On a linearized system
arising in the study of Bénard - Marangoni convection

Takaaki NI1SHIDA ! * and Yoshiaki TERAMOTO ”

9 Department of Mathematical Sciences, School of Science and Engineering, Waseda University,
Shinjuku - ku, 169 - 8555, Tokyo, JAPAN

b) Department of Mathematics and Physics, Faculty of Engineering, Setsunan University,
Neyagawa 572 - 8508, Osaka, JAPAN

1 Introduction

2 2
Let T? = R?/ <§Z X %Z), a,b > 0, be the two dimensional torus for the horizontal coordinates,

and let O = T? x I where [ is the interval {z3; 0 < 3 < 1}. We denote the boundary 9Q by
Sp =T?x {23 =1} and Sgp = T? x {3 = 0}. In this article we are concerned with the linear
nonstationary problem

oh
E — U3 = Qo on SF, (1]‘)
00
o5 ~A0—w = fo, (1.2)
10w —Av + Vp — Rybe= f, dive =0 in Q (1.3)
P, ot b erem - ’ .
0 =0, v=20 on Sp , (1.4)
o0
(9_§U3+Bz(0_h) = by, (15)
8’[}3 8’[)J 80 8h _ . .
Ox; + Ox3 + M (6.'17]‘ B B:L'j> =b,i=L2 (+0)
(9’1)3
p_2__(Ga—CaAF)h = b3, on Sp . (1.7)
a:L'g

Here e = (0,0,1)" and A, = (9/ dx1)” + (0/0x)?. This problem arises in the linearization around the
basic heat conductive state of the Bénard - Marangoni convection with deformable upper surface. P,
Ry, M, G,, B; and C, are the constants appearing in nondimensionalizing the physical model. Except
M,, B; these are positive, and B; > 0. See, for example, [5] or [6] for the physical model. The unknown
h on Sg corresponds to an upper free surface in the original full nonlinear problem. The unknowns
v and p denote velocity vector and scalar pressure respectively. 6 denotes disturbances from the basic
linear heat distribution. Most of this article is devoted to study the linear stationary problem with
complex parameter A

A — v3 = go on Sg (1.8)
A —AO — v3 = f in Q (1.9)
%v —Av + Vp — R,0e= f, dive =0 in (1.10)
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=0, v=20 on Sg , (1.11)
06

6—x3+B¢(9—h) =0, (1.12)
dvs  du; 29  oh .
Qs L O gy (L9 =0, 1.1
8~’Uj+3$3+ <593j aﬂ?j) 0o e
p—22% (G~ CuAp)h = 0, on Sp . (1.14)
85[73

This problem is closely related to construction of the resolvent operator when we rewrite (1.1) — (1.7) in
the form of evolution equation. We solve the problem (1.8) — (1.14) for A with sufficiently large real part,
and derive the estimate which shows that the linear operator appearing in the form of evolution equation
has compact resolvent and generates the analytic semigroup in some function space. These facts are
crucial in bifurcation analysis for the model system of Bénard - Marangoni convection, which we will
publish separately. We here apply our result to the initial boundary value problem for full nonlinear
system, and show in the final section that global in time solution exists uniquely for sufficiently small
initial data.

We introduce some function spaces. For £ > 0 H* () denotes the usual Sobolev space or its gener-
alization based on L? (). H* (T?) is defined in a similar way, and set

H{ (T?) = { ¢ € H" (T?) ; d(x')dx' =0, z' = (21, 22) } .
T2
We also introduce the spaces
K (Q % (0,T)) = H° (0,T; H* () N H (0,T; H ()

and . . )
Ko (T2 % (0,7)) = H° (0,75 Hy ™ (12)) 0 755 (0,75 Y (12))
where £ > 1. We also set K(, (2 x (0,7)) = {f € K* (2 x (0,T)) ; f(-,0) = 0} for £ > 1/2. We define

KéIO%) (T2 x (0,T)) similarly. See [8] for these.

2 Formulation of the problem

To formulate our problem in the form of an evolution equation in some function spaces, we use the or-
thogonal projection introduced by J.T. Beale [3]. Set G® = {V¢ ; ¢ € H' (Q) , ¢ =0 on Sp}. Denote

the projection orthogonal to G by PV from L? (Q) to ((jo)L . We cite Lemma 3.1 in [3] .

Lemma 2.1. Let £ > 0. P° is a bounded operator on H (Q) and K*(Q x (0,T)). If p € H™ (Q), then
PO (Vo) = Vi) , where 1 satisfies

Ap=0inQ, Yv=¢onSp, 0O,y =00n S . (2.1)

By this lemma, if we apply P° to (1.3) and recover p on Sg from (1.7), we have

% — P,P°Av + P, (Vp1 + Vp2) — P.R,P°e = P,P°f — P.Vps ,
where
Ap;=0in, i —gon sy, j=1,23
a:L'g
Ov
D =26_3 , P2 =(Go —CoAp)h, p3s=b3 on Sp .
€3

The system (1.1), (1.2) and (1.3) can be rewritten as

d h h 9o
() o[2)-(rer ).
0 60 fo



Here

0 R 0
G = | -PR"(Go-Cudy)  —A PRI e)
0 ( ) 6) A

where R : v — v3 |g,, is the restriction of the third component of v to the upper boundary Sp. R* is
the formal adjoint to R defined by R*¢ = Vq, where

Ag=0 inQ, ﬂ:()onSB , gq=¢ onSp,
(92133

and

—Av = P, (POAU R*2%> .
(92133

We need the solution to the the following boundary value problem with the homogeneous boundary
data and inhomogeneous right hand sides.

%v@) - MO 4 v® = f in Q, (2.3)
divo® = 0 inQ, (2.4)
@ = 0 on Sp ,
6v](~0) ou'® .
o3 . — 0 J=1,2, on Sp (2.6)
J
(0
q(O) ) a;;g =0 on Sg , (2.7)

where f is given in P°H "2 (Q). To discuss this, we use the following integral identity: Suppose
v,u € H?(Q), ¢ € H' () and div v = 0. Then integration by parts gives

/ (—Av+Vq) u"de=(v, u)+/ anjk(U,q)uZdS—/ gdivu*dzx , (2.8)
Q a9 Q
where 5 5 5 5 .
Y%, 9V Y Guk
(’U u> _Z / (&fnk 8:5]) (8xk + (9:!7]) dx
(91)J a’l)k * .
and Sk (v,q) = ¢dji, — Dar + % . Here and hereafter {-}* denotes the complex conjugate of {-}.

For the solvability of the linear problem with homogeneous boundary conditions we use the lemma
below.

Lemma 2.2. Foru € H* (Q) with u =0 on Sp, we have
|u|§11(9) < Clu,u)
with C' > 0 independent of u.

See Lemma 2.7 in [3] and [7] for of this lemma. Suppose v(©) and ¢(©) satisfy (2.3),(2.4),(2.5),(2.6) and
(2.7). Then, by the integral identity (2.8) it holds

% (v(o) , 'v)L2 + (@9 vy = (f, v) (2.9)
for any v € H(f) satisfying div v = 0 in  and v = 0 on Sg. By Lemma 2.2 we see that the real
part of the left hand side of (2.9) with v replaced by v(®) is positive definite for any Re A > 0. By
the Lax — Milgram’s lemma we first obtain a unique weak solution to the above problem. Since the
boundary conditions (2.5) and (2.6), (2.7) satisfy the complementary condition of [2], we obtain the
higher regularity of the weak solution. Thus we have



Proposition 2.3. Suppose { > 2 and X € C with ReX > 0. For a given f € PCH!"2(Q) there is a

unique solution v(© | ¢(© of (2.3) — (2.7), which satisfies

(0) (0) &2
v 0 ooy <€ (Fliresiey + WF f o))

+ \T ‘Vq(o)

A2

H(Q)
‘vq(o)

(0)
H=2(Q) * ‘q |S#

+ N g

HO(Q) H!=3/2(T?2)

=2
ISk SC(|f|He—2(Q) + Al |f|H0(Q)) .

HO(T?)

For the details of Proposition2.3, see Lemma 3.3 of [4]. To see how to recover ¢(°) we refer to Section

3 of [3] and [11].

3 Auxiliary linear problem

We first consider an auxiliary linear problem for given ag € Hg/ 2 (T?) and a; € Hé/ 2 (T?) ,j=1,2,3

A — v = ag on Sf ,

%v—Av—i—Vp:O,

T

dive = 0 in
v =20 on Sg ,
(91)3 (91)]' .
— 4+ —==aqa,; =1,2
Ox; = Oxz @i B
p—2§—2+CaAFh:a3, on Sf .

To solve this we expand h(z') , v(z',23) and p(2’, x3) in the Fourier series in 2’ € T? :

h(:L'I) — Zh(ﬁ,m) ei(a£x1+bmx2) , ’U(:L'I,y) — ZU(Z,m)(y) ei(a£x1+bmx2)
72 7.2

p(xl,y) — Zp(f,m)(y) ei(afxl—i-bmxg) )
7.2

Then we obtain the system of ordinary differential equations in the interval I = {0 <y < 1}

A (em) d\? 2\ (&m) .o (6m)

Sl ((£) —1ef ) ol ot = 0,
2

Sl - ((%) —|£|2> ol ibmp ™ = 0,

A (em) A\ o\ e A ey
Prv?) ((dy) |€| US + dyp - 07

ial o™ +ibm ol"™ + %ugf”") =0, in 0<y<1.
supplemented with the boundary conditions
ARE™) Uéf’m) — a(()f,m)’
iatolt™ 4 d% Pl gltm)
ibmol"™ + d%’vée’m) = ™|

d m m
plbm) — Z@Ugl’ ) _ C, |£|2h(2’m) = ag& ) ony=1,

vﬁzm) = vée’m) = vée’m) =0 ony=0,

(3.1)
2

=~ W

(3.2)
(3.3)
(3.4)
(3.5)

(3.6)

(3.11)

(3.12)
(3.13)

(3.14)

(3.15)



where [£| = y/(al)? + (bm)? and a(l ™) (j = 0,3) denotes the corresponding Fourier coefficient of the

boundary data. For a while we set (aé bm) = (£1,&). We see easily that v(*0) = 0, p(0-0) =0, p(00) =
0, so we assume (£1,&) # (0,0). The solution to the system (3.7) — (3.10) is written as follows

WM (y) = e C;f —"y+’|§|0 —kla=y ’éﬂl'cze—m ,i=1,2, (3.16)
ol (y) = Cre EI0=Y) 4 Cpelély (3.17)
(g s ) o (e Bg) o,
Al
em) )y = 2L (0o l6l0=y) _ ¢ o—lely
ORE (Cre Cae™ 1) (3.18)

A 1 m m
where r = ”F +|€” with |argr| < % R(&m) in (3.14) is replaced by k(6™ = X (Ugl’ s aff ))

which comes from (3.11). Substituting (3.16), (3.17) and (3.18) we obtain the algebraic system for the
coefficients C4, ..., C3. From (3.12), (3.13) and (3.14) we obtain

o Cy )
1
Aot + A |cl | = ag""”z : (3.19)
(¢,m) &2 (¢,m)
a + CoEa
o2 o2 3 3 %o
where 2| g 61t
. e+ &7 182
2icy r r
2 g2
A = 2, && & (3.20)
r r
2 2 2 2
R L PR
and
Ay =
2i¢ e €l il e-riLe
r r
2, ¢2
2ig,e €l 8 e T8 . (321)
r r
2 2 2 2
7" + |€| aﬁ 6—|£| e " +C |€| 7’61 e " _2 +O |€| 152
|£| A r2 r A2

The next lemma is based on Lemma 2.5 in [1].

Ay
Lemma 3.1. det <T’T> # 0.

Proof. Suppose that this vanishes. Then the boundary value problem (3.7) - (3.10), (3.11) - (3.15) with
a; =0, § =0,...,3has a nontrivial solution. Multiply (3.7), (3.8) and (3.9) by v; , j = 1,2, 3, integrate
these on 0 < y < 1, then take sum. Integrate by parts and take the homogeneous boundary conditions
into account. Then it holds that

=—/ jof? dy + (/mm dy+2/ [i€10n + ibavn | dy+4/ €2(us[2dy

1 1
+2/ ; dy+2/ dy+4/
0 0 0

From this it follows that v = 0 since ReA > 0. Hence it also follows that p = 0 and h = 0. This
contradicts that we have a nontrivial solution. O

dvg | ,
dy

. dv
i3 + d_;

d’Ul |£|2
m >+0 (D) . (3.22)



By this lemma the algebraic system (3.19) is always solvable uniquely. From (3.15) we obtain

Cs Cy
ci|l =B|lCH| (3.23)
3 Cct
where
_ 1 _, 216 _ 216
c(z-8) B T
_ rs 2151 o l€l e <l + f% — f%) e 2616
r =] ¢l €] ¢
2 —r20& o (1 8- f§>
el ¢ ro g
We now have the algebraic system for Cy,C{,C?
c
1 a(ll,m)
(A1 + 4B)|CL| = alt™ . (3.24)

5 ay’m) + Ca%ﬁagl’m)
Ci

1 Ca
The determinant of A; is —ED, where D = (r® + |£|2)2 — 4l + FlfI3 .
Lemma 3.2. For D it holds

2 P CoV P, A2
1> 2, (YDl 2l (3+ S5 ) imr > BE

”

For the proof of this lemma see Lemma 2.5 in [12]. The system (3.24) can be rewritten as follows

o

a(f,m)
(I + AsBATY) A |Cl | = ai“”) (3.25)
c? a§f””> + C’a@aé&m)
The inverse of A; is given by
<2€ e &¢? )
2 2 2 2
CZHIEP) 4 E) oy |£|2 2—62
rl¢
_7»2 + |£|2 _ 4:’I“|£|£ 6 + O |€| 6162
rl¢
i (2er + 0. c? &i) ~ (7 +1¢P)
2 2 _ 2
A +|§!|€| Thle, 1o, 0% 2iir . (3.26)
(2 16) (24 6) e, |£|2 2—51 2ityr

rl¢]



Since |argr| < % it holds that Rer > % Hence |e~"| < e~ I"l/ V2 Each component of the matrices Ay
and B has the factor e~ €l or e~”. Taking this fact and Lemma 3.2 into account, we can show by direct
computation that each component of the product Ay BA7* tends to 0 as |¢| goes to infinity uniformly for
Re\ > 1. Hence for sufficiently large |¢| the inverse of (I + A;BA[ 1) can be given by the Neumann
series and be written as
(I + ABAT) ™ =3 (-1)" (ABATY)" = T+ ¥l (c0)
n=0
where the components of the 3 x 3 matrix (¢;jx) are bounded uniformly for Re A > 1. Set

——

— N 2
agf’m) = agf’m) , k=1,2, ag’m) = agf’m) + C’a%ay’m) .

Solving (3.25) we have the explicit forms of the principal terms of v](.z’m) ,j=1,2,3, pltm) plem)

(&m) _ |£|(7’ — |€|) —ri-w) e|£|(1 v) 7«51 2 7«€1|€|2 /(z_r:) —¢| /(Z_WT)
vy = ) T |£| 1$6ir + C, 3 a; "+ e Nleay

(225 +C, z€2|f| > ( (£,m) +e_|£|c kaem)> ( 2 +|€|2) (ag/zm) +e_|£|03ka§f7m)>}

—i—e_’"(l_y)%{(age’m)+e_|£|c1ka§f’m)> <(r—|£|) (r® + [€Ir* + 3¢5r — E31¢1)

rl¢]

Lo 6= 1D (g + 5%))
rA

. </fm/) 4ol kﬁ) <_§1§2(7“ —1EDBr+ &) Oa§1€2|§|(7“ - |§|)>
r|¢] Ar

B <m tetlesn em)> it <r|£—| €] }

-y _ o—l€ly
(geoase)er.
(em) __[&l(r — [ e — el gy z€1|§| /?m/) el (tm)
BT Tl g e + e Fleyal

(215 Lc. z€2|§| > ( Zm)+e_|§|62ka£m)> (* + [€]?) (agl,m)+e_|§|63ka;f,m)>}

+e—r<1—y>% {@m +e—|s|clk;gﬁ>> (_5162(7'— €D G +[¢]) _Ca&ﬁzlﬁl)(\r— |£|)>
r

rle
N (7::) N e-|g|c%;;;?nf>) ((r —leD (* + mm +3¢r — £1¢)
Lo b0 16D (gl + a%))
rA
_ <7ﬁ>+e g, afm)) i% (7'|—||€|) } (3.28)
£

152 e~V — e—lEly

AT - (—(7’ +€DeEloy + 2i¢ie 0t + 2i£26_r012)

(’ﬁ “lEley e "01> :



D r—[¢

1€l e=r(=y) _ gléli-v) o —
o) __lEr—1leDe e {(22&1 L Z&Iél ) < m>+e—|5|c1ka§f’m>>
(2@5 r+C, l£2|€| > ( (Em) y e~léleypall m)> —(r* +1¢&P) ( (Em) 4 e~lélegpal ’m)>}

+6_T<1—y>|i|{ &, <<4m 4 elél, (Lm)) L, ( (m) 4 el afm))

(= ) (ag&m) . e—|£|c3kak&m)> }

e~ Y — e lEly

T (—(r +e)e oy + 2ige7 O + 22'526—"0%) (3.29)

+e Y {(e_r — e_l‘El) Cy—e” (Cl 251 152 1) } >

e-lel(1-9) — —
plem) = A€ {(2251 Lo, Z£1|€| > (a§f7m) +e_|§|clka;f7m))

P.D
(2252 +c, Z€2|f| > ( (¢,m) +e |g|c2 aem)> _ (7’2 + |£|2) (ang) +€_|£|C3ka§f7m)>}
Ae_lgly
= (—(r +|€])e Oy + 2ige " CL + 2i&e"C2) 3.30
B ey (0 D C +2ige - digeCE) (3.30)
(em) _ _161(r —1€])° (zm el om)) _ i&(r —1€)? L’m) €l (m)
h D + e Mlerray, Y, + e Slegp ak
€l ([ @wm) | el e L Ca €] alom)
ERELT S : —(1-
D as +e C3kay, + h\ P D
+"3A ( e |£|C’1+Z£1 e +“‘C2 —7*01> (3.31)
—r _ el
L -] 2% e "0 & 2ite O3
=D ( (r+€)e™*ICT + 2i& e "C + 2i&se C’l) .
Here and hereafter we use the convention that a repeated index is summed. For the fundamental
e~TY — e lély
solutions eg(y) = e~ , e1(y) = 7’—|€| we have the estimates

Lemma 3.3. For any (&,&) # (0,0), ReXA > 1, we have

e1(y)|” dy < ,
/o @) 4 < pe - ),

/wMQ
0

. dy <

dy’ ‘ =

For these estimates, see Lemma 3.1 in [12]. Using Lemma 3.2 and Lemma 3.3 we can estimate (3.27),
(3.28), (3.29), (3.30) and (3.31) in just the same way as in Proposition 4.1 in [9] or Proposition 4.1 in
[10]. Summing these in (&, &2) we can prove

L i=1,2,3,...,

e, o P g
dy’ EE

1 .
|r|2j_1 ) .] = 071727"‘
V2

Proposition 3.4. Assume ReX > 1. Let £ > 2. Let ag be given in Hé_% (’]I‘2) and let ay , a2 and ag be
_s
given in Hé ® (T?). Then there is a solution h,v,p to (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6), which



satisfies

£ =2
ey + A2 vlmo@) + VDl ge—2) + 1A [VPlgo) + |P|SF|HZ-%(T2)

£—3/2 £+1/
+[AI72 |p|SF|H0(T2)+ |h|HIZ+%(T2) + A7z

3
<C ((ZWHHz—g(TQ) )+ |GO|H2—%(T2 |/\| |GO|H°(’JI‘2 ) - (3.32)

=1

1
Further, h belongs to Hé+2 (T?) and satisfies

3
1,3 gy + I3 <0(§;|aj|,,%m + |a0|Hg(T2)) .
J:

4 Construction of the resovent operator

Let A € C with Re A > 0. Let us consider the equation of the form

(o)) - ()

(3.33)

(4.1)

Here go, f, fo are given in H3/2 (T?), PO (H° (Q))3 and H° (Q) respectively. The domain D(G) is

defined by
D(G) = {(h,u,e) € H? (T2) x P° (H°(©))° x HO();

heHp (T?) ,ue (HXQ) , 0eH> Q) ,u=0,0=0o0nSs,
(90 8U3 (9Uj (9

Oxs Ox;  Oxs Ox;

See, for example, [8] for the proposition below.

= 4 B;i(6-h)=0, —+—+Ma—(0—h)=00n5p,j=1,2} .

Proposition 4.1. Let A € C with Re X\ > 0. Let £ > 2. For arbitrarily given fo in H*=2 (Q) and by in

H*=3/2 (T?) there is a unique 6 € H* (Q) satisfying

A0 — A8 = fo inQ, 6=0on Sy, (;90 + Bifl = by on Sp
z3
101 17 () +|)\| 101 o) < C'(|fO|He 2(Q) +|)\| T [folpro(q) + [bol pre—s/2(p2) +|)\| |bO|H0(T2> :

In particular we have  |6]52q) < C |bolgi/2(re) -

Let ho and go be given in Hy/* (T?). For f given above we take the solution v(®),

¢© given in

Proposition 2.3. For fy given above we take the solution 8y given in Proposition 4.1 with by replaced

by B;ho. We next consider the following system

Mi—vg = v” +go onSp,

A
Fv—Av+Vp:0,

r

dive = 0 in Q|
v =20 on Sp ,
Ovs  Ovj 00y  Ohg .
= _:_Ma a. T A ) :1327
(9£Uj + (9563 (8:6] (9:6]) J
p—29% L CiAL L = Guho, on Sk .

Oz3



Note that Rv(®) belongs to HO3 /2 (’JI‘2) by the solenoidal condition. By Proposition 3.4 we can construct
v p(M) and h satisfying (4.2), (4.3), (4.4), (4.5), (4.6) (4.7). The esitimates (3.32), (3.33) with £ = 2
also hold for the right hand sides replaced by those in (4.2), (4.6) and (4.7) respectively. By this we can
define the mapping

3
2

HE (T?) 5 ho — h € HE (T?)

for each go. For given hg, h{ in HO% (T?) , the estimate (3.33) and the result in Proposition 4.1 yield

2
;- 06y 06 ,
[Al|h = A <C — - +|ho — hgl, 3.,
‘ H3(12) ]:21 Ozj O |yh (12 0lH2 (12)
< Clho = Byl 3 o -

Here 6] is the solution corresponding to hfj. We can choose y; > 0 so that, if Re A > 7, then
c C c < 1

Al = Rex = 1 — 2°

Hence, for A with Re A > 7; we have the unique fixed point hg = il, which solves

Mo — 0§ = ol g0 onSp, (4.8)
%v(l) — Ao + vp =0, dive®™ =0 inQ, (4.9)
v =0 on Sg (4.10)
aul) vl o _Oho\ _y i _ 1, i1l
o, " Oay " Ma\Ga, "7, )70 LY (4.11)
o'
pM —2 a; —(Gy—CaAp)hg = 0, onSp . (4.12)
3

together with the corresponding v} and p"). For this hg, by the estimate (3.33), it holds that

|h0|H%(’JI‘2) + |/\||h0|H%(’]1‘2) <, <‘R’U(O)‘H%(T2) + |gO|H%(’11‘2) + |V 00|H%(’]1‘2)> . (4.13)

The constant C;, remains bounded for Re A > ;. By the usual trace theorem, according to Propositions
2.3 and 4.1, we have

|hO|H%(T2) + |)\||hO|H%(T2) <0y (|f|H0(Q) + |f0|H0(Q) + |QO|H%(T2)) : (4.14)

Thus, if we put v = v(® + v and p = ¢(@ + p), we see that (hg,v,68y) € D(G) and
ho hO 9o
Alv | —Golv ]| =1[F (4.15)
90 00 fO

0 R 0
Go = |-PR*(G.—CuA,) -4 0] .
0 0 A

Since the difference G — G consists of lower order terms, by the standard argument we can show

where

Proposition 4.2. There is a v > 0 such that, if Re X > v there exists the inverse (A — G)™' in X with
(A= G)™' X = D(G) and its operator norm satisfying

C

|(’\_G)_1|X = m

where X = HE (T?) x P° (HO ()" x H° ().

10



From this we see that the resolvent operator of G is compact in X. As a consequence of this proposition
we can show

Corollary 4.3. We can take 0 € (%,ﬂ') so that, for A € C with
larg(A —7)| <60, (A= G)™* exists and satisfies

C
—1

with a different constant C.

If the data from X is more regular, the solution gets the higher regularity.

Proposition 4.4. Let { > 2. Assume that X satisfies the same condition in Corollary 4.3. Suppose
_1
90 € Hé 2(T?), f € PO (HZ_Q(Q))3 , fo € H*2(Q). Then the solution

h 9o
(v) = (A - G)! (f) (4.16)
g fo

+ |)‘|%+%|h|H°(T2) + 101 a5 ) + |)‘|%|0|H°(Q)

satisfies
2
[vlae @) + (A0 o) + |h|H’»’+%(1r2)

£ _ £ _
< C(| Iy + N5 I flmog@) + Lfole—s(oy + N5 fol ooy

£_1
+|go|H¢_%(T2) -+ |A|2 4|90|H0(']1"2)) . (417)

5 Linear nonstationary problem

In this section, under certain assumptions on the physical constants, we solve globally in time the linear
nonstationary problem

%—vg—o on S, (5.1)
00
5 A0 - =, (5-2)
1 ov . _ .
ot —Av + Vp — R,e= f, divv =0 in Q, (5.3)
=0, v=20 on Sg , (5.4)
00
6—x3+B¢(9—h) =0, (5.5)
Ovs  Ovj 09  Oh )
D Ay (o), =1,2, .
o+ g M (g~ g ) =09 >0
p—Q%—(Ga—CaAF)h = 0, on Sp (5.7)
85[73

Besides P* we need the projection P : (L? (Q))3 — G, where G ={V¢; ¢ € H' (Q)} . Since G-
C (G, PPO = P.

Proposition 5.1. If R, and |M,| are sufficiently small, then there is a dy > 0 such that the set
{A e C; |\ £ 2dp} belongs to the resovent set p(G) of G.

11



Proof. Tt is enoough to show 0 € p(G). Suppose (h,v,0) € D(G) satisfies

U3 0 on Sp | (5.8)
—Af — V3 = 0 , (59)
P.R* (G, — CyAp)h + Av— P.R,P°(fe) = 0in Q. (5.10)
We first derive the estimate for 4
61172y < C1 (|08l oy + 1l ) - (5.11)
Applying P to (5.10), we see that v solves the boundary value problem
—PAv = R,P(fe) in Q (5.12)
v=0onSg, wv3=0onSp, 5.13)
Ovs  Ov; o0 oh .
4L =M, |=—=-=), =12, Sp. 5.14
8a:j + (9563 (8:6] (9:6]) J oner ( )
This fact yields the estimate

06 Ooh

2
1|20y < C2 | Ra 0l go(q) + |Ma|2 ( el ) . (5.15)
s il r2)

See [11] for this estimate. Combining this and (5.11), by the usual trace estimate, we have

6.’17]‘

HE (T2)

02y < Cs (Ba + 1Mal) (sl o gy + 1]

e (TQ)) . (5.16)
Hence, if R, and |M,| are sufficiently small, it follows that
ol < s (Ba [Mal) Il 35,1 (517
Subtracting the equality PAv — P.R,P(fe) = 0 from (5.10) we have
R*(Gq — CoalAp)h —2R*§—2 + (I-P)P°(Av — R.(fe))= 0 (5.18)
The way of constructing P and IP implies

(I -P)P°(Av — Rq(fe)) = —V(p1 +a1) + V(p1 + p2).
Here p; is the solution to the problem

Ap; = div (Av — R.(fe)) € H1(Q) , pr € H3(Q)
q1 is the solution to the problem

Agp=0inW , ¢g =0o0n Sp, %:n'(Av—Ra(Ge)—Vpl) on Sg
and p- is the solution to the problem

, =n-(Av— R,(0e) — Vp;) on@Q,/pgdx:O.
on Q

See [3] Lemma 3.1 and [13] Theorem 1.5. Thus it holds that (G, — C,Ap)h = 2(%3

B —p2 on Sp. The
3

H'/2(T?) norm of the right hand side can be bounded by C5(Ra|0|ro(q) + |[v]m2(q)). Combining (5.17)
and (5.11), we now derive the estimate

|h|H%(']T2) S 06 (Ra + |M¢1|) |h|

H%(Tz) ’

Hence, if R, and |M,| are sufficiently small, we can conclude that (h,v,6) = (0,0,0). This shows
0 € p(G) since the resolvent operator of G is compact.

O
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Proposition 5.2. If R, and |M,| are sufficiently small, then there is a di > 0 such that the set
{A e C; ReA > —d;} belongs to p(G).

Proof. Let R, , M, and dy be as in the above proposition. Since we already have Proposition 5.1 and
Corollary 4.3, it is enough to show that A of |A| > dy together with Re A > 0 belongs to p(G). For A as
such suppose (h,v,60) € D(G) satisfies

Ah — w3 =0 onSp, (5.19)
AO—Af — vy = 0,inQ (5.20)
%v —Av+Vp—R,0e=0in Q (5.21)
with 5
—26—”3—(G —CuA,)h=0o0n Sk . (5.22)
3

Multiply (5.20) by 8*, then integrate this equality over (). Integrating by parts and taking the boundary
conditions into account, we have

)\|0|%IO(Q) +/ |V9|2 dr = / v30*dr — B; |9|2d£13, + B; ho*dz' .
Q Q Sk SF
Taking the real part of the both sides, applying Cauchy—Schwarz inequality, Poincaré’s inequality and
the usual trace theorem, we can derive

1
Re A [6]%0(q) + 5/ IV6|* dz < Cui|hlFo ) + Crz |U3|§{0(Q) : (5.23)
Q

We next utilize (2.8). From (5.21), (5.22) and the boundary conditions for tangential stress, we can
derive

A
510y + (v, 0)+ [ (G Cady) hojas
r SF
2
260 0Oh
M, — — — |vid' =R, | Ovidz . .24
+j; /Sp <6xj 6xj>vJ ' =R /Q vadz (5.24)

Since (5.19) holds h can be replaced by vz /A. Integrating by parts, applying Cauchy—Schwarz inequality
and the trace theorem, we can derive the following inequality

R A
e |’U|Ho o (v, v)+Re<)\>/ (Ga|y3|2+0a|VFU3|2)dx
Sk
2 Cia 2 2
< |Mal <013 IVOl1o0) + T IVolio Q)> + CisRa (|V9|H0(Q) + |VU|H0(Q)) : (5.25)

In (5.23) we replace h by vs/A. Note that |A| > do. Adding (5.25) and (5.23) multiplied by & > 0, we
obtain

R A 1
KReA6]20(0) + = |v9|H0(Q ¢ |v|HO(Q +(v, v)+Re <X> / (Ga lvs|* + Ca |VFU3|2) da
Sk
M,

K
Here we have used the trace theorem and Poincaré inequality. We assume Cig (R, + |M,]) < 1 Then

we see v = 0,60 =0and h =0if K, R, and |M,| are sufficiently small. This shows A as above belongs
to p(G). a

Based on this proposition we can show the theorem below. Since we can prove this in a similar way
as in Section 3 in [4], we omit the details.

13



Theorem 5.3. Let £ > 2 be not a half integer. Let R, and M, be as in the above proposition. Suppose
that the inhomogeneous term fo and f in (5.2) and (5.3) are given in K(ZO_)2 (Q x R"). Then there is a

unique solution (h, v, 0, p) to problem (5.1) — (5.7), with

he Ky (T2 x RY) | v € Koy (Ax RY) 6 € Kl (A< R)
4

_3
2

02 +
Vpe K" (AxRY) , plg, € K,

© (T? x RY) . (5.27)

This solution satisfies

+ |’U|Kfo)(9xR+) + |9|Kfo)(9><R+) + |Vp|K(ZO_)2(Q><R+) + |p|SF|K£—%
©

|h] HE o o 29 R+
Ko,(o)(T xR*) (T2xR*+)

S C (|f0|K(20_)2(Q><R+) + |f|KfO_)2(Q><R+)) . (528)

6 Full nonlinear problem

We finally announce the result of the full nonlinear problem in the unknown domain Q(t) = {(z',y) ; 2’ €
T? ,0 <y < 1+ h(z',t)}. The unknown free surface is denoted by y = 1 + h(z',t) ,2' € T? , t >0
The equations governing disturbances from the basic heat conductive state are written as follows

%(%—?+(u,V)u>—Au+ Vg — RyTe= 0, divu =0 , (6.1)
%—7; + (u, V)T — AT — uz = 0 in Q(t) (6.2)
The boundary conditions are
T=0, u=0 onz3 =0, (6.3)
Z—Z+Bi(T—h) = -1+ L (6.4)

1+ |Vehl ’

Lognz V), — (2% 4 e
(q - G, (h + §aﬂh ))n] (3£Uk + 8xj>nk (6.5)

+ (Co = Mo (T — h)) Vi (Lh) n;j

1+ |Vehl

oT oT .
o, (6—% - jg) M, (a—u —6k3> nen; = Oon Sp, j=1,2,3. (6.6)

On the free surface we impose the kinematic boundary condition

oh Oh Oh
— = U3 — U] —— — Uy —— =1 ! I e T2 . )
5 = Us —u A Us s on y +h(z',t), €T, t>0 (6.7)

2 _% oh (9h
Here (ny,n2,n3) = (1+|VFh| ) <_6_xl’_8_x2’
We follow [4] to show existence and decay of global in time solutions. As in [4] we transform the
problem to the one on the equilibrium domain 2 = {(x' ,o3);2' € T? , 0 < 3 < 1} using the unknown
free surface h(z',t). For each t > 0 we define @ : Q — Q(t) by

1) is the outward unit normal to the free surface.

@(xl,xz,xg:t):(xl,xg,(h+1):L'3), O<zz3 <.

Here h is an extension of h to T2 x (0,1) in a suitable way. For each ¢t we define u on Q(t) by uj =
O, xvr/J, where (0©; ;) is the Jacobian matrix of © and J is the Jacobian det(0; ). Set p = go © and
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0 = T o O©. Substituting these into (6.1) — (6.7) we obtain the problem for unknowns h, v and 6 in the
fixed domain 2. Collecting the linear terms we can write down the problem as follows

Ooh

5 "B = 0 on Sp, (6.8)
1 Ov . .
ot —Av + Vp — R,e= F, divv = 0 inQ, (6.9)
a0~ =R o, (6.10)
0 =0, v=20 on Sp , (6.11)
(91)3 8vj (90 8h _ .
oz, + s + M, (6.'17]’ axj> =F;,j=1,2, on Sp, (6.12)
p—22% (G~ CuA)h = Fy on Sk, (6.13)
(92133
00
—+Bl(9—h) = F, on Sp . (614)
a:L'g

F, Fy,Fy,F5,F3 and Fy consist of nonlinear terms.

7
Theorem 6.1. Let ¢ be chosen with 3 < { < —. Assume that R, and |M,| are suuficiently small as in
Proposition 5.3. There is a § > 0 such that for hg, vo, 0y satisfying

<4é

|h0|HZ(T2) + |v0| (Q) + |00|HZ—%(Q) >

-3
and the compatibility conditions

divvog =0in 2, vg =0, 6p = 0on Sp

Ovos  Ougj 00y  Oho '
B oJ Ma a. a9 = F _ , — 1’2, ,
390+B~(9 —ho) = Fy on S
O3 i W70 o) = Pdli=o F

the following assertion holds: The problem (6.8) — (6.14) has a solution h, v, 8, p with

|h|K£+%(']1‘2><(07oo)) + |U|Kf(9x(o,oo)) + |9|Kf(9x(o,oo))
+HIVPlke-2(@x (0,00 F |p|SF|K‘-’—%(1r2x(0,oo)) <0

and
h(0) = ho , v(0) =vo , 6(0) = 6o .

Note that Fj|,_,,j = 1,2,4 consist of the initial data ho, vo, fp. This is proved by the fixed point
theorem based on the global in time solvability of the initial value problem (Theorem 5.3). This theorem
is proved in a similar way as in [4], so we omit details.
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