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Abstract

This is a supplementary note of the paper: Y. Giga, K. Inui, A. Mahalov and S. Matsui

(2005, Methods and Applications of Analysis), where local‐in‐time existence and uniqueness
of mild solution for the 3‐dimensional Navier‐Stokes equations with the Coriolis force were

established with its uniform existence time in the Coriolis parameter. The crucial part of

the proof is to seek an appropriate class for initial data which allows uniform boundedness in

t\in \mathbb{R} of the Riesz semigroup whose symbol is \exp(t(i$\xi$_{j}/| $\xi$|)) ( $\xi$=($\xi$_{1}, $\xi$_{2}, $\xi$_{3}), i=\sqrt{-1}) for

j=1 , 2, 3. For this purpose we found a new space denoted by FM_{0} ,
Fourier preimage of finite

Radon measures having no‐point mass at the origin. In Appendix we give an observation on

the Mikhlin theorem in the Besov‐type space \dot{B}_{Z,1}^{0} for a Banach space Z which is included

in the space of temperd distributions S'.
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1 Introduction

In this note we discuss local‐in‐time existence and uniqueness for the Cauchy problem of the

Navier‐Stokes equations with the Coriolis term;

u_{t}+(u\cdot\nabla)u+ $\Omega$ e_{3}\times u-\triangle u=-\nabla p, \nabla\cdot u=0, u|_{t=0}=u_{0} , (1.1)

where u=u(x, t)=(u^{1}(x, t), u^{2}(x, t), u^{3}(x, t)) is the unknown velocity vector field and p=

p(x, t) is the unknown scalar pressure at the point x=(x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3} in space and time t>0,
while u_{0}=u(x) is the given initial velocity vector field. Here, the real constant  $\Omega$ represents
the speed of rotation around the vertical unit vector  e_{3}=(0,0,1) and it is called the Coriolis

parameter. By \times \mathrm{w}\mathrm{e} denote the exterior product, hence, the Coriolis term is represented by
 e_{3}\times u\equiv Ju with the corresponding skew‐symmetric  3\times 3 matrix J. Clearly, (1.1) can be

regarded as generalized equations of the Navier‐Stokes equations ( $\Omega$=0) .

Research of the equations (1.1) (for  $\Omega$\neq 0 ) originated in the paper [2] by Babin‐Mahalov‐

Nicolaenko (see the survey [11] for full list of their papers on this problem), and in [3] they
showed that weak solutions of (1.1) are global in time strong solutions for sufficiently large  $\Omega$

independent of the size of initial data in periodic lattice and cylindrical domains. The main

methods are singular limits of oscillating operator as  $\Omega$\rightarrow\infty
,

nonlinear averaging, and a lemma

on interaction of the nonlinear oscillations of the vorticity field.

On the other hand, solubility for non‐periodic and non‐decaying initial data has been investi‐

gated in Hieber‐Sawada [9], Sawada [12], and Giga‐Inui‐Mahalov‐Matsui [5], where they proved
existence and uniqueness of local‐in‐time solution of the Cauchy problem for initial data in the

homogeneous Besov space \dot{B}_{\infty,1}^{0} and each fixed  $\Omega$\in \mathbb{R} . We have choice of how to deal with the

additional Coriolis term  $\Omega$ e_{3}\times u in (1.1). In [9] and [12] the Coriolis term was regarded as per‐

turbation of the Laplacian, while in [5] as the principal term by considering the Poincaré‐Sobolev

equations, the linearized equations of (1.1);

u_{t}+ $\Omega$ e_{3}\times u-\triangle u=-\nabla p, \nabla\cdot u=0, u|_{t=0}=u_{0}.

After multiplying the Helmholtz projection operator \mathrm{P}=($\delta$_{ij}+R_{i}R_{j})_{1\leq i,j\leq 3} to these equations
and transforming into time variable evolution equation, by virtue of skew‐symmetry of the Cori‐

olis term, it turns out (as explained in Section 4) that solubility of (1.1) reduces the boundedness

of the Riesz semigroup \exp(\mathrm{t}\mathrm{R}) defined by

\displaystyle \exp(tR_{j})f=F^{-1}(\exp(ti\frac{$\xi$_{j}}{| $\xi$|})Ff) , t\in \mathbb{R}, j=1, 2, 3 , (1.2)

where i=\sqrt{-1} and R_{j} denotes the Riesz operator with its symbol i\displaystyle \frac{$\xi$_{j}}{| $\xi$|} . Here, by F and F^{-1} we

denote Fourier transform and inverse Fourier transform.

The norm of the space \dot{B}_{\infty,1}^{0} measures low and high frequency separately using the Littlewood‐

Paley dyadic decomposition in the phase space except the origin;

\{\hat{$\phi$_{j}}( $\xi$)\}_{j\in \mathbb{Z}} satisfying \displaystyle \sum_{j=-\infty}^{\infty}\hat{$\phi$_{j}}( $\xi$)=1 for  $\xi$\neq 0 . (1.3)
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The space \dot{B}_{\infty,1}^{0} is slightly smaller than the spaces L^{\infty} or BUC, the space of all bounded

uniformly continuous functions, however, it can be regarded as a substitute of the spaces L^{\infty} or

BUC, in fact, \dot{B}_{\infty,1}^{0} is closed on dilation, moreover, it contains the functions of the form

f(x)=\displaystyle \sum_{j=1}^{\infty}$\alpha$_{j}e^{i$\lambda$_{j}\cdot x} $\lambda$_{j}\in \mathbb{R}^{n}\backslash \{0\}, $\alpha$_{j}\in \mathbb{C}, \displaystyle \sum_{j=1}^{\infty}|$\alpha$_{j}|<\infty, $\lambda$_{j}\neq$\lambda$_{k} if j\neq k , (1.4)

which can be an almost periodic function not necessarily periodic by choosing \{$\lambda$_{j}\}_{j=1}^{\infty} appropri‐

ately. The advantage of the space \dot{B}_{\infty,1}^{0} is the boundedness of the Riesz operator R_{j} , however,
for the Riesz semigroup \exp(tR_{j})(t\in \mathbb{R}, j=1,2,3) only estimates depending on t have been

obtained so far, and it is still open whether the uniform estimate in \dot{B}_{\infty,1}^{0} holds or not, being
crucial to show global‐in‐time solubility and regularity. On estimates for the Riesz semigroup,
readers can refer [10], which also gives a short review of recent results on non‐decaying rotating
Navier‐Stokes flow both the cases  $\Omega$=0 and  $\Omega$\neq 0.

The aim of this note is to give an overview of the paper Giga‐Inui‐Mahalov‐Matsui [6], where

we found the new space denoted by FM_{0} in which the Riesz semigroup is bounded with uniform

bound in  t\in R. The space  FM_{0} is the Fourier preimage of the space M_{0} ,
which is the space

of finite Radon measures having no‐point mass at the origin. In the definition of FM_{0} we do

not use the Littlewood‐Paley decomposition (1.3). Instead, we treat only homogeneous finite

Radon measures, elements of M_{0} ,
a subspace of the space of all finite Radon measures that we

denote by M
,

when we operate the Riesz semigroup \exp(\mathrm{t}\mathrm{R}) whose symbol \exp(t(i$\xi$_{j}/| $\xi$|)) is

not continuous at the origin.
The inclusion of the spaces introduced above is as follows;

FM_{0}\subset\dot{B}_{\infty,1}^{0}\subset BUC.
The both inclusions are continuous and strict, in fact, nonzero constant functions belong to

BUC\backslash \dot{B}_{\infty,1}^{0} ,
while f=h*e^{ix}i sgn x\in L^{\infty}(\mathrm{R}) belongs to \dot{B}_{\infty,1}^{0}\backslash FM_{0} in the case n=1 when h

is a smooth bounded function whose Fourier transform \hat{h} is supported in \{ $\xi$\in \mathbb{R} ; | $\xi$-1|\leq 1/2\}
and \mathrm{s}\mathrm{g}\mathrm{n}(s) denotes the signature function (see [6, Appendix

The space FM_{0} still contains the functions of the form (1.4) and is closed on dilation like

L^{\infty} . In FM_{0} we could prove uniform estimate for the Riesz semigroup with the bound 1, the

supremum norm of the symbol \exp(t(i$\xi$_{j}/| $\xi$|)) (Proposition 4.1, Corollary 4.1). The estimate

makes key role in proof of main result, local‐in‐time existence and uniqueness with its uniform

existence time.

The notion of the spaces FM_{0} or FM is implicitly hinted by a lemma in proof of Mikhlin�s

theorem in the Besov spaces. To prove the boundedness of multiplier F^{-1}mF in \dot{B}_{\infty,1}^{0} ,
one

needs to estimate of FL^{1} ‐norm of m\hat{$\phi$_{j}} , multiplication of the symbol m and the decomposition

\hat{$\phi$_{j}} . When one formally replaces L^{1} of the letters FL^{1} by the space M which can be regarded
as the dual space of C_{\infty}(\mathbb{R}^{n}) ,

the space of all continuous functions decaying at space infinity
equipped with L^{\infty} ‐norm, we have FM . In appendix we give a short observation on Mikhlin�s

theorem in the Besov spaces.
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To show global solubility Giga‐Inui‐Mahalov‐Saal [7] recently utilized the exponential decay
estimate in the space FM for the heat semigroup e^{t\triangle} such that

||e^{t\triangle}f||_{FM}\leq e^{-t$\delta$^{2}}||f||_{FM} for t>0, f\in FM,

where the constant  $\delta$>0 denotes distance of support of \hat{f}=(Ff)( $\xi$) from the origin in the

phase space. In the contraction mapping argument handling the nonlinear term it is required
that distance of support from the origin doesn�t shrink after multiplication, that is, there must

be a set F_{ $\delta$}\subseteq \mathbb{R}^{3} whose distance from the origin is  $\delta$>0 satisfying that

supp \hat{f}\subseteq F_{ $\delta$}, \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{g}\subseteq F_{ $\delta$} imply \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\hat{fg}\subseteq F_{ $\delta$}\cup

This property is fulfilled by a �sum‐closed set�, which is a closed set  F\subseteq \mathbb{R}^{3}\backslash \{0\} satisfying
F+F :=\{x+y;x, y\in F\}\subseteq F\cup We showed existence of global‐in‐time regular solutions

for initial data  u_{0}\in FM_{ $\delta$} ,
that is, for u_{0}\in FM whose support is in a sum‐closed set F_{ $\delta$} provided

the distance  $\delta$>0 of F_{ $\delta$} from the origin is sufficiently large. One can see another application of

the space FM_{ $\delta$} to general parabolic systems in Giga‐Mahalov‐Saal [8].

This note is organised as follows. In Section 2 we define the spaces for measures M, M_{0} ,
and

their Fourier preimage spaces FM and FM_{0} . The main results are given in Section 3. In Section

4 we explain how the Riesz semigroup arises in the analysis of the linearized equations of (1.1)
and give the key uniform estimate. Since the sections above are summary or extracts of [6] or

[10], we do not repeat proofs nor details. In Appendix \mathrm{A}
,

we give an observation on Mikhlin�s

theorem in the Besov spaces.

2 Key Function Spaces

In this section we define four spaces for measures, which make key role in the main results. The

main results (in Section 3) on the Navier‐Stokes equations with the Coriolis term are valid only
for 3‐dimensional case, however, definition is given in general space dimension n=1

, 2, 3, . . ..

Before defining spaces, we introduce Fourier transform and inverse Fourier transform by

Ff( $\xi$)=\displaystyle \hat{f}( $\xi$)=\frac{1}{(2 $\pi$)^{n/2}}\int_{\mathbb{R}^{n}}e^{-i $\xi$\cdot x}f(x)dx,
F^{-1}f(x)=\displaystyle \check{f}(x)=\frac{1}{(2 $\pi$)^{n/2}}\int_{\mathbb{R}^{n}}e^{ix\cdot $\xi$}f( $\xi$)d $\xi$,

where, x=(x\mathrm{l}, . . . , x_{n})\in \mathbb{R}^{n},  $\xi$=($\xi$_{1}, \ldots, $\xi$_{n})\in \mathbb{R}^{n} and  $\xi$\cdot x denotes the standard inner product
in R.

Then we define

M= {  $\mu$;\mathbb{R}^{n}\rightarrow \mathbb{C} ; finite Radon measure}

with the total variation norm || $\mu$||_{M} . It is known by the Riesz representation theorem that

M is characterized by the dual space of C_{\infty}(\mathbb{R}^{n}) ,
where C_{\infty}(R) is the space of all continuous

functions  $\psi$(x) satisfying \displaystyle \lim_{|x|\rightarrow\infty} $\psi$(x)=0 equipped with the supremum norm || ||_{\infty} . Hence,
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we also have M\subset S' because the inclusion S\subset C_{\infty} is dense. Here, by S we denote the class

of rapidly decreasing functions and by S' its topological dual space, the space of tempered
distributions.

On the other hand, we also define the subspace M_{0} of M by

M_{0}=\{ $\mu$\in M; $\mu$\lfloor\{0\}=0\} . (2.1)

Here, a Radon measure  $\mu$\lfloor $\psi$ for a bounded Borel measurable function  $\psi$ is defined by

( $\mu$\displaystyle \lfloor $\psi$)(O)=\int_{0} $\psi$( $\xi$) $\mu$(d $\xi$)
for an open set O . For a Borel set B we simply write  $\mu$\lfloor$\chi$_{B} by  $\mu$\lfloor B if  $\psi$ is a characteristic

function  $\chi$_{B} of a Borel set B . Hence, the condition  $\mu$\lfloor\{0\}=0 in (2.1) implies that the Radon

measure  $\mu$ has no point mass at the origin.

Next we define two spaces for measures which belong to  M and M_{0} in the phase space. The

first one is

FM=\{f\in S';(F^{-1}f)(x)\in M\}.
The space FM is the Fourier image of M

,
and is the same as the preimage;

FM=\{f\in S';(Ff)( $\xi$)\in M\}

since (F^{-1}f)(x)=F(f(- $\xi$)(x)) . Similarly, we define the preimage of M_{0} by

FM_{0}=\{f\in S';(Ff)( $\xi$)\in M_{0}\}.

In the spaces FM and FM_{0} we employ the norm ||f||_{FM}=(2 $\pi$)^{-n/2}||Ff||_{M}.
The space FM contains constant functions since ||1||_{FM}=||F(1)||_{M}=|| $\delta$( $\xi$)||_{M}=1 ,

where  $\delta$

denotes the Dirac delta measure. However,  FM_{0} does not contain nonzero constant functions.

In fact,  $\delta$( $\xi$)\not\in M_{0} . Moreover, FM has a topological direct sum decomposition FM=FM_{0}\oplus \mathbb{C}.
On the other hand, FM_{0} contains the functions in the form (1.4), which does not decay at

space infinity. In fact, we have

||\displaystyle \sum_{j=1}^{\infty}$\alpha$_{j}e^{i$\lambda$_{j}\cdot x}||_{FM}=||\sum_{j=1}^{\infty}$\alpha$_{j} $\delta$( $\xi-\lambda$_{j})||_{M}\leq\sum_{j=1}^{\infty}|$\alpha$_{j}||| $\delta$( $\xi-\lambda$_{j})||_{M}=\sum_{j=1}^{\infty}|$\alpha$_{j}|<\infty
since  $\delta$( $\xi-\lambda$_{j}) for $\lambda$_{j}\neq 0 has no point mass at the origin, hence belongs to M_{0} and its total

variation norm is 1. We also remark that FM_{0} is closed on dilation, that is, if f\in FM_{0} ,
then

f( $\lambda$\cdot) for  $\lambda$\neq 0 also belongs to FM_{0} . It is because F(f( $\lambda$\displaystyle \cdot))( $\xi$)=\frac{1}{$\lambda$^{n}}(Ff)(\frac{ $\xi$}{ $\lambda$}) .

3 Main Results

Theorem 3.1. [6, Theorem 1.1] Assume that u_{0}\in FM_{0} with div u_{0}=0 . Then there

exist T_{0}(\geq c/||u_{0}||_{FM}^{2})>0 independent of the Coriolis parameter  $\Omega$ and a unique mild solution

 u=u(t)\in C([0, T_{0}];FM_{0}) of (1.1), where the numerical constant c equals to e/576.
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To state the second theorem we denote by BMO the space of functions of bounded mean

oscillation.

Theorem 3.2. [6, Theorem 1.2] Assume that u_{0}\in FM_{0} with div u_{0}=0.

(1) Let u=u(t) be the mild solution obtained in Theorem 3.1. If we set the pressure p=p(x, t)
as

\displaystyle \partial_{i}p(t)=\partial_{i}\sum_{j,k=1}^{3}R_{j}R_{k}u^{j}u^{k}(t)+ $\Omega$ R_{i}(R_{2}u^{1}-Ru)(t) (3.1)

fort>0 and i=1
, 2, 3, then the pair (u, \nabla p) is a classical solution of (1.1).

(2) Let u\in L^{\infty}((0, T)\mathrm{R}) and p\in L_{loc}^{1}((0, T) ; BMO) be a solution of (1.1) in the distributional

sense for some T>0 . Then the pair (u, \nabla p) is unique. Moreover, the relation (3.1) holds.

4 The Poincaré‐Riesz semigroup and the Riesz semigroup

In this section we see that the Riesz semigroup arises in the analysis of the Poincaré‐Sobolev

equations, the linearised equations of (1.1), which have the form;

(PS) u_{t}+ $\Omega$ e_{3}\times u-\triangle u=-\nabla p, \nabla\cdot u=0, u|_{t=0}=u_{0}.

Multiplying the Helmholtz operator \mathrm{P}=($\delta$_{ij}+R_{i}R_{j})_{1\leq i,j\leq 3} ,
the equations (PS) are transformed

into the abstract ordinary equation

u_{t}-\triangle u+ $\Omega$ \mathrm{P}\mathrm{J}u=0 for t>0, u|_{t=0}=u_{0} . (4.1)

Because of Pu =u
,

Instead of (4.1), we can deal rather

 u_{t}-\triangle u+ $\Omega$PJPu =0 for t>0, u|_{t=0}=u_{0} , (4.2)

whose the solution operator is given by

\exp(-\mathrm{A}( $\Omega$)t)=\exp(t\triangle)\exp ( - $\Omega$ St),

where \mathrm{A}( $\Omega$)=-\triangle+ $\Omega$ \mathrm{S} and \mathrm{S}:= PJP is the Poincaré‐Riesz operator. The advantage of the

operator PJP than PJ is its skew‐symmetry;

\displaystyle \mathrm{S}( $\xi$)\equiv \mathrm{P}( $\xi$)\mathrm{J}\mathrm{P}( $\xi$)=(\frac{$\xi$_{3}}{| $\xi$|})\mathrm{R}( $\xi$) ,

where the operator \mathrm{R} is given by;

 $\sigma$(\displaystyle \mathrm{R})\equiv \mathrm{R}( $\xi$)=(-\frac{0}{}\frac{$\xi$_{3}}{$\xi$_{2},| $\xi$|| $\xi$|} -\displaystyle \frac{$\xi$_{3}}{$\xi$_{1},| $\xi$|| $\xi$|0}\frac{}{} -\displaystyle \frac{}{}\frac{$\xi$_{2}}{$\xi$_{1},| $\xi$|| $\xi$|0}) . (skew‐symmetry)

Here,  $\sigma$(T) denotes the symbol of an operator T . Also it is known ([2], [3]) that \exp(\mathrm{S}\mathrm{t}) (the
Poincaré‐Riesz semigroup) is given by the symbol

\displaystyle \exp( $\Omega$ \mathrm{S}( $\xi$)t)=\cos(\frac{$\xi$_{3}}{| $\xi$|} $\Omega$ t)\mathrm{I}+\sin(\frac{$\xi$_{3}}{| $\xi$|} $\Omega$ t)\mathrm{R}( $\xi$) , (4.3)
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where I is the 3\times 3 identity matrix.

When one discusses the existence time of solution, we remark that dependence on the parameter
 $\Omega$ of the symbol (4.3) appears only in scalar coefficients \displaystyle \cos(\frac{$\xi$_{3}}{| $\xi$|} $\Omega$ t) and \displaystyle \sin(\frac{$\xi$_{3}}{| $\xi$|} $\Omega$ t) ,

which are

functions of the Riesz operator R_{3} . Therefore, noticing that the functions \cos(x) and \sin(x) can

be represented by \exp(ix) and \exp(-ix) ,
we thus essentially need the estimate in the following

form to solve the ordinary differential equation (4.2) in time variable t in some function space

X.

||F^{-1}(\displaystyle \exp( $\Omega$ ti\frac{$\xi$_{3}}{| $\xi$|})Ff)||x\leq C(t)||f||x, t\in \mathbb{R}, f\in X
for some C(t)>0 . Replacing  $\Omega$ t by t for simplicity, we reduce the above estimate to the following
estimate for our target operator (1.2);

||\exp(tR_{3})f||x\leq C(t)||f||x for t\in \mathbb{R}, f\in X . (4.4)

In this note we discuss the case of f\in FM_{0} ,
where the dependency of C(t) can be taken 1,

uniform in t . To deal with the operator \exp(\mathrm{t}\mathrm{R}) whose symbol is \exp(t(i$\xi$_{3}/| $\xi$|)) ,
we need define

for f\in FM_{0} the operators whose symbol may not be continuous at the origin.

Let  $\sigma$\in C(\mathbb{R}^{n}\backslash \{0\}) . Define the operator  $\Sigma$ by

 $\Sigma$ f:=F^{-1}((Ff)\lfloor $\sigma$) . (4.5)

Then, we have

Proposition 4.1. [6, Lemma 2.2] Assume that  $\sigma$\in c(R0) is bounded in \mathbb{R}^{n}\backslash \{0\} . Then

 $\Sigma$ defined in (4\cdot 5) is a bounded linear operator in FM_{0} and

\Vert $\Sigma$ f\Vert_{FM}\leq\Vert $\sigma$\Vert_{\infty}\Vert f\Vert_{FM} (4.6)

for f\in FM_{0} . If, furthermore,  $\sigma$ is continuous at the origin, then  $\Sigma$ is a bounded linear operator
in  FM and (4\cdot 6) holds for all f\in FM.

This proposition is proved as follows.

|| $\Sigma$ f||_{FM} \leq ||F^{-1}((Ff)( $\xi$)\lfloor $\sigma$( $\xi$))(x)||_{FM}
= ||(Ff)( $\xi$)\lfloor $\sigma$( $\xi$)||_{M}

\leq || $\sigma$||_{\infty}||Ff||_{M}=|| $\sigma$||_{\infty}||f||_{FM}.

Then, the Riesz operator and the Riesz semigroup, which are defined for f\in FM_{0} by

R_{j}f = F^{-1}((Ff)\displaystyle \lfloor $\sigma$(R_{j})) ,  $\sigma$(R_{j})=i\frac{$\xi$_{j}}{| $\xi$|}
\displaystyle \exp(tR_{j})f = F^{-1}((Ff)\lfloor $\sigma$(\exp(tR_{j}))) ,  $\sigma$(\exp(tR_{j}))=\exp(it\frac{$\xi$_{j}}{| $\xi$|})

for j=1 , 2, \cdots, n
,

can be estimated uniformly in t\in \mathbb{R} as follows.
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Corollary 4.1. The Riesz operator R_{j} and the Riesz semigroup e^{tR_{j}} are bounded in FM_{0} for
j=1 , 2, \cdots, n . Moreover,

(i) \Vert R_{j}f\Vert_{FM}\leq\Vert f\Vert_{FM} , (ii) \Vert e^{tR_{j}}f\Vert_{FM}\leq\Vert f\Vert_{FM} t\in \mathbb{R}

for all f\in FM_{0}.

This is trivial since the symbols of the operators are bounded with the bound 1.

Remark 4.1. The operators in the corollary R_{j} and e^{tR_{j}} are unbounded in FM since the sym‐

bols have singularity at the origin. We also note that they are unbounded in the inhomogeneous
Besov spaces B_{p,q}^{s} for all indices 1\leq p,  q\leq\infty and  s\in \mathbb{R}.

The above corollary cannot apply directly the Coriolis solution operator \exp(\mathrm{S}\mathrm{t}) or the

Helmholtz operator \mathrm{P} which are matrix operators. Although we do not mention the opera‐

tor for vector measure whose symbol is matrix, here, it is shown in [6, Lemma 2.9] that the

operators \exp( $\Omega$ \mathrm{S}t) ,
\mathrm{P} are also uniform bounded in t with the constant 1 as well as definition of

the space for vector measures, FM(\mathbb{R}^{n})^{d}, FM(\mathbb{R}^{n})^{d} for d\in \mathbb{N} . The theorems in Section 3 are

proved by standard iteration scheme using the above estimates.

A Appendix: The Mikhlin theorem in the Besov‐type spaces

In this appendix we review the proof of the Mikhlin theorem in the Besov spaces from Amann

[1], in particular, the case of the homogeneous Besov space \dot{B}_{\infty,1}^{0} . We extract one of steps of

the proof as one lemma which invoked the notion of the spaces FM and FM_{0} discussed in the

preceding sections.

Let X and Y be Banach spaces and assume that the topological dual of X is Y . We also assume

that both of the pair X and Y are included in S' so that we can define their Fourier preimage
spaces FX and FY . Here, similarly as in Section 2, for a Banach space Z\subset S' we define

FZ=\{f\in S';(F^{-1}f)(x)\in Z\},

with the norm ||f||_{FZ}=(2 $\pi$)^{-n/2}||Ff||z.

Typical examples of the pair (X, Y) are

(L^{p}, L^{q}) with 1<p,  q<\infty and \displaystyle \frac{1}{p}+\frac{1}{q}=1, (L^{1}, L^{\infty}) , (C_{\infty}, M) , ( \mathcal{H}^{1} , BMO).

Here, \mathcal{H}^{1} and BMO denote the Hardy space and the space of functions of bounded mean

oscillation, respectively. Although elements in BMO can not be viewed as in S' ,
we regard the

elements modulo constants to take their Fourier transform.

Before describing the lemma we give the definition of \dot{B}_{Z,1}^{0} ,
the Besov‐type space based on a

Banach space Z\subset S' by

\dot{B}_{Z,1}^{0}:=\{f\in \mathcal{Z}';||f;\dot{B}_{Z,1}^{0}||<\infty\},
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Here, by \mathcal{Z}' we denote the topological dual space of the space \mathcal{Z}
,

which is defined by \mathcal{Z}:=\{f\in
 S;D^{ $\alpha$}\hat{f}(0)=0 for all multi‐indices  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{n})\} and the norm is defined by

||f;\displaystyle \dot{B}_{Z,1}^{0}||:=\sum_{j=-\infty}^{\infty}||$\phi$_{j}*f||z.
Here, \{$\phi$_{j}\}_{j=-\infty}^{\infty} is the Littlewood‐Paley dyadic decomposition satisfying \hat{$\phi$_{j}}( $\xi$)=\hat{$\phi$_{0}}(2^{-j} $\xi$)\in
 C_{c}^{\infty}(\mathrm{R}) with

\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\hat{$\phi$_{0}}\subset\{1/2<| $\xi$|<2\}, \displaystyle \sum_{j=-\infty}^{\infty}\hat{$\phi$_{j}}( $\xi$)=1 for  $\xi$\neq 0.

In particular, the case Z=L^{p} (1\leq p\leq\infty) ,
the Besov‐type space \dot{B}_{Z,1}^{0} becomes the usual

Besov space \dot{B}_{p,1}^{0} ,
which we denote by \dot{B}_{L^{p},1}^{0} in this note.

Remark A.1. Let X\subset Y ,
that is X is continuously embedded in Y . Then we have

(i) FX\subset FY ,
and

(ii) \dot{B}_{X,1}^{0}\subset\dot{B}_{Y,1}^{0}.
This is trivial since || ||_{Y}\leq|| ||x implies ||Ff||_{Y}\leq||Ff||x and

\displaystyle \sum_{j=-\infty}^{\infty}||$\phi$_{j}*f||_{Y}\leq\sum_{j=-\infty}^{\infty}||$\phi$_{j}*f||x.
Similarly, we also have B_{X,1}^{0}\subset B_{Y,1}^{0} if X\subset Y. (See [4] for definition of the inhomogeneous
Besov spaces B_{X,1}^{0} . The argument in this section can be repeated for B_{X,1}^{0}. )
Then we extract one of steps of proof of the Mikhlin theorem as the following lemma.

Lemma A.1. Assume m\in S' and that the dual space of X is Y. Let m\hat{$\phi$_{j}}\in FX and

\displaystyle \sup_{j\in \mathbb{Z}}||m\hat{$\phi$_{j}}||_{FX}\leq C for some C>0 . (A.1)

Then the operator T=F^{-1}mF is bounded from \dot{B}_{Y,1}^{0} to \dot{B}_{L^{\infty},1}^{0}.
Proof. Since \displaystyle \sum_{j=-\infty}^{\infty}\hat{$\phi$_{j}}=1 (except at 0 ) and supp \hat{$\phi$_{j}}\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\hat{$\phi$_{k}}=\emptyset for |j-k|\geq 3 ,

we calculate

||F^{-1}mFf||_{\dot{B}_{L1}^{0}}\displaystyle \infty, = \sum_{k=-\infty}^{\infty}||$\phi$_{k}*(F^{-1}mFf)||_{L^{\infty}}
\displaystyle \leq \sum_{k=-\infty}^{\infty}\sum_{j=k-2}^{k+2}||$\phi$_{j}*(F^{-1}mFf)*$\phi$_{k}||_{L^{\infty}}.

It follows from $\phi$_{j}*(F^{-1}mFf)=$\phi$_{j}*(F^{-1}m)*f=(F^{-1}(m\hat{ $\phi$}_{j}))*f that

||F^{-1}mFf||_{\dot{B}_{L1}^{0}}\displaystyle \infty, \leq \sum_{k=-\infty j}^{\infty}\sum_{=k-2}^{k+2}||(F^{-1}(m\hat{ $\phi$}_{j}))*f*$\phi$_{k}||_{L^{\infty}}.
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Then the duality (X)'=Y implies that

||F^{-1}mFf||_{\dot{B}_{L1}^{0}}\displaystyle \infty, \leq \sum_{k=-\infty j}^{\infty}\sum_{=k-2}^{k+2}||F^{-1}(m\hat{ $\phi$}_{j})||_{X}||f*$\phi$_{k}||_{Y}
= \displaystyle \sum_{k=-\infty j}^{\infty}\sum_{=k-2}^{k+2}||m\hat{ $\phi$}_{j}||_{FX}||f*$\phi$_{k}||_{Y}
\displaystyle \leq 5\sup_{j\in \mathbb{Z}}||m\hat{ $\phi$}_{j}||_{FX}\sum_{k=-\infty}^{\infty}||f*$\phi$_{k}||_{Y}\leq 5C||f||_{\dot{B}_{Y,1}^{0}}.

We have proved Lemma A.1. \square 

Remark A.2. Obviously, the above lemma holds even if we exchange the roles of X and Y,
that is, if \displaystyle \sup_{j\in \mathbb{Z}}||m\hat{$\phi$_{j}}||_{FY}\leq C ,

then the operator T=FmF^{-1} is bounded from \dot{B}_{X,1}^{0} to \dot{B}_{L^{\infty},1}^{0}.
In the case X=L^{1}

,
the quantity ||m\hat{$\phi$_{j}}||_{FL^{1}} appearing in the condition (A.1) can be con‐

trolled by the following quantity $\mu$_{j} determined only by the symbol m without the decomposition

\{\hat{$\phi$_{j}}\} ;

Proposition A.1. [1, Lemma 4.2] Let k be an integer satisfy ing k>n/2 . Assume that

$\mu$_{j}:=\displaystyle \max \displaystyle \sup | $\xi$|^{ $\alpha$}|D^{ $\alpha$}m( $\xi$)|<\infty for some  j\in \mathbb{Z}.
| $\alpha$|\leq k_{2^{j-1}\leq| $\xi$|\leq 2^{j+1}}

Then, m\hat{$\phi$_{j}}\in FL^{1} and

||m\hat{$\phi$_{j}}||_{FL^{1}}\leq C$\mu$_{j} . (A.2)

Here, C=C(k)>0 is independent of m and j.

The above proposition is the key for the proof of the Mikhlin theorem in the Besov spaces.

Corollary A.1. [1, Theorem 6.2] (Mikhlin�s Theorem) Let k be an integer satisfy ing

k>n/2 . Assume m\in C^{k}(\mathbb{R}^{n}\backslash \{0\}) satisfies

 K_{m}:=\displaystyle \max \displaystyle \sup | $\xi$|^{| $\alpha$|}|D^{ $\alpha$}m( $\xi$)|<\infty . (A.3)
| $\alpha$|\leq k_{ $\xi$\in \mathbb{R}^{n}\backslash \{0\}}

Then F^{-1}mF is a bounded operator in \dot{B}_{L^{\infty},1}^{0} and moreover

\Vert F^{-1}mFf\Vert_{\dot{B}_{L1}^{0}}\infty,\leq CK_{m}||f||_{\dot{B}_{L1}^{0}}\infty, �

where C=C(k)>0 is independent of m.

Proof. Since \displaystyle \{ $\xi$\in \mathbb{R}^{n}; $\xi$\neq 0\}=\bigcup_{j\in \mathbb{Z}}\{ $\xi$\in \mathbb{R}^{n};2^{j-1}\leq| $\xi$|\leq 2^{j+1}\} ,
the assumption (A.3) implies

\displaystyle \sup_{j\in \mathbb{Z}}$\mu$_{j}<K_{m}<\infty . Hence, by (A.2) we have

\displaystyle \sup_{j\in \mathbb{Z}}||m\hat{$\phi$_{j}}||_{FL^{1}}\leq C\sup_{j\in \mathbb{Z}}$\mu$_{j}<CK_{m}<\infty.
10



Then, applying Lemma A.1 to the case X=L^{1}
,

we have proved the conclusion. \square 
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