nabla $\pi$\in L_{q}( $\Omega$); $\pi$\in L_{q,loc}(\overline{ $\Omega$})\}.
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Let P denote the projection operator from L_{q}( $\Omega$) onto J_{q}( $\Omega$) associated with

the decomposition. Then the operator \mathcal{L}_{a} is defined by

\left\{\begin{array}{l}
D(\mathcal{L}_{a})=\{u\in J_{q}( $\Omega$)\cap W_{q}^{2}( $\Omega$);u|_{\partial $\Omega$}=0, ( $\omega$\times x)\cdot\nabla u\in L_{q}( $\Omega$)\},\\
\mathcal{L}_{a}u=-P[\triangle u+M_{a}u],
\end{array}\right.
see (1.3). It is proved by Geissert, Heck and Hieber [18] that the operator
-\mathcal{L}_{a} generates a C_{0} ‐semigroup \{T_{a}(t)\}_{t>0} on the space J_{q}( $\Omega$) ,  1<q<\infty
(see also [20] for the case  q=2 ). \mathrm{I}\mathrm{n}\mathrm{d}^{=}\mathrm{e}\mathrm{e}\mathrm{d} the semigroup T_{a}(t) enjoys a

certain smoothing properties, but it is not an analytic one, see Hishida [21].
Concerning the essential spectrum of the generator -\mathcal{L}_{a} on J_{2}( $\Omega$) ,

we refer

to Farwig and Neustupa [10].
We need also the solenoidal Lorentz spaces, which are defined by

J_{q,r}( $\Omega$)=(J_{q0}( $\Omega$), J_{q_{1}}( $\Omega$))_{ $\theta$,r}
where 1<q_{0}<q<q_{1}<\infty,  1\leqq r\leqq\infty and  1/q=(1- $\theta$)/q_{0}+ $\theta$/q_{1} . Then

\{T_{a}(t)\}_{t\geqq 0} is extended to the semigroup on the space J_{q,r}( $\Omega$) .

We now fix R>0 such that \mathbb{R}^{3}\backslash  $\Omega$\subset B_{R}=\{x\in \mathbb{R}^{3};|x|. <R\} ,
and set

$\Omega$_{R}= $\Omega$\cap B_{R} . By W_{q}^{-1}($\Omega$_{R}) we denote the dual space of W_{q/(q-1)}^{1}($\Omega$_{R})=
\{v\in W_{q/(q-1)}^{1}($\Omega$_{R});v|_{\partial$\Omega$_{R}}=0\} . The space L_{q,[R+2]}( $\Omega$) or L_{q,[R+2]}(\mathbb{R}^{3})
consists of L_{q}‐vector fields v satisfying v(x)=0 almost everywhere for

|x|\geqq R+2.
In the linear theory, one does not need any smallness condition on the

angular velocity  $\omega$=(0,0, a)^{T} . But most of the estimates are not uniform

for large  $\omega$
, however, they are uniform for  $\omega$ with | $\omega$|=|a|\leqq a_{0} ,

where

a_{0}>0 is arbitrary. In what follows, the constant C which may change from

line to line depends on a_{0}>0 and increases as a_{0} grows even if this will not

be specified.
The main theorems on some decay properties of the semigroup T_{a}(t)

read as follows.

Theorem 2.1 (Local energy decay). Let  1<q<\infty . For arbitrary
 a_{0}>0 ,

there is a constant C=C(q, R, a_{0})>0 such that

\Vert T_{a}(t)Pf\Vert_{W_{q}^{1}($\Omega$_{R+3})}\leqq C\ell_{0}(t)\Vert f\Vert_{L_{q}( $\Omega$)} (2.1)

\Vert\partial_{t}T_{a}(t)Pf\Vert_{W_{q}^{-1}($\Omega$_{R+3})}+\Vert $\pi$(t)\Vert_{L_{q}($\Omega$_{R+3})}\leqq C\ell_{1}(t)\Vert f\Vert_{L_{q}( $\Omega$)} (2.2)

for all t>0, f\in L_{q,[R+2]}( $\Omega$) and  $\omega$ with | $\omega$|=|a|\leqq a_{0} . Here,  $\pi$(x, t) is the

associated pressure that satisfies \displaystyle \int_{$\Omega$_{R+3}} $\pi$(x, t)dx=0 ,
see (1.6), and

\ell_{0}(t)=\left\{\begin{array}{ll}
t^{-1/2}, & 0<t\leqq 1,\\
t^{-3/2}, & t>1,
\end{array}\right. \ell_{1}(t)=\left\{\begin{array}{ll}
t^{-\frac{1}{2}}(1+\frac{1}{q}) , & 0<t\leqq 1,\\
t^{-3/2}, & t>1.
\end{array}\right.
6



Theorem 2.2 ( L_{p}-L_{q} estimate). Suppose that

\left\{\begin{array}{l}
1<p\leqq q<\infty\\
 1<p\leqq q\leqq 3
\end{array}\right.
and let a_{0}>0 be arbitrary. Set

for j=0,
(2.3)

for j=1,

 $\kappa$=\displaystyle \frac{3}{2}\left(\begin{array}{ll}
1 & 1\\
--- & \\
p & q
\end{array}\right)
Then there is a constant C=C(p, q, a_{0})>0 such that

\Vert\nabla^{j}T_{a}(t)f\Vert_{L_{q}( $\Omega$)}\leqq Ct^{-j/2- $\kappa$}\Vert f\Vert_{L_{p}( $\Omega$)} (2.4)

for all t>0, f\in J_{p}( $\Omega$) and  $\omega$ with | $\omega$|=|a|\leqq a_{0} . For  q=\infty and  j=0 as

well, estimate (2.4) holds.

Theorem 2.3 ( L_{p,r}-L_{q,r} estimate). Suppose (2.3) and let a_{0}>0 be arbi‐

trary. Let  1\leqq r<\infty . Then there is a constant  C=C(p, q, r, a_{0})>0 such

that

\Vert\nabla^{j}T_{a}(t)f\Vert_{L_{q,r}( $\Omega$)}\leqq Ct^{-j/2- $\kappa$}\Vert f\Vert_{L_{p,r}( $\Omega$)} (2.5)

for all t>0, f\in J_{p,r}( $\Omega$) and  $\omega$ with | $\omega$|=|a|\leqq a_{0} ,
where  $\kappa$ is the same as

in Theorem 2.2.

Estimate (2.4) with the case  p=q tells us the uniform boundedness

of the semigroup in t on J_{q}( $\Omega$) ,
which was not shown in [18], while the

semigroup is contractive on J_{2}( $\Omega$) ,
see [20]. The restriction q\leqq 3 for the

gradient estimate, which was first proved by Iwashita [27] for the case of

the usual Stokes semigroup ( $\omega$=0) ,
is caused by the fact that the effect

from the solution to the whole space problem remains near the boundary. In

fact, Maremonti and Solonnikov [31] pointed out that one cannot avoid that

restriction even when  $\omega$=0 . In view of their proof, we find that this is also

related to the decay structure of stationary solutions. As was mentioned,
the decay of our fundamental solution is slightly worse than that of the usual

Stokes one and thus it is hopeless to improve the restriction q\leqq 3 for the

gradient estimate in our problem as well.

In an application to the Navier‐Stokes equation, we will employ (2.5)
with r=1 rather than (2.4). The reason why we need the estimate in the

Lorentz space will be clarified in the final section.
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3 Resolvent for the whole space problem

The large time behavior of the semigroup T_{a}(t) is closely related to the

regularity for small  $\lambda$ of the resolvent ( $\lambda$ I+\mathcal{L}_{a})^{-1} In the proof of (2.1), the

first step is thus the analysis of the resolvent problem

 $\lambda$ u-\triangle u-M_{a}u+\nabla p=f, \mathrm{d}\mathrm{i}\mathrm{v}u=0 \mathrm{i}\mathrm{n}\mathbb{R}^{3} (3.1)

The solution, which we denote by A_{\mathbb{R}^{3}}( $\lambda$)f ,
is described as the Laplace

transform of the semigroup

(S_{a}(t)f)(x)=\mathcal{O}(at)^{T}(e^{t\triangle}f)(\mathcal{O}(at)x) (3.2)

in the whole space, whose Fourier transform is

(\overline{S_{a}(t)f})( $\xi$)=\mathcal{O}(at)^{T}e^{-| $\xi$|^{2}}{}^{t}\hat{f}(\mathcal{O}(at) $\xi$) ,

and thus we have

u(x)=(A_{\mathbb{R}^{3}}( $\lambda$)f)(x)

=\displaystyle \frac{1}{(2 $\pi$)^{3}}\int_{0}^{\infty}\int_{\mathbb{R}^{3}}e^{-( $\lambda$+| $\xi$|^{2})t}e^{i(\mathcal{O}(at)x)\cdot $\xi$}\mathcal{O}(at)^{T}P( $\xi$)\hat{f}( $\xi$)d $\xi$ dt
(3.3)

for {\rm Re} $\lambda$\geqq 0 and f\in L_{q}(\mathbb{R}^{3}) ,
where P( $\xi$)=I- $\xi$\otimes $\xi$/| $\xi$|^{2} The associated

pressure is given by

p(x)=(Q_{\mathbb{R}^{3}}f)(x)=\displaystyle \frac{1}{(2 $\pi$)^{3}}\int_{\mathbb{R}^{3}}e^{ix\cdot $\xi$}\frac{ $\xi$\cdot\hat{f}( $\xi$)}{i| $\xi$|^{2}}d $\xi$+c_{0}(f) (3.4)

where the constant c_{0}(f) is determined so that \displaystyle \int_{$\Omega$_{R+3}}(Q_{\mathbb{R}^{3}}f)(x)dx=0 . If

in particular f\in L_{q,[R+2]}(\mathbb{R}^{3}) ,
its Fourier image \hat{f} is a smooth function,

from which we find that A_{\mathbb{R}^{3}}( $\lambda$)f possesses a certain regularity for small  $\lambda$

in the localized space  W_{q}^{2}(B_{R+3}) . In fact, we find

\partial_{ $\lambda$}A_{\mathbb{R}^{3}}( $\lambda$)f\sim| $\lambda$-kia|^{-1/2}, k=0, \pm 1

near  $\lambda$=0, \pm ia and A_{\mathbb{R}^{3}}(\cdot)f is of class C^{1} on \overline{\mathbb{C}+}\backslash \{0, \pm ia\} with values in

W_{q}^{2}(B_{R+3}) . Furthermore, we observe

\partial_{ $\lambda$}^{2}A_{\mathbb{R}^{3}}( $\lambda$)f\sim| $\lambda$-kia|^{-3/2}, k=0, \pm 1

\partial_{ $\lambda$}^{2}A_{\mathbb{R}^{3}}( $\lambda$)f\sim| $\lambda$-kia|^{-1/2}, k=\pm 2, \pm 3
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near  $\Lambda$=\{0, \pm ia, \pm 2ia, \pm 3ia\} and A_{\mathbb{R}^{3}}(\cdot)f is of class C^{2} on \overline{\mathbb{C}+}\backslash  $\Lambda$ with

values in  W_{q}^{2}(B_{R+3}) . The observations above provide a justification of the

regularity C^{3/2} of the resolvent A_{\mathbb{R}^{3}}( $\lambda$) for small  $\lambda$ in the sense that

\displaystyle \int_{-K}^{K}\Vert(\partial_{ $\lambda$}A_{\mathbb{R}^{3}})(i( $\tau$+h))-(\partial_{ $\lambda$}A_{\mathbb{R}^{3}})(i $\tau$)\Vert_{W_{q}^{2}(B_{R+3})}d $\tau$\leqq C|h|^{1/2}\Vert f\Vert_{L_{q}(\mathbb{R}^{3})}
(3.5)

for |h|\leqq 1 and f\in L_{q,[R+2]}(\mathbb{R}^{3}) ,
where K>0 is a fixed large number.

The analysis of the resolvent for large  $\lambda$ is also quite important in our

problem because of lack of analyticity of the semigroup. The main point is

that, by integration by parts with respect to  t
,

the resolvent A_{\mathbb{R}^{3}}( $\lambda$) can be

divided into two parts as below: the first term arising from t=0 is something
like parabolic part, that is, its analytic continuation into a sectorial subset of

the left half complex plane is possible, while the second term decays rapidly
as | $\lambda$|\rightarrow\infty in \overline{\mathbb{C}+} , even along the imaginary axis. To be precise, given
arbitrary N\in \mathbb{N}, we have the representation

(A_{\mathbb{R}^{3}}( $\lambda$)f)(x)=\displaystyle \sum_{k=0}^{N-1}M_{a}^{k}( $\lambda$-\triangle_{\mathbb{R}^{3}})^{-(k+1)}P_{\mathbb{R}^{3}}f(x)
+\displaystyle \frac{1}{(2 $\pi$)^{3}}\int_{0}^{\infty}\int_{\mathbb{R}^{3}}\frac{e^{-( $\lambda$+| $\xi$|^{2})t}e^{ix\cdot $\xi$}}{( $\lambda$+| $\xi$|^{2})^{N}} (3.6)

\mathcal{O}(at)^{T}[\overline{M}_{ $\xi$,a}^{N}(P(\cdot)\hat{f})](\mathcal{O} (at)  $\xi$)d $\xi$ dt

in W_{q}^{2}(B_{R+3}) for all f\in L_{q,[R+2]}(\mathbb{R}^{3}) ,
where M_{a} is as in (1.3) and

\overline{M}_{ $\xi$,a}=( $\omega$\times $\xi$)\cdot\nabla_{ $\xi$}- $\omega$\times,  $\omega$=(0,0, a)^{T}

4 Resolvent for the interior problem

Given f\in L_{q}($\Omega$_{R+3}) ,
let us consider the resolvent problem

 $\lambda$ u-\triangle u-M_{a}u+\nabla p=f, \mathrm{d}\mathrm{i}\mathrm{v}u=0 \mathrm{i}\mathrm{n}$\Omega$_{R+3} (4.1)

subject to u|_{\partial$\Omega$_{R+3}}=0 and \displaystyle \int_{$\Omega$_{R+3}}p(x)dx=0 . It is worth while emphasiz‐

ing that the structure of the pressure, see (4.3) with (4.2) below, plays an

important role later.

Using the Helmholtz decomposition (Fujiwara and Morimoto [11])

f=P_{$\Omega$_{R+3}}f+\displaystyle \nabla Q_{$\Omega$_{R+3}}f, \int_{$\Omega$_{R+3}}(Q_{$\Omega$_{R+3}}f)(x)dx=0,
9



one can rewrite the equation

( $\lambda$-\triangle-M_{a})u+\nabla(p-Q_{$\Omega$_{R+3}}f)=P_{$\Omega$_{R+3}}f, \mathrm{d}\mathrm{i}\mathrm{v}u=0

which can be treated as a perturbation from the usual Stokes equation ( $\omega$=
O). In fact, by compactness arg‐ument with use of the Fredholm theorem, we

find that the operator I-M_{a}A_{0}( $\lambda$) has a bounded inverse on J_{q}($\Omega$_{R+3}) for

 $\lambda$\in\overline{\mathbb{C}+} , where (\overline{A}_{0}( $\lambda$),\overline{ $\Pi$}_{0}( $\lambda$)) denotes the solution operator  J_{q}($\Omega$_{R+3})\ni
 g\mapsto(u,  $\pi$) for the problem

 $\lambda$ u-\triangle u+\nabla $\pi$=g, \mathrm{d}\mathrm{i}\mathrm{v}u=0

in $\Omega$_{R+3} subject to u|_{\partial$\Omega$_{R+3}}=0 and \displaystyle \int_{$\Omega$_{R+3}} $\pi$(x)dx= O. Furthermore, the

operator norm of the inverse (I-M_{a}\overline{A}_{0}( $\lambda$))^{-1} is uniformly bounded in

 $\lambda$\in\overline{\mathbb{C}+} because this inverse can be also described as the Neumann series

for large  $\lambda$ . Now, given  g\in J_{q}($\Omega$_{R+3}) ,
it is easily verified that the pair of

u=\overline{A}_{a}( $\lambda$)g :=\overline{A}_{0}( $\lambda$)(I-M_{a}\overline{A}_{0}( $\lambda$))^{-1}g,
 $\pi$=\overline{ $\Pi$}_{a}( $\lambda$)g:=\overline{ $\Pi$}_{0}( $\lambda$)(I-M_{a}\overline{A}_{0}( $\lambda$))^{-1}g,

satisfies

( $\lambda$-\triangle-M_{a})u+\nabla $\pi$=g, \mathrm{d}\mathrm{i}\mathrm{v}u=0

in $\Omega$_{R+3} subject to u|_{\partial$\Omega$_{R+3}}=0 and \displaystyle \int_{$\Omega$_{R+3}} $\pi$(x)dx= O. Obviously, \overline{A}_{a}( $\lambda$)
enjoys the same decay properties for large  $\lambda$ as the parabolic resolvent \underline{\overline{A}}_{0}( $\lambda$)
does. The following decay of the pressure, which follows from that of $\Pi$_{0}( $\lambda$) ,

is also important:

\Vert\partial_{$\lambda$^{$\Pi$_{a}( $\lambda$)g\Vert_{L_{q}($\Omega$_{R+3})}}}^{k-}\leqq C(1+| $\lambda$|)^{-(1-1/q)/2-k}\Vert g\Vert_{L_{q}($\Omega$_{R+3})} (4.2)

for k\in \mathbb{N}\cup\{0\},  1<q<\infty . For the case  $\omega$=0 ,
this rate of decay is a

refinement of a related result shown by Noll and Saal [33, Lemma 3.11] and

it is proved by means of duality argument together with an interpolation
inequality. Set

A_{$\Omega$_{R+3}}( $\lambda$)f=\overline{A}_{a}( $\lambda$)P_{$\Omega$_{R+3}}f, $\Pi$_{$\Omega$_{R+3}}( $\lambda$)f=\overline{ $\Pi$}_{a}( $\lambda$)P_{$\Omega$_{R+3}}f+Q_{$\Omega$_{R+3}}f (4.3)

for f\in L_{q}($\Omega$_{R+3}) . Then they actually provide a solution to (4.1).
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5Resolvent for the exterior problem

In this section we derive a representation of the resolvent ( $\lambda$ I+\mathcal{L}_{a})^{-1} in

exterior domains. We employ a cut‐off technique to construct a parametrix
by use of resolvents in the whole space \mathbb{R}^{3} and in the bounded domain

$\Omega$_{R+3} together with the Bogovskii operator ([2]) to recover the solenoidal

condition.

Given f\in L_{q,[R+2]}( $\Omega$) ,
we denote by f_{0} the zero extension of f to the

whole space \mathbb{R}^{3} and by r_{$\Omega$_{R+3}}f the restriction of f on $\Omega$_{R+3} . Using (3.3),
(3.4) and (4.3), we set

u=A( $\lambda$)f:=(1- $\varphi$)A_{\mathbb{R}^{3}}( $\lambda$)f_{0}+ $\varphi$ A_{$\Omega$_{R+3}}( $\lambda$)r_{$\Omega$_{R+3}}f+B[(C( $\lambda$)f)\cdot\nabla $\varphi$],
p= $\Pi$( $\lambda$)f:=(1- $\varphi$)Q_{\mathbb{R}^{3}}f_{0}+ $\varphi \Pi$_{$\Omega$_{R+3}}( $\lambda$)r_{$\Omega$_{R+3}}f,

with

C( $\lambda$)f=A_{\mathbb{R}^{3}}( $\lambda$)f_{0}-A_{$\Omega$_{R+3}}( $\lambda$)r_{$\Omega$_{R+3}}f,

where  $\varphi$\in C_{0}^{\infty}(\mathbb{R}^{3}) is fixed cut‐off function so that  $\varphi$(x)=1 for |x|\leqq R+1
and  $\varphi$(x)=0 for |x|\geqq R+2 ,

and B denotes the Bogovskii operator on

A_{R+1,R+2}=\{x\in \mathbb{R}^{3};R+1<|x|<R+2\} . Then the pair (u,p) should

obey

( $\lambda$-\triangle-M_{a})u+\nabla p=f+R( $\lambda$)f, \mathrm{d}\mathrm{i}\mathrm{v}u=0

in  $\Omega$ subject to  u|_{\partial $\Omega$}=0 ,
where R( $\lambda$)f is the remainder term arising from

the cut‐off procedure. The operator R( $\lambda$) is divided into two or three parts

R( $\lambda$)=R_{1}+R_{2}( $\lambda$)=R_{1}+R_{21}( $\lambda$)+R_{22}( $\lambda$) , (5.1)

where R_{1} is independent of  $\lambda$ and consists of  Q_{\mathbb{R}^{3}}f_{0} and Q_{$\Omega$_{R+3}}r_{$\Omega$_{R+3}}f ,
while

R_{2}( $\lambda$)\equiv R_{21}( $\lambda$)+R_{22}( $\lambda$) depends on  $\lambda$ . To be precise,  R_{21}( $\lambda$) is extended

into a sectorial subset S of the left half complex plane, as analytic continu‐

ation, with estimate

\Vert R_{21}( $\lambda$)\Vert_{\mathcal{L}(L_{q,[R+2]}( $\Omega$))}\leqq C(1+| $\lambda$|)^{-(1-1/q)/2},  $\lambda$\in S\cup\overline{\mathbb{C}+} (5.2)

where the rate of decay comes from (4.2) with k=0 ,
while R_{22}( $\lambda$) consists

of some terms arising from the second term of (3.6) and, therefore, cannot

be extended into the left half complex plane at all, but it decays rapidly,
say,
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\Vert R_{22}( $\lambda$)\Vert_{\mathcal{L}(L_{q,[R+2]}( $\Omega$))}\leqq C(1+| $\lambda$|)^{-3},  $\lambda$\in\overline{\mathbb{C}+} (5.3)

since we can take N\in \mathbb{N} as large as we want in the representation formula

(3.6).
As usual, a compactness argument implies the existence of the bounded

inverse (I+R( $\lambda$))^{-1} ; however, the behavior of (I+R( $\lambda$))^{-1} for large  $\lambda$ is

not clear. We thus reconstruct this inverse of the form

(I+R( $\lambda$))^{-1}=[I+(I+R_{1})^{-1}R_{2}( $\lambda$)]^{-1}(I+R_{1})^{-1}

=\displaystyle \sum_{k=0}^{\infty}\{-(I+R_{1})^{-1}R_{2}( $\lambda$)\}^{k}(I+R_{1})^{-1}
(5.4)

for large  $\lambda$ by using  R_{2}( $\lambda$)\rightarrow 0 as | $\lambda$|\rightarrow\infty as given in (5.2) and (5.3).
The important step is to show the invertibility of  I+R_{1} by the uniqueness
of the Helmholtz decomposition. As a consequence, the operator norm of

the inverse (I+R( $\lambda$))^{-1} is uniformly bounded in  $\lambda$
,

and therefore, both the

behavior for large  $\lambda$ and the regularity for small  $\lambda$ of the resolvent

( $\lambda$ I+\mathcal{L}_{a})^{-1}Pf=A( $\lambda$)(I+R( $\lambda$))^{-1}f

are governed by those of resolvents in the whole space \mathbb{R}^{3} and in $\Omega$_{R+3} ,
see

(7.2) and (7.3) below.

6 Reconstruction of the semigroup

We reconstruct the semigroup T_{a}(t) and derive some estimates near t=0

when the initial velocity has a bounded support. Thus, given f\in L_{q,[R+2]}( $\Omega$) ,

let us consider the nonstationary problem (1.6) subject to u|_{\partial $\Omega$}=0 and

u(x, 0)=(Pf)(x) . Although T_{a}(t) is not an analytic semigroup, thanks to

the boundedness of the support of f ,
we get a unique strong solution

u\in C^{1}((0, \infty);J_{q}( $\Omega$))\cap C((0, \infty);D(\mathcal{L}_{a})) , \nabla p\in C((0, \infty);L_{q}( $\Omega$))
(6.1)

with estimates

\Vert u(t)\Vert_{L_{q}( $\Omega$)}+t^{1/2}\Vert\nabla u(t)\Vert_{L_{q}( $\Omega$)}
+t\Vert(\partial_{t}u(t), \nabla^{2}u(t), \nabla p(t))\Vert_{L_{q}( $\Omega$)}\leqq C_{ $\gamma$}e^{ $\gamma$ t}\Vert f\Vert_{L_{q}( $\Omega$)}, (6.2)

t^{(1+1/q)/2}(\Vert\partial_{t}u(t)\Vert_{W_{q}^{-1}($\Omega$_{b})}+\Vert p(t)\Vert_{L_{q}($\Omega$_{b})})\leqq C_{ $\gamma$}e^{ $\gamma$ t}\Vert f\Vert_{L_{q}( $\Omega$)},
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for any t>0,  $\gamma$>0 and b>R+3 . Indeed, the proof does not rely upon

the existence of the semigroup due to [18] at all. We make full use of the

structure of the resolvent ( $\lambda$ I+\mathcal{L}_{a})^{-1} studied in the previous section to

construct the solution (u,p) concretely by

 u(t)=\displaystyle \lim_{\ell\rightarrow\infty}\frac{1}{2 $\pi$ i}\int_{ $\gamma$-i\ell}^{ $\gamma$+i\ell}e^{ $\lambda$ t}A( $\lambda$)(I+R( $\lambda$))^{-1}fd $\lambda$ in  W_{q}^{1}( $\Omega$) ,

(6.3)

 p(t)=\displaystyle \lim_{\ell\rightarrow\infty}\frac{1}{2 $\pi$ i}\int_{ $\gamma$-i\ell}^{ $\gamma$+i\ell}e^{ $\lambda$ t} $\Pi$( $\lambda$)(I+R( $\lambda$))^{-1}fd $\lambda$ in  L_{q}($\Omega$_{b}) ,

where the convergence is uniform in any compact interval of (0, \infty) . And

then, we know u(t)=T_{a}(t)Pf ; as a consequence, our argument provides
a justification of representation of the semigroup T_{a}(t)Pf in terms of the

inverse Laplace transform of ( $\lambda$ I+\mathcal{L}_{a})^{-1}Pf when f\in L_{q,[R+2]}( $\Omega$) . Since we

will prove a local energy decay property of the semigroup for f\in L_{q,[R+2]}( $\Omega$)
in the next section, it is sufficient for us to justify that representation for

such f . Note, however, that this does not follow from the usual semigroup
theory, in which the initial data are assumed to be rather smooth. It is also

remarkable that the formula of the associated pressure is available.

In the proof of the regularity (6.1) of the solution u(t) given by (6.3),
the following decomposition of (I+R( $\lambda$))^{-1} ,

see (5.4) with (5.1), plays a

crucial role:

(I+R( $\lambda$))^{-1}=(I+R_{1})^{-1}+U_{1}( $\lambda$)+U_{2}( $\lambda$)
with

\Vert U_{2}( $\lambda$)\Vert_{\mathcal{L}(L_{q,[R+2]}( $\Omega$))}\leqq C(1+| $\lambda$|)^{-3},  $\lambda$\in\overline{\mathbb{C}+}.
This is actually possible when we take m\in \mathbb{N} so large that (m+1)(1-
1/q)/2\geqq 3 and set

U_{1}( $\lambda$)=\displaystyle \sum_{k=1}^{m}\{-(I+R_{1})^{-1}R_{21}( $\lambda$)\}^{k}(I+R_{1})^{-1}
Using the decomposition above combined with equations of the resolvent

problems (3.1) and (4.1), we obtain also the following decomposition from

which we find the time‐differentiauility of u(t) :

 $\lambda$( $\lambda$+\mathcal{L}_{a})^{-1}Pf= $\lambda$ A( $\lambda$)[(I+R_{1})^{-1}+U_{1}( $\lambda$)+U_{2}( $\lambda$)]f
=Kf+Y( $\lambda$)f+V_{1}( $\lambda$)f+V_{2}( $\lambda$)f,

where Kf does not depend on  $\lambda$;Y( $\lambda$)f depends on  $\lambda$ but does not decay for

large  $\lambda$;V_{1}( $\lambda$)f is extended into a sectorial subset S of the left half complex
plane, as analytic continuation, with

\Vert v_{1( $\lambda$)f\Vert_{L_{q}( $\Omega$)}\leqq C(1+| $\lambda$|)^{-(1-1/q)/2}\Vert f\Vert_{L_{q}( $\Omega$)}},  $\lambda$\in S\cup\overline{\mathbb{C}_{+}} ;
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and V_{2}( $\lambda$)f cannot be extended into the left half complex plane but it decays
rapidly, in fact,

\displaystyle \Vert V_{2}( $\lambda$)f\Vert_{W_{q}^{2}( $\Omega$)}\leqq\frac{C}{ $\gamma$}| $\lambda$|^{-3}\Vert f\Vert_{L_{q}( $\Omega$)}, {\rm Re} $\lambda$\geqq $\gamma$>0.
7 Local energy decay of the semigroup

As in Iwashita [27] and also in Kobayashi and Shibata [28] for the Oseen

equation, the crucial step in the proof of L_{p}-L_{q} estimate (2.4) is to derive

the local energy decay estimate (2.1) for t>1 . The strategy is traced back

to Shibata [34]. Estimates (2.1) and (2.2) for 0<t\leqq 1 have been already
shown in (6.2).

Let f\in L_{q,[R+2]}( $\Omega$) . To complete the proof of (2.1), the representation
formula (6.3) of the semigroup T_{a}(t) by the inverse Laplace transform of

the resolvent ( $\lambda$ I+\mathcal{L}_{a})^{-1} is now useful. After integration by parts with

respect to  $\lambda$
,

we shift the path of integration to the imaginary axis ( $\lambda$=i $\tau$)
to obtain

 T_{a}(t)Pf=\displaystyle \frac{-1}{2 $\pi$ it}\int_{-\infty}^{\infty}e^{i $\tau$ t}\partial_{ $\tau$}(i $\tau$ I+\mathcal{L}_{a})^{-1}Pfd $\tau$ (7.1)

in the localized space  W_{q}^{1}($\Omega$_{R+3}) . This procedure and the resulting formula

(7.1) can bejustified because the analysis done in sections 3, 4 and 5 implies
the following behavior of

\partial_{ $\lambda$}( $\lambda$ I+\mathcal{L}_{a})^{-1}P
=\partial_{ $\lambda$}A( $\lambda$)(I+R( $\lambda$))^{-1}-A( $\lambda$)(I+R( $\lambda$))^{-1}\partial_{ $\lambda$}R_{2}( $\lambda$)(I+R( $\lambda$))^{-1}

as well as that of ( $\lambda$ I+\mathcal{L}_{a})^{-1}P itself:

\Vert\ovalbox{\tt\small REJECT}_{ $\lambda$}( $\lambda$ I+\mathcal{L}_{a})^{-1}Pf\Vert_{W_{q}^{1}($\Omega$_{R+3})}\leqq C| $\lambda$|^{-j-1/2}\Vert f\Vert_{L_{q}( $\Omega$)}, j=0 ,
1 (7.2)

in \{ $\lambda$\in\overline{\mathbb{C}_{+}};| $\lambda$|\geqq K\} ,
where K>0 is a fixed large number, and

\Vert\partial_{ $\lambda$}( $\lambda$ I+\mathcal{L}_{a})^{-1}Pf\Vert_{W_{q}^{1}($\Omega$_{R+3})}\leqq C| $\lambda$-kia|^{-1/2}\Vert f\Vert_{L_{q}( $\Omega$)}, k=0, \pm 1 (7.3)

in \{ $\lambda$\in\overline{\mathbb{C}_{+}};| $\lambda$-kia|\leqq|a|/4\} . Moreover, we have (7.2) for j=2 as well as

the C^{3/2} ‐regularity of ( $\lambda$ I+\mathcal{L}_{a})^{-1}P in the same sense as in (3.5).
We now consider

 G(t)=\displaystyle \int_{-\infty}^{\infty}e^{i $\tau$ t}\partial_{ $\tau$}(i $\tau$ I+\mathcal{L}_{a})^{-1}Pfd $\tau$
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in  W_{q}^{1}($\Omega$_{R+3}) and split it into some integrals near  $\tau$=ka(k=0, \pm 1, \pm 2, \pm 3)
and for large  $\tau$ . Then the former decays like  t^{-1/2} that follows from the

relation between the C^{3/2} ‐regularity of a function and the decay property of

its inverse Fourier image ([34], [28], [36], [24]), while the latter decays like

t^{-1} that follows from (7.2) for j=1 ,
2 by integration by parts once more.

8 L_{p}-L_{q} estimates of the semigroup

We proceed to the local energy decay estimates of the semigroup T_{a}(t) for

general data f\in J_{q}( $\Omega$) .

Proposition 8.1 (Local energy decay). Let  1<q<\infty . For arbitrary
 a_{0}>0 ,

there is a constant C=C(q, R, a_{0})>0 such that

\Vert T_{a}(t)f\Vert_{W_{q}^{1}($\Omega$_{R+3})}\leqq C\overline{\ell}_{0}(t)\Vert f\Vert_{L_{q}( $\Omega$)} (8.1)

\Vert\partial_{t}T_{a}(t)f\Vert_{W_{q}^{-1}($\Omega$_{R+3})}+\Vert $\pi$(t)\Vert_{L_{q}($\Omega$_{R+3})}\leqq C\overline{\ell}_{1}(t)\Vert f\Vert_{L_{q}( $\Omega$)} (8.2)

for all t>0, f\in J_{q}( $\Omega$) and  $\omega$ with | $\omega$|=|a|\leqq a_{0} . Here,  $\pi$(x, t) is the

associated pressure that satisfies \displaystyle \int_{$\Omega$_{R+3}} $\pi$(x, t)dx=0 ,
see (1.6), and

\overline{\ell}_{0}(t)=\left\{\begin{array}{ll}
t^{-1/2}, & 0<t\leqq 1,\\
t^{-3/2q}, & t>1,
\end{array}\right. \overline{\ell}_{1}(t)=\left\{\begin{array}{ll}
t^{-\frac{1}{2}}(1+\frac{1}{q}) , & 0<t\leqq 1,\\
t^{-3/2q}, & t>1.
\end{array}\right.
This is proved by use of a cut‐off technique together with L_{p}-L_{q} estimate

of the related semigroup S_{a}(t) ,
see (3.2), in the whole space \mathbb{R}^{3} In fact, as

the first approximation of the solution u(t)=T_{a}(t)f ,
one can take

v(t)=(1- $\varphi$)S_{a}(t)f+B[(S_{a}(t)f)\cdot\nabla $\varphi$],

where  $\varphi$\in C_{0}^{\infty}(\mathbb{R}^{3}) is a fixed cut‐off function so that  $\varphi$(x)=1 for |x|\leqq R+1
and  $\varphi$(x)=0 for |x|\geqq R+2 ,

and B denotes the Bogovskii operator on

A_{R+1,R+2} . Here, f may be assumed to be in C_{0, $\sigma$}^{\infty}( $\Omega$) ,
therefore in C_{0, $\sigma$}^{\infty}(\mathbb{R}^{3})

as well, since it is dense in J_{q}( $\Omega$) . Then w(t)=u(t)-v(t) should obey

w(t)=T_{a}(t)( $\varphi$ f-B[f\displaystyle \cdot\nabla $\varphi$])+\int_{0}^{t}T_{a}(t-s)F(s)ds,
which can be estimated in W_{q}^{1}($\Omega$_{R}) by using Theorem 2.1 because the sup‐

port of the (solenoidal) ramainder term F(t) as well as w(0) is contained
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in A_{R+1,R+2} . We thus obtain Proposition 8.1. The argument above may

provide another proof of generation of C_{0} ‐semigroup \{T_{a}(t)\}_{t\geqq 0}.
And then, combining (8.1), (8.2) with estimate for |x|\geqq R+3 ,

we prove

(2.4). In the proof of estimate for |x|\geqq R+3 by a cut‐off technique again
and by using L_{p}-L_{q} estimate for (3.2), unlike the case of the usual Stokes

semigroup ( $\omega$=0) ,
we need (8.2) near t=0 for the pressure  $\pi$(t) which is

contained in the remainder term arising from the cut‐off procedure. This

would not be necessary if T_{a}(t) were an analytic semigroup.
Since both the estimate of T_{a}(t)f in (8.1) and that of  $\pi$(t) in (8.2) hold

for all q\in(1, \infty) ,
one can employ the real interpolation so that the similar

estimates are obtained in the Lorentz spaces L_{q,r}($\Omega$_{R+3}) . Along the same

line by use of those estimates as in the proof of (2.4), we obtain (2.5).

9 Application to the Navier‐Stokes flow

Let (u_{s},p_{s}) be the stationary solution of class (1.4) subject to (1.5). Set

v(x, t)=u(x, t)-u_{s}(x) ,  $\pi$(x, t)=p(x, t)-p_{s}(x)

and v_{0}(x)=u_{0}(x)-u_{s}(x) . Then our stability problem is reduced to the

global existence and decay of solutions to

\partial_{t}v+v\cdot\nabla v+u_{s}\cdot\nabla v+v\cdot\nabla u_{s}=\triangle v-M_{a}v-\nabla $\pi$, \mathrm{d}\mathrm{i}\mathrm{v}v=0 (9.1)

in  $\Omega$\times(0, \infty) subject to

v|_{\partial $\Omega$}=0, v\rightarrow 0\mathrm{a}\mathrm{s}|x|\rightarrow\infty, v(x, 0)=v_{0}(x) . (9.2)

By use of the semigroup T_{a}(t) ,
the problem (9.1) is converted into the

integral equation

v(t)=T_{a}(t)v_{0}-\displaystyle \int_{0}^{t}T_{a}(t- $\tau$) Pdiv G (u_{s}, v( $\tau$))d $\tau$,

where

G(u_{s}, v(t))=v(t)\otimes v(t)+u_{s}\otimes v(t)+v(t)\otimes u_{s}.

In view of the class (1.4) of the stationary solution u_{s} , however, it is difficult

to treat the additional linear terms \mathrm{d}\mathrm{i}\mathrm{v}(u_{s}\otimes v+v\otimes u_{s}) directly. We thus

consider the weak formulation

\{v(t) ,  $\varphi$\rangle=\{v_{0},  T_{-a}(t) $\varphi$\displaystyle \rangle+\int_{0}^{t}\{G(u_{s}, v( $\tau$)),\nabla T_{-a}(t- $\tau$) $\varphi$\rangle d $\tau$ (9.3)
for \forall $\varphi$\in C_{0, $\sigma$}^{\infty}( $\Omega$) ,
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in terms of the semigroup T_{-a}(t) ,
where T_{-a}(t)^{*}=T_{a}(t) for a\in \mathbb{R}. We

use the L_{p,1^{-}}L_{q,1} estimates (2.5) rather than (2.4). Let 1<p<q\leqq 3 and

1/q=1/p-1/3 . Then the interpolation technique developed by Yamazaki

[40] combined with (2.5) for r=1 implies

\displaystyle \int_{0}^{\infty}\Vert\nabla T_{a}(t)f\Vert_{L_{q,1}( $\Omega$)}dt\leqq C\Vert f\Vert_{L_{p,1}( $\Omega$)}
for f\in J_{p,1}( $\Omega$) . This enables us to deal with the additional linear terms

in G(u_{s}, v) as a perturbation from the semigroup T_{a}(t) . As a result, by
the contraction mapping principle, we obtain the following global existence

theorem.

Theorem 9.1. Let u_{s}\in L_{3,\infty}( $\Omega$) and v_{0}\in J_{3,\infty}( $\Omega$) .

1. There is a constant  $\delta$>0 such that if \Vert u_{s}\Vert_{L_{3,\infty}( $\Omega$)}+\Vert v_{0}\Vert_{L_{3,\infty}( $\Omega$)}\leqq $\delta$,
then the problem (9.3) possesses a unique global solution

v\in BC((0, \infty);J_{3,\infty}( $\Omega$)) with w^{*}-\displaystyle \lim_{t\rightarrow 0}v(t)=v_{0} in J_{3,\infty}( $\Omega$) .

2. Let  3<q<\infty . Then there is a constant \overline{ $\delta$}(q)\in(0,  $\delta$] such that if

\Vert u_{s}\Vert_{L_{3,\infty}( $\Omega$)}+\Vert v_{0}\Vert_{L_{3,\infty}( $\Omega$)}\leq\overline{ $\delta$}(q) ,
then the solution v(t) obtained above

en $\gamma$ oys

\Vert v(t)\Vert_{L_{r}( $\Omega$)}=O(t^{-1/2+3/2r}) as  t\rightarrow\infty (9.4)

for every  r\in(3, q) .

Note that the problem is well‐posed only in BC((0, \infty);J_{3,\infty}( $\Omega$)) without

any additional norm. But \Vert v(t)\Vert_{L_{3,\infty}( $\Omega$)} does not decay in general as  t\rightarrow\infty

since  C_{0}^{\infty}( $\Omega$) is not dense in L_{3,\infty}( $\Omega$) . As in the second assertion of Theorem

9.1, the decay property of v(t) is obtained in L_{r}( $\Omega$) , r>3 ,
when the data

are still smaller. By (1.5) the assumptions on the stationary solution u_{s} are

satisfied for small  $\omega$ and  f=\mathrm{d}\mathrm{i}\mathrm{v}F.
We finally remark on the boundary condition of the solution obtained

in Theorem 9.1. This is verified in the sense of trace when the stationary
solution u_{s} possesses a slight regularity such as

u_{s}\in L_{q_{*}}( $\Omega$) , \nabla u_{s}\in L_{q}( $\Omega$) (9.5)

for some q\in(3/2,3) and 1/q_{*}=1/q-1/3 ,
in addition to (1.4). For

the discussion on the boundary condition, it is convenient to introduce the
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fractional powers of the usual Stokes operator  A=-P\triangle with  D(A)=\{u\in
 J_{r}( $\Omega$)\cap W_{r}^{2}( $\Omega$);u|_{\partial $\Omega$}=0\} for  1<r<\infty . Especially, one needs

\Vert A^{1/2}T_{a}(t)f\Vert_{L_{r}( $\Omega$)}\leqq Ct^{-1/2-(3/q-3/r)/2}\Vert f\Vert_{L_{q}( $\Omega$)} (9.6)

for 0<t\leqq 2 (resp. t>0 ),  1<q\leqq r<\infty (resp.  1<q\leqq r\leqq 3 )
and f\in J_{q}( $\Omega$) . This is a simple consequence of Theorem 2.2 combined

with \Vert A^{1/2}u\Vert_{L_{r}( $\Omega$)}\leqq C\Vert\nabla u\Vert_{L_{r}( $\Omega$)} for u\in D(A) ,  1<r<\infty (Borchers and

Miyakawa [4, Theorem 4.4]). Given  t_{0}>0 , by use of (9.5) and (9.6), it is

easy to show that the integral equation

 v(t)=T_{a}(t-t_{0})v(t_{0})-\displaystyle \int_{t_{0}}^{t}T_{a}(t- $\tau$)P(v\cdot\nabla v+u_{s}\cdot\nabla v+v\cdot\nabla u_{s})( $\tau$)d $\tau$
has a unique local solution  v\in C((t_{0}, t_{0}+T_{*}] ;D(A^{1/2}) ) \cap C([t_{0}, t_{0}+T_{*}];J_{r}( $\Omega$))
when v(t_{0})\in J_{r}( $\Omega$) with some r\in(3, q_{*}) ,

and that the length T_{*}>0
of the existence interval can be estimated. Now, suppose that v(t) is the

global solution obtained in Theorem 9.1 (the second part). Then,  v(t)\in
 J_{r}( $\Omega$)\cap J_{3,\infty}( $\Omega$) for some r>3 and every t> O. For each  $\tau$>0 one

can find an interval I_{ $\tau$}=[t_{0}, t_{0}+T_{*}] with 0<t_{0}< $\tau$<t_{0}+T_{*} so that

v(t) coincides with a solution mentioned above for all t\in I_{ $\tau$} by uniqueness
of solutions in C(I_{ $\tau$};J_{r}( $\Omega$)) (this kind of argument was developed in [30]).
Hence, v(t)|_{\partial $\Omega$}=0 for every t>0.

The stationary flow that satisfies (9.5) as well as (1.4) can be actually
constructed for the external force f=\mathrm{d}\mathrm{i}\mathrm{v}F with F\in L_{r,\infty}( $\Omega$)\cap L_{3/2,\infty}( $\Omega$)
for some r\in(3/2,3) when | $\omega$| and \Vert F\Vert_{L_{3/2,\infty}}( $\Omega$) are small enough, see Farwig
and Hishida [8].
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