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Abstract

In this note we study nonlinear stability of rigid rotations of a liquid
drop in R"™, with n arbitrary. Even though the case n > 3 has no physical
sense still it appears interesting from the mathematical point of view.
Moreover we prove a non linear instability theorem by direct Lyapunov
method.

1 Introduction

Problem of rotating drop has attracted the attention of researchers in several
different fields as mathematics (minimal surface, finite perimeter), astrophysics
(motion of stars, planets and Saturnus rings), engineering ( bubbles in a liquid),
nano-technology (hydrophobic, hydrophilic walls and capillary effects). It is out
of purposes of this notes to consider all aspects above mentioned. We wish to
give an idea only of some mathematical problems, in this regard we quote above
others, the papers [2], [14], [15], [16], where existence, uniqueness and regularity
of equilibrium figures of capillary fluids is studied in physical three-dimensional
case, and the papers [18], [17] where non steady case is first analyzed. It is also
worth mentioning the mathematical papers by [3-7] where it is studied the well
posedness problem in R™ with dimension n greater than 3 for the steady case.
The interest in this field is surprisingly increasing and we quote e.g., [1], [10-
13], [17], [19-23] as papers related to stability of equilibrium configurations of a
rotating drop. The enclosed bibliography is not at all exhaustive and doesn’t
give the idea of the number of different mathematical and physical problems
one encounters in dealing with rotating drops, however it is enough to explain
the scopes of this note.

In the present paper we consider the free boundary problem for the Navier-
Stokes equations governing non-stationary motions of an isolated mass of a
viscous incompressible capillary liquid in n-dimensional space. We analyze a
stationary solution of this problem related to the motion of the liquid as a rigid
body in the domain F independent of time. As in three-dimensional case, a
vector field U in R™ represents the velocity field of a rigid motion if
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holds for the components of the velocity vector field U(x) depending on the
Eulerian coordinates z € F. The solution of this system has a form U(z) = Cz
where C is a constant antisymmetric matrix. This gives the expression |Cx|?/2
for the energy of centrifugal forces slightly different from that used in [3], [5-7]
(see Remark 2.1 below). In Sec. 2 we study the kinematics of n-dimensional
rigid motion, and we show that it is much more rich than in the case n = 3
where it essentially reduces to the rotation about a fixed axis. In Sec. 3 we
pass to the "rotating” reference frame, and we reduce the analysis of stability of
the above mentioned stationary solution to the analysis of stability of the rest
state v(x,t) = 0, x € F. We then introduce a quadratic form corresponding to
a certain self-adjoint elliptic operator B; given on G. In case n = 3 this form
coincides with the classical second variation of the energy functional. We also
give several technical Lemmas. In Sec 4 we prove that if the above quadratic
form is positive definite, the rest state is asymptotically stable in the class of
global solutions possessing regularity that permits our calculations, and unstable
if it can take negative values. We emphasize that the smallness assumption is
made only on the distance between the boundaries I'; and G.

The proof of stability and instability is achieved by constructing a special
functional playing a role of the Lyapunov function that guarantees stability or
instability of the rest state in relatively weak norms. The construction goes back
to the free work identity introduced in [8-10]. In the proof of instability we make
the assumption KerB; = (). For n = 3 the problem of instability (without this
additional assumption) is solved in [21,22] by means of much harder technics.

It should be observed that the construction of our Lyapunov functional re-
quires the existence of global solutions v, I'; to the free boundary problem,
satisfying suitable estimates only on the distance between I'y and G. The proof
of existence of such a solution and of its estimates is outside the scope of the
present paper. For n = 3 it was carried out in the papers of the authors cited
above, when the initial data are close to the regime of a rigid rotation (i.e. the
velocity at the initial moment is close to U(x) and it is defined in a domain
close to F). In the case n > 3 it can be done in the same way.

It becomes clear from the proofs that also self-gravitating forces can be taken
into account, [17].

2 Rigid rotation of a fluid drop in R"

We consider the evolution free boundary problem

v+ (v-V)v — V20 + Vp=0, (2.1)
V"U:O, ertv t>0,
v(z,0) = v, x € Qg,

T(v,p)n =cH(z,t)n, W =wv-n, ey =0Q,.

where unknown are a bounded domain €; € R", the vector field v(z,t) =
(v1,...,v,) and the function p(x,t) given in € and satisfying (2.1). Here v and
o are positive constant coefficients of viscosity and of the surface tension, respec-
tively, T'(v, p) = —pI + vS(v) is the stress tensor, S(v) = (gTvi + 2%;;) .
J,k=1,....n
is the rate-of-strain tensor, H is n — 1 times mean curvature of I'; negative for



convex domains, and W is the velocity of evolution of I'; in the direction of
exterior normal n. The density of a liquid is assumed to be equal to one. The
domain 2 is given. For n = 3 this problem was studied in [10]- [13], [17]-[23],
and other papers.

We observe that the solution of (2.1) is subjected to the same ” conservation
laws” as in 3-dimensional case, namely,

€] = [Q0],
/Qt v(x, t)de = /QO vo(z)dz, (2.2)

| vty mg@in = [ o) my@de=my. i£5 (@3
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where 1,;(z) = e;z; —e;x; and e; is a unit vector in the direction of the z;-axis.
Indeed, (2.2) is easily obtained by integration of the first equation in (2.1) over
Q. We remind the Reynolds transport theorem

d
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that holds for domains satisfying kinematic boundary condition
W(z,t) = (v-n)(x,t), z eIy, (2.4)
Hence we obtain

0 v(z,t)de —o | H(x,t)ndS = %/ v(x,t)dz. (2.5)

dt Jq, r, Q
Since H(x,t)n = Ar,x, and T'; is closed, the surface integral vanishes. In the
same way equations (2.3) are obtained - see [12], [17].

We would like to study the stability of solutions corresponding to a rigid
motion of the liquid. We say that the motion is rigid if the vector field of
velocity U given as a function of Eulerian coordinates = satisfies the relations

8UZ(CL') 4 8Uj (l’)
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=0, 4,57=1,...,n.

It is easily seen that this is the case if and only if
U=Cx+h (2.6)

where C(t) is an antisymmetric matrix and h(t) is a vector, constants in space
and functions of ¢ only. If C, and h are constant in time, then the motion will
be called uniform. In the sequel we take h = 0, and C constant in time. The
functions

U(z)=Czx, P(x)= %|C’a:|2 +po, po = const, (2.7)

satisfy the system of the Navier-Stokes equations. Substituting U and P into
the boundary conditions we obtain the equation for the equilibrium figure F
filled with a rotating liquid:

oH(x)+ %|C':13|2 +po=0, z€G=0F. (2.8)



where H is n — 1 times mean curvature of G.
Without loss of generality we can assume that the matrix C has a canonical
form:

C= diag(C’l, ...,cl,o), (2.9)

where | <n/2, O is n — 2l x n — 2] matrix whose elements are zeros and C}, are
2 x 2 antisymmetric matrices of the form

o :( 0 _6"’“ > (2.10)

Wk

In particular, if n = 3, then | = 1 and U is the velocity of the liquid rotating as a
rigid body about the xs-axis with the angular velocity w;. In the n-dimensional
case there are [ ”angular velocities” wy.

Remark 2.1 If we write explicitly the term |Cx|? in (2.8) we find
1
Cx|® = Zwi(xg(k—l)-i-l + a3y,).
1

This term differs from the term F = w® S p_1 @} used in [3], [5], [6], [7], in
particular F' cannot represent centrifugal force if n is even. Furthermore, in case
n odd F may represent a centrifugal force only for wy = w forallk =1,...,n—1.

Passing to the Lagrangean coordinates, it is easy to calculate the trajectories
of particles, whose velocity as a function of the Eulerian coordinates is U (x). If
z(0) = &, then

Top—1(t) = Ean—1 coswit — &op sinwyt,

Tog(t) = Eop_1 sinwgt + &op coswit, k=1,..,1,
T =&m, m=2l+1..n,

i.e., the projection of the trajectory onto the xg, zr4+1-plane is a circle with the
center at the origin, along which the motion proceeds with a constant velocity
proportional to wg. This complicated motion is in general non-periodic.

We say that the figure F is symmetric, if it is invariant under transformation

x=Z2y

where
2 = diag( 21, Zis o1,

I,,_o; is a unit n — 21 x n — 2] matrix and

7 coser —S8iNYg k1 !
k SN Cospy ’ T

It is easily seen that the velocity of liquid particles located at the boundary G
of a symmetric F is tangential to G, i.e.,

Ca - N(z)lg =0,



where N is the exterior normal to G. This means that the functions (2.7) given
in the symmetric domain F solution to (2.7) represent a stationary solution of
(2.1). We consider here only symmetric F.

It follows from the symmetry that

/:cjd:czo, ji=1,..,2l (2.11)
.7:

/ rjrgde =0, j=1,...,2l, ¢q=1,..,n, q¢#j

f

(some of these relations can be also deduced from equation (2.8), as in the three-
dimensional case, see [23]). Without loss of generality we can fix the origin of
coordinate system at center of mass, and we can assume that

/ zjde =0, j=1,...,n. (2.12)
f

Let
n;;(2) = zie; — xje;, i<
If the matrix C has a canonic form (2.9) and the figure is symmetric, then the
corresponding matrix of momenta

mi; = / Cx - n;;(x)dw
_‘F

also has a canonic form. Indeed, since

1
Cx = Z weN, ()
g=1

where n,(7) = 19,1 2,(2), it is easily verified , using (2.11), that m;; can be
different from zero if and only if ¢ = 2k — 1,j = 2k, k <, in which case

2
Maok—1,2k = Wk ll7, (7)-

We do not consider the problem of existence and uniqueness of equilibrium
figures, as well as of their geometry, but we can prove the existence of a sym-
metric equilibrium figure of a given volume in the case of small velocities (i.e.,
of small Cj;,). For n = 3 this result was obtained in [17].

3 Preliminary lemmas

Let us return to problem (2.1). We assume that F is a given bounded domain
with a smooth boundary and that

1] = |90] = |7, /wjdxzo, i=ln,  (31)
Q4

/Qt v(z,t)dr = /Qo vo(z)dx = 0,
/Qt v(z,t) -n,;(x)de = /QO vo() - m;(2)da = /}_Ca: -5 (@) d. (3.2)



We shall work with the evolution problem for the perturbations
'Ur:U_Ua pr:p_P

written in the coordinate system rigidly connected with the liquid whose velocity
is given by (2.7). We make the change of variables

x=Z(t)y
and the corresponding transformation of unknown functions
w(y’ t) =z (t)vr(Z(t)y, t)’ q(y, t) = pT(Z(t)yv t)7

where
Z(t) = diag(Zl(t), o Zi(1), In_21>,

I,,_9; is a unit n — 21 X n — 2l matrix and

[ coswpt —sinwt
Zi(t) = < sinwkt  coswit > ’

This leads to the problem
wi + (w - V)w + 2Cw — vV3w + Vg = 0,
V-w=0, y € Qy, t>0,
1
T(w,q)n = (crH + §|Cy|2 —I—po>n, (3.3)
W =w-n, y €'y,
U)(y,o) = Uo(y)’ Yy e QOa

in a transformed domain denoted again by §2;. Conditions (3.1), (3.2) take the
form

) = |17, / vdr =0, j=1,.on,  (34)
Q¢
w(z,t)dz =0,
Q¢
w(z,t)-n(z)de+ [ Cx-n;(r)de = / Cx - n;;(z)dw. (3.5)
Q4 Q4 F

We assume that I'; is close to G and is given by equation

T=y+ N(y)p(ya t)a (JAS g (36)

with a small function p(y,t) defined on G. Let N* and p* be extensions of N
and p from G into F made in such a way that

o . -
Y (z,t)lg =0,
a . B
NP (z,t)lg =0, (3.7)

P (Do) << L



The transformation
z=y+ N"(y)p*(y.t) = ep(y), yeF (3.8

is invertible, if § is small enough, and it maps F onto ;. Let £ = %—Z’ be the
Jacobi matrix of this transformation with the elements

NI N
lij =6ij +p (y,t)a—yNi (y) + N (y)a—yp (y,1), (3.9)
J J

and with the determinant L. By [ and Eij, i,j = 1,2,...n we denote the
elements of the inverse matrix £~! and of the cofactors matrix £ = LL™!,
respectively. Set

Aly,p) = N(y) - LN (y),

o(y,p) = /0 p(y)A(y, sp)ds,

Y(y,p) = /O (yi + sNi(y)p(y))p(y)Aly, sp)ds.

From formula (2.9) in [20]

1
[ s - /f f(y)dy = / ds /g F(eap(®))pA(y, 5p)dS,

it follows that the restrictions (3.1) can be written in terms of p as

/ w(y, p)dS =0, / Yi(y,p)dS =0, i=1,2,3...n, (3.10)
g g

We remind that the (—1)"J Eij are the determinants of £ with row j and
column 7 deleted. From (3.9) we notice that

ap*

hence, Eij does not contain products of two or more derivatives of p*. This
means that £ is a linear function of Vp*. Furthermore, the calculation of the
first variation of A with respect to p (see [20], formula (2.10)) shows that JA is
independent of Vp. Thus, A, ¢ and v; are functions of y and p.

In order to use Korn’s inequality, we need to introduce the part w* of w
orthogonal to all n;,,,:

wi=w-—w, w = Z Viern (E) Mo (). (3.11)
k<m

Since n,,,(x) are linearly independent, the matrix A(t) with the elements

A i) = /Q N () - 1 (2) (3.12)



is non-degenerate, moreover, it is positive definite. By virtue of (3.11) and (3.5),
the functions g, (t) are defined by

o) = S A7) [ ety gt (313)
_ ki (2 da — n..
== a4 ( [ cwony(@ar - [ cy-nyan)

i<j

where A*¥™ (t) are elements of A~1(¢). We need the following auxiliary propo-
sition

Lemma 3.1 For arbitrary k,m < n, k < m the vector field Cny,,,(x) can be
represented in the form

200 () = =V(CT * Njoy (2)) + R (2) (3.14)
where Ry, is a linear combination of ;-

Proof We consider the left hand side, and we have

2

(2

Z C'" .V, + Z C’“" V(xixg) — x;Vag)—

(C™gp — C*2,)Va; = (3.15)
1

20N (x) = 22 (C™ap — Oz, ey

n

3

Z C* gy Va; — Z C’““[V(acixm) — 2, Vi, =
i=1 i=1
Z C'"ny () — Z Ckq, (x)+ Z V(O™ zpa; — C* ;) =
i=1 i=1 i=1

Zcmnm ZC’knm )+ V(Ca - (wmen(e) — wren(r) =

1
Z Clm’f]kz Z Olknmz Z Vi - nkm( )
=1

i=1

The proposition is proved. [
From lemma 3.1 it follows that

20w’ = -V(Cz-w') + R

where w’ is defined in (3.11) and R is a linear combination of M;j-
Let us introduce the operators

Bop = —06(H (x) — H(y))[p] — %(S(IC-”BI2 —[Cy*)lp] = —algp —bly)p

and
Byp = Bop — 6Cx - w'’

=Bop+ Y A’S’”’”Cw~nkm($)/gp0y~mj(y)d5-

k<m,i<j



Here AE™% are elements of A ' and Aj is the matrix with the elements (3.12)
calculated for Q; replaced with F. By § we mean the first variation with respect
to p:

6(g(ep(y)) —9(y)) = %(g(y +sp(y)) — 9(y))

hence, By is a linear operator and 6Cx - w' is a linear functional of p. It follows
from well known formula for the variation of the mean curvature that Bgp does
not contain the first derivatives of p, and it holds

5
s=0

b(y) = oc*(y) + Cy - CN(y),
where c?(y) is the sum of squares of the principal curvatures of G at point y.

Let P be an orthogonal in Ly(G) projector onto the subspace H of the
functions r € Ly(G) satisfying the orthogonality conditions

/gr(y)xp(y)dS =0, p=0,..n,

where

xow) =1, xiy)=w, i=1..,n

Lemma 3.2 Assume that p(y) satisfies (3.10) and that 0 in (3.7) is sufficiently
small. Then

allelwzg) < lIrllwag) < eallpllwz g

where c; are constants independent of p, W4 (G) is the Sobolev space (see for
instance [24]).

Proof We have "
Pp=p(y) = > cpxp(y)-
p=0

The constants ¢, are found from the equations

/ pPXqdS = Zcp/ XpXqdS = Zqucp.
g p=0 g p=0

Since x, are linearly independent functions on G, the matrix with the elements
X,q is non-degenerate, and

n
Cq = ZX‘”’/ PXpdS,
p=0 g

where XP7 are elements of the inverse matrix. Since

/gmmdS:/gpd5=/g(p—<p(y,p))d5,

/pxidSz/pyidS=/(pyi—@/)¢(y,p))dS, i=1,..,n,
g g g



we have
n n
D lepl <e)
p=0 p=0

which proves the lemma.

The following lemma is a modification of problem (23) solved in [13], see
also Lemma 4.1 of [20], and [12] for the case n = 3, the proof given in [13], and
[20] may be extended to the n-dimensional case. It concerns the construction of
a special auxiliary vector field satisfying estimates in some Sobolev-Slobodevski
norms.

/gpxpds‘ < dllpllyg)s

Lemma 3.3 Assume that T'y = 0 is given by equation (3.6) with p satisfying
(3.7) and having bounded first derivatives with respect to t and second derivatives
with respect to x;. Let fo(y,t), y € G be an arbitrary function with a finite
norm

||f0("t)||W21/2(g) + Hfo('vt))”Lq(g) + HfOt('vt))”Lz(Q)’ qg>1,

that satisfies the condition

/ foly 1)dS = 0.
g

Then there exists a vector field V (x,t), x € Q4 such that

V- -V(zx,t)=0,
\& Ti|x=ep(y) =0, V- n|x=ep(y) = fo(y)/|2TN(y)|, x €Iy,
with T;, i =1,...,n — 1 tangential unit vectors, and

V(z,t) - ny(z)de =0
Qy

Finally, the estimates
IV Dlwg @ < el ol Dllyarag,,
Ve Do, <clfol D, a>1

V(s t)llLa(en) < C<||f0t("t)||Lz(g) + ||f0(wt)||wg/2(g))’

hold with constants independent of t.

4 Non linear stability and instability of rigid ro-
tations of a fluid drop in R"

Now, we obtain the main result of the paper.

10



Theorem 4.1 Assume that problem (3.3) has a classical solution defined for
t € [0,T], T < oo, and that QO satisfies the assumptions of Lemma 8.3, in
particular, Ty is given by equation (3.6), and

lp(- O)lcrgy <6 (4.1)
with a small (but fived) & > 0.
1 1If
[ B )as = iy (4.2
for all r satisfying
/gr(y)dS =0, /gr(y)yidS =0, i=1,..,n, (4.3)

then
[ Dl @) + loC D 6) < ce™ (Iwolld @ + loollfs ) (44)

with b, ¢ > 0 independent of T.

2. Assume that the form fg r(y)B1 r(y)dS can take negative values for some
r satisfying (4.3), and that KerBy = (). Then there exist arbitrarily small initial
values (wg, po) such that the solution of (3.3) leaves sooner or later a certain
neighborhood of zero, i.e. for a certain t > 0 it holds the inequality

||w(~,t)||%2(9t) + ||P(',t)||%/v21(g) >e>0. (4.5)
In particular, condition (4.1) cannot be verified for all t > 0.

Proof We observe first of all that if inequality (4.2) holds for all r satisfying
(4.3), then it is true also for p sufficiently small and satisfying (3.10) (this follows
from Lemma 3.2). When we multiply the first equation in (3.3) by w, integrate
over € and take account of the Reynolds transport formula (see Sec. 1), we
obtain the energy relation

d /1 1 v
G (GIwC Iy +olli =5 [ leaPds) + ZIS@, 0, =0
that can be written in the form

d /1l 1 v
= (Gt O ) + 510 DI 0 + GO = GO) + S8 @), ) = 0

dt
(4.6)
The functional G(t) = G(p) is given by

1
Glt) = oltil — 5 [ Iealde — ol

and G is the value of this functional with Q, replaced by F. As in the three-
dimensional case, it can be shown that

5(G(t) = G )[p] =0,

11



by virtue of (2.8), and
5(G(t) - GO)lp) = | pBopds.
g

Now, we write the first equation in (3.3) in the form
wi + (w- V)w! + (w- V)w' + 20wt — vV2wt

+V(p—-Czx-w')=-w, - R

multiply it by the vector field V' constructed in proposition 3.2 and integrate
over §2;. For the moment we leave the function fy(y) indefinite. After integration
by parts we obtain

L N wL.(Vt+(w.V)V)da;+/ (w-V)w' - Vdx
dt Q. Q4 Q
(4.7)
1
+2 | Cwt - -Vdx - / (aH + =|Cx|? + po + Cx - 'w’) fodS = 0.
Q¢ g 2 z=y+Np

Next, we add (4.6) and (4.7) multiplied by a small number v > 0, and we
set fo = Pp = r. This leads to

%ﬁt) +E(t)=0 (4.8)

with

1 1
E(t) = 5wt [0, + 510 @ + (G0 = 6+ [ wh -V,

rdS
x=y+Np

v 1
Eqi(t) = EHS(wl)H%Q(Qt) — Fy/g (o’H + §|C:17|2 +po+Cx - w/)
— [ wt (Vi + (wh +w)-VV)de+
Q¢
(4.9)

7/ (wl+w’).Vw’.de+2~y/ Cw™ - Vdz.
Qs Q

Now, we show that if v and ¢ are small enough, the following estimates hold,
with constants independent of ¢:

ar(llw( )7, + oG D) < E@#) < ealllw( )T, + 12C D)
(4.10a)

rdS >

_ v 14)12 _ l 2 _ Can!
D= 2||5(w W) 7/g<UH+2|Cx| +po—Cx w) —yiND

(4.10D)
es(llw™ ()11 o, + 711G DT 6):

12



—’y/ [wJ‘~(Vt+(wJ‘+w')~VV)—(wJ‘+w’)~Vw’~V—2Cwl~V dx >
Q
(4.10c¢)
v
S0 — er?lot- Dl o

We prove (4.10a) observing that

Gl — GO :/0 diia[sp]ds:/o (%G[sp]—%G[sp] )l
1 2 2
= 38l —G<°>>+/0 (fGlen) -~ aGlsn] _, )

= 22l - G9) + (o),

where ¢1(p) is a small remainder, and
||w(~,t)||%2(9t) = ”wJ_('vt)H%Q(Qt) + ||w’(~,t)||%2(9t).
By (3.11) and (3.13),

[’ (070 = D 'Ykm'YZq/ Mo * Mgdw
t

k<m,l<q

Z Z Afmiij (t)Alq’Ts (t)Alqykm(t)Iz‘j (t)1rs (t)

k<m,l<qi<j,r<s

Y AT ()]s (D),

i<j,r<s
where

I;;(t) :/Q Cx - myj(z)de — /fCa:'mj(:z:)dx. (4.11)

Since

sty = [ o m(w)ds.
g

we arrive at

WDy = 30 A [ oewmy(@)is [ pCwn,, (@05 + i)

1<j,r<s
and

B(t) = st (- |2 + | pBipdS+

()—gw(, L2 () gP 1P
1 -
2 i<jr<s g ! g 2
with g3(p) = q1(p) + 5¢2(p) satistying
43(0)] < edlo 1) 31 o) (4.12)

13



(concerning the estimates of remainders ¢;, see [20] and [21], Sec 4). We also
have

wt - Vdz

A < cllwt (1) Lo lloC D)l o)

hence, for v small enough, (4.10a) holds.
We pass to the proof of (4.10b) and consider the surface integral in (4.9),
we call it —I. Since, by (2.8),

oH(z) + 5|Cal* + po = o(H(z) ~ H(y)) + 3 (Caf’ ~ CyP)

= —Bop+o(H(z) ~H(y) —(H (z) ~H(y))) + 5 (ICal* ~ |Cy|* — &(|Cx|* ~ [Cy[*)),

1
2
Cx -w — — Z AR ;0 - myy, (2),

k<m,i<j

where 2 = e, (y). We have

—I:/rBlpdS+q4(p) Z/TBﬂ“dS-f—%(P)
g g

with qa, g5 satisfying (4.12), hence (4.10b) holds.
Now, we obtain (4.10c). The kinematic boundary condition W = w - n in
(3.3) is equivalent to
w(z,t) - n(x)
pi(y,t) = ==~
0= Ny i)

Also, the definition of I;;

1
L :/ C“""ijds_/cy'%(y)dSZ/ dS/CZ~mj(Z)pA(y,sp)dS
ry g 0 g
with z = e,,(y), yields

w'lcrga,) < eIl < cllpll o)
i

Furthermore,
IVill Lo < cllri(8)llae) < cllP(wh -n+w'-n)l|L,q)
< e(lwtllwz ) + oGO La())

wt - Vidz
Q

/ (w' - V)V -whdz
Q¢

< dllw || o) (It o, + 1ollza(6):

< w | @) IV V s 1w £ 00 <

elleo a0 19l 272 ) 10 2o,

’/Q (wr4w')-V)w' - Vdz| < (w100 +Hw | L)V 1 o) IV | 2o 0) <
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c(lwtllzy@n) + ol @) ol La @) IV | 0

\ [ ewt vas| < .o lolo

We also have

/ (wl-V)V-wldxz—/ (wJ‘~V)wl~Vdac+/ (wt - N)w' - Vs,
Qy Qy I

’ —/ (wh - V)wt - Vdz
Qy

< IVwtliza@olw il o @)V z.@0) <

C||S(U’L)||%2(Qt) ||P||Ln(g)

/ (wJ_,N)2 AfO dS‘ <
r, |ILTN|

cllpllzo @) IS )17, @, < SlIS(wH)II,q,)

Hence, for small ~, and 4§, (4.10c) follows. From inequality (4.10c) we also
deduce that

/ (wh - N)wt - VdS’ <
Iy

Ey(t) > bE(t). (4.13)

Moreover, applying Gronwall’s lemma we obtain E(t) < e " E(0) and, as a
consequence, (4.4). The first part of the theorem is proved.

Let us consider the case 2. Since KerB; = 0, the space H C Lo(G) of
functions satisfying (4.3) is representable as the orthogonal sum H = H_ &
H, where H_ = Span(p1,...om), ¢; are eigenfunctions of B; corresponding
to the negative eigenvalues, and H, is the lineal hull of eigenfunctions of B;
corresponding to the positive eigenvalues. Let Py be projectors onto these
spaces and let ry = P,r. For arbitrary » € H we have

(r,Bir) = (r4, Biry) + (r—, Bir-)
where (r1,72) is a scalar product in Ly(G), and
callrlfvag) < (4 Biry) = (r—, Bir—) < eallr|[§y -

We assume that problem (3.3) has a solution defined for ¢ > 0 and satisfying
condition (4.1). We aim to show that this is impossible for some special (ar-
bitrarily small) initial data and some small but fixed €. Let V1 be the vector
fields mentioned in Lemma 3.3, corresponding to fo = PLPp = ry. When we
set V=V, —V_in (4.6), we obtain

% wh- (Vi —V.)de— | wh-(Vy-V_ )i+ (w-V)(Vy—-V_)dz
Q4 Q4

+/ (w-Vw - (Vi -V _)de+2 | Cw' - (Vi-V_)dx
Q4 Q4

(ry(y) —r_(y))dS = 0.

1
—/ (aH(x) + =|Cx|* + po — Cx - w’)
G 2 T=Yy+p
(4.14)
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From (4.14) and (4.6) we deduce

dz(t)
dt

= 21(t)
where
1
2(t) = —§Ilw(wt)||%2<gt> —(G(t) = GO) -y ; wh - (Vi = V_)da,

(r(y) —r—(y))ds

1
= — H . 2 - : '
21(t) FY/g <U () + 2 Cal”+po —Ca-w ) z=y+Np

ISy~ [ Wt (Ve Vo)t 0 D)V Ve

—I—’y/ (w-V)w' - (Vi —V_)dr+ 27/ Cwt - (Vi —V_)da.
* ” (4.15)

The surface integral in (4.15) equals
/(7"+ —1-)B1pdS +qs(p) = (r4, Biry) — (r—, Bir—) + qz(p)
g

with gg, g7 satisfying (4.12). Other integrals in (4.14) are estimated as above in
the case 1, so we have

21(t) > c(|w B[, + 1o D)l ) > b2(2).
Hence, dzd—(tt) > bz(t), and if we choose initial data arbitrarily small but such
that z(0) > 0 (which is possible), we obtain

2(t) > " 2(0).
Hence, for t large enough (4.5) holds, and the theorem is proved.[]
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