R. Rautmann:

A direct approach to vorticity transport & diffusion

Summary
The evolution in time of the vorticity w of incompressible viscous flow in bounded 3-dimensional
domains is governed by the initial boundary value problem of the vorticity transport & diffusion
equation, which imposes a nonlocal boundary condition on w. In suitable solution spaces defined
below this boundary condition holds true. We will prove the uniqueness of generalized solutions
to the problem above as well as the local in time existence of a unique strong solution which even

exists globally in case of sufficiently small initial data.

0. Introduction. Notations.

In a bounded open set Q C R3, Q having the smooth boundary 9Q €
C*, the evolution of the vorticity w = w(t, z) of an incompressible vis-
cous flow in time t € [0,T) at z € Q = QUIN is governed by the initial
value problem

%w—Aw =w-Vv—2v-Vuw,
(0.1) div w =0,
w(0.r) = wp,
v(t,z)  =rot™tw(t, x),

the function v(t, z) denoting the flow velocity. The usual condition of
adherence

(0.2) U(t,flf)|3g =0

for the flow velocity at the boundary constitutes a nonlocal boundary
condition in terms of w.

In case of a sufficiently smooth solution v(t,z) with pressure func-
tion p(t,z) to the initial boundary value problem of the Navier-Stokes
equations

%v—Av-l—Vp-l— v-Vv =0,
div v =0,

0.3
( ) Ul@Q = 07

v(0,-) = 1y,
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the equations (0.1) follow for w = rotv by formally applying the oper-
ator rot on the equations (0.3).

Evidently system (0.1), (0.2) in itself does not imply the compatibility
condition due to the pressure gradient Vp in (0.3) which there severely
restricts the solution’s initial regularity [9, 19, 22, 8, 15, 23, 12].

In any flow the vorticity being an important feature, the direct solu-
tion of the initial boundary problem (0.1), (0.2) would be of special
interest. In the rich literature concerned with flow vorticity, functional
properties of operator rot as well as its use in numerical approxima-
tions mainly have been studied in the frame of H!(Q) and related trace
spaces, cp. [21, 5, 26] and the citations there. A potentialtheoretic rep-
resentation of rot ™! with zero boundary condition is established in [24].
In general Sobolev spaces the construction of rot ™! is presented in [3]
likewise for vanishing boundary values, and recently in [17] for the case
of Hoélder-continuous functions with vanishing normal components at
the boundary. In [2] boundary conditions for solutions of the Navier-
Stokes equations have been fomulated in terms of the vorticity. Many
fundamental aspects of vorticity, mainly for flows in the whole R? or
R3, are presented in [11]. However, the difficulty which stems from the
nonlocal boundary condition (0.2) in the initial boundary value prob-
lem (0.1) seemingly has not been overcome until now.

Below in Section 1, suitable solution spaces, which with a view of (0.2)
we introduce in terms of eigenfunctions of the Stokes operator, will
be characterized independently of these eigenfunctions. In Section 2
having defined generalized as well as strong solutions to (0.1), (0.2)
we will prove the uniqueness of generalized solutions. In Section 3 by
a Galerkin Ansatz based again on Stokes eigenfunctions we will show
the existence of a unique strong solution to (0.1), (0.2) locally in time,
which even exists globally in case of sufficiently small initial data. To
the last section I have found inspiring devices in [7].

Besides the Lebesgue spaces L? = L(€2) of vector valued functions f :
1 — R" with norm || || .« we will need the Hilbert spaces H™ = H™ ()
of vector valued functions f : Q — R? which have all partial derivatives

ol ___f=Df € I3(Q), a = (a,a9,03) € N}, |a] = oy +

0z 10z 2 O
0421—1— 0243 §3 m up to the order m € N in the distributional sense, N =
{0,1,2,...} denoting the set of natural numbers, N; = {1,2,...}. As

usual, the norm || - || = || - ||go in HY = L*(Q) is given by the inner



product
<ﬁm=/#@»mwm,|mP=UJm
Q

and the inner product

<fag>Hm: 2 <Daf7Dag>

laf<m

in H™ defines there the norm || - || gm.

By C> we will denote the space of functions f : Q — R? which possess
partial derivatives of all orders, f having compact support in €2, and
Ceo stands for the subspace of divergence-free functions in C°. We
will write .

L2 = closure (C2%) C L*(Q), or Hy;= closure(CgS) € H'(2), or

H'= closure (C°) ¢ H'(Q), for the closure of C2% in L?, or in H',
or for the closure of C> in H', respectively. For definition of the
space L = L*°(Q) with the usual norm || - ||, and of the Sobolev
spaces W™1(Q), ¢ > 1, and finally of the fractional order spaces H® =
H*(Q), H*(092) with general s € R cp. [1]. In case of any given interval
J C R and Banach space B with norm ||-|| g, we will denote by C°(.J, B)
the Banach space of continuous maps f : J — B, C%J, B) being
equipped with the supremum norm sup||f(¢)|/ 5. In addition C™(2) or

teJ

C’m(_Q) stands for the space of all continuous functions f : Q — R? or
f:Q — R3, f possessing in € continuous or in Q uniformly continuous
partial derivatives D*f of all orders |a| < m, respectively. Again

C(Q2) means the subspace of all f € C™(Q2) with div f = 0.
Finally we write H. Weyl’s projection P : L?(2) — L% in the form

(0.4) Pf=f-Va,

Vq being the gradient of a (possibly weak) solution of the boundary
value problem

Ag=div f,N -Vqlsa = N - flasq,

N denoting the field of outer normals on 9. In case 9Q € C™ m €
Ny, P: H™ — H™ represents a bounded linear map , [21, p. 18].

We will need the Holder inequalities
05) e vl < llpllo- lolles 245=1, 1<p<q

I/Qlfl gl - hldz| < 1 fllzs - gllze - 1R,
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forall p € LI, € LY, f € L%, g € L, h € L?, furthermore Young’s
inequality
(0.6) la|-[b] < p-lal?+ e, -|b]7 with
w=cl/q, cp=c/q,€e>0, %—I—?zl, q > 1, [10],

finally the embedding

0.7) HiFm s Wi if2§q§ﬁ,j,mEN, and
. . L 3
Hitm— Ci(Q) ifm—-1<32<m, [1].

By ¢, cg, ¢1, ... we mean constants which may have different values even
in the same chain of inequalities.

1. The solution spaces and basic estimates

A key to fundamental results in the theory of the Navier-Stokes equa-
tions is the quadratic form

(1.1) a(v, ) = (=PAv, ) = (Vv, V),
the representation (1.1) being valid with ¢ € H} for all

(1.2) v €H! NH?

which in particular are divergence-free and fullfil the condition of ad-
herence v|gpg = 0. We will check wether a similarly useful quadratic
form can be found for the rotation w = rotwv, w only fulfilling the
boundary condition

(13) N - w|ag =0

in case v €H,, [18, p. 241]. Approximating w in H? by divergence-
free functions W € C2(2), and ¢ in H! by functions ® € C'(Q), we find

(=AW, ®) = (rot Prot W, &) =

= (ProtW,Prot®)+ | N -[(ProtW) x ®]dS,
29

the latter due to the Gauss theorem. Thus for the limits w, ¢ we get

Proposition 1.1: For each w =rotv, v €H} NH? and all p € H',
the representation

(1.4) b(w, p) = (—Aw, ) = (Protw, Prot ¢)



s valid, if v fullfils the additional boundary condition
(1.5) Protw|sg = Prot’>v|gg = —PAv|sq = 0.0

Equation (1.5) e.g. holds true for each eigenfunction e; = v € H! NH*,
21, p. 39], of the Stokes operator

A=-PA:Dy=H!NH?* — L2,
the function e; being related to the j eigenvalue \;:

((Ae;=)j-e;, 0< X <A <... <A — o0 with & — oo,
diV(fj:O,

(1'6) 6j|3Q = 0,

the sequence (e;) being orthonormalized:
L <6j,€k>= szllszk,éjkz()lf‘]#k

Therefore from Proposition 1.1 we find
Corollary 1.1: The representation (1.4) holds for each w = rotv,

k
(1.7) v € E®:= closure {Z aj - e;lk € Ny, a; € R} C H*(Q),
j=1
and all ¢ € H'(Q).
k
Proof: H*-convergence of the sums S, = > a; - €; includes the
j=1
H'-convergence of the sequence (PASy), thus the H'/2(9€)-convergence
of the boundary values PASy|sq = 0. O

For the rotations w = rotv of functions v € E3, we find a variant of
the Cattabriga-Solonnikov estimate

(1.8) | fllzzm < ¢+ ||PAF||gm—2 for all f €H} NH™ m > 1,
if0Q e C", n=max{2,m},[4,9]:

Proposition 1.2.: The rotation w = rotv of any function v € E3
obeys the estimate

(1.9) [wllaz < ¢ - [PAw]| < ¢ [|Aw]]

with some constant ¢ being independent of w and v.
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Proof: From (1.8) we find
[wllaz < e -|vllms < e [PAV]g < ¢ - [[VPA]| =
< ¢3]|Prot PAv|| = c3 - |Prot* w| = ¢3 - || PAw]|,

since for v € E* we have PAv € H}, and the equation
(1.10) IV ]l = [[rot Pf|| = |[Prot f|

holds true for all f €H! . The latter equation can easily be verified by
the usual approximation procedure, noting Prot f = rot f because of
(1.3).0

For rotations w = rotv of functions v € D4, the following variant of
Poincaré’s inequality

(1.11) Il < c-[[Vf] for all feH'

holds:

Proposition 1.3: The rotation w = rotv of any v € D, satisfies the
inequality

(1.12) |lw||g < c¢-||Protwl|

with some constant ¢ being independent of w and v.

Proof: From (1.8) we see
lwllg: < e ||v)lgz < co- ||PAv|| = ¢y - |Prot? v|| = ¢y - || Prot w||.00

In addition we prove a slightly more general result as in [21, p. 163]:

Proposition 1.4: For each f €H}, the trilinearform

(f.9h) = [(F9a) - has
is skew symmetric in g, h for all g,h € H': There holds

(113) C(f’g’ h’) = _C(f’ h’vg)

Proof: We approximate f in H! by functions F' € Coos g and hin
H*, by functions G € C1(Q) and H € C1(Q) , respectively. Using the
Gauss theorem and divF = 0, Fypq = 0 we find (1.13) first of all for
F. G, H, from which this equation follows for the limits f, g, h, too. [J

We will fix our solution spaces in



Definition 1.1: (i) For s e Ry = {0 € R|0 < o} we denote by

k
E? := closure {Z aj - e;lk € Ny, a; € R} C H°(Q), or
i=1

k
F? = closure {Z b; - &|k € Ny, b; € R} C H*(Q)
i=1

the closed linear subspace of the Hilbert space H*(Y), generated by the
Stokes eigenfunctions ej, or by the functions

t .

(1.14) € 1= %, respectively.

)\j
1) For s € N, by the inner product
(ii)
(1.15) (Foahs = [ (Prot* ) - (Prot* g)da
we define
(1.16) 1£lls := (f, £) for all f,g € H*(Q).

Remark 1.1: Evidently, the equalities E° = L2, F' =H! FE? =H!
NH? result from the completeness properties of the system (e;). The

representation £® = A™! H! will be established in the proof of the
next Proposition 1.5.

Remark 1.2: The orthonormality of the €; results from

(¢, él)~)\;/2-)\ll/2 = (ej,rot* e) + [, N -[e; X0t €]dS = (e;, Prot® ;) =

d;1 - A because of (1.6).

Proposition 1.5: (i) On each Hilbert space E*, s =0,1,2,3, as well
as on each Hilbert space F*, s = 0,1,2 the functional || - ||s defines a
norm which is equivalent to || - ||gs. Thus there holds

(L17) e || flls < | flles < ea-||flls forall feFE* s=0,1,2,3,

and for all f € F*°,s = 0,1, 2, with positive constants c; being indepen-

dent of f.

(ii) The operator rot : Bt — F* maps E**1 isomorphically onto F*,
rot being isometrical with respect to the norm || - ||s.

Proof:
(1.) The functional || - ||s on E®:
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Evidently each closed subspace E® and F* in H?® forms again a Hilbert
space being equipped with the norm ||-|| zs of H*(2), and the inequality

(1.18) Iflls < e 1 lla

holds by Definition (1.16) for each f € H® s € N, with some constant
¢ > 0, c being independent of f. In case s = 0, (1.18) holds true even
with equality sign and ¢ = 1.

For any f € E?, the additional inequality
(1.19) [ fllers < e £s

follows in case s = 1, thus f € E' =H}, from (1.10) and Poincaré’s
inequality (1.11). In case s = 2, thus f € E* =H! NH?, we see
(1.20) £l < - IPAfIl = c- [[Prot® fll = c- || fll2

from Cattabriga-Solonnikov’s estimate (1.8). In case s = 3, for each
f € E? we conclude

(1.21) PAf €H!}

from Definition 1.1., PA f being limit in H'(£2), thus PA f|aq in H'/2(09),
o£ sums .
>.a;-PAej =" aj-\;-ej, k — o0o. Therefore we get (1.19) from
j=1 j=1
| fllzs < ¢ [|PAf|lgr < c- |[VPAS]| =c- ||[Prot PAf|| =c-||Prot3 f|| =

=c-|[flls,
using (1.8), (1.11), and (1.10) again. OJ

In addition, (1.21) being equivalent to f € A™' H!, we have proved
the last statement in Remark 1.1. [

(2.) The equality F* =rotEs™! s=0,1,2:
We conclude

(1.22) rot BT C F*

from the fact that each first order distributional partial derivative of
any H*"-convergent sequence commutes in H* with the limiting pro-
cess. The additional inclusion

(1.23) F* C rot E5T



results in case s = 0, if to each w € F?,
k
w= limwy, = lim (> b; - )\;1/2 -rote;) in H*,
k—oo k—oo =1

we consider the related sequence

k o
(1.24) ve = ot wp = Y b AP e; €HENHP k€ Ny
j=1
The convergence of (vg) in E**! follows from (1.10) and (1.11) in case

s = 0. In case s = 1, now with (1.8), we see the E?-convergence of
(vx) — v € E?, and w = rot v, from

(1.25) lvgllgz < c- HProt2 vg|| = ¢|| Protwg|| < cf|wg]| g1

and the analogous estimate ||vg—v;||g2 < c||wg—w;|| g1, for all k, 1 € Ny,
(wy) being Fl-convergent to the limit w € F*.

Finally in case s = 2, using (1.8), (1.10), (1.11), we get the E3-
convergence (vy) — v € E3, and the equality w = rot v, from

||Uk||H3 S C- ||VPI'O1§2 UkH =c- ||Prot3 Uk“

(1.26) = ¢ |[|Prot? wy|| < c|| Pwy]| 2

and from the analogous estimate
||Uk — UZHH3 <c- Hwk — leHQ for all k‘,l € Ny,

the sequence (wy) being F?-convergent to the limit w € F2. Conse-
quently, the linear map rot : E5*! — F* is surjective, s = 0,1,2. O

(3.) The functional || - ||s on F%s=0,1,2:

As we have seen in the last section (2.), each w € F* has the rep-
resentation w = rot v with some v € E**! s = 0,1, 2. The functional
|- lo being just the L?-norm, we have to prove the additional inequality

(1.19) only in the cases s = 1,2. Firstly in case s = 1, from (1.8) we
find

(1.27)  lwllar < e-flolle < c-[[PAv]| = c-[[Protw] = ¢ [wl],
and in case s = 2 similarly we get
[wllaz < c-fvllas < cl[PAv][p < c- [[VPA]| =
=c-||Prot PAv|| = ¢ [|[Prot>w|| = ¢ ||w]»
because of PAv|sq = 0 for each v € E* and (1.10), (1.11).

(1.28)
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Thus the functional || - ||s representing the Hilbert space norm on E*
as well as on F*°, from the equality

(1.29) [0][s41 = [[rot vfs = flwlls,

which immediately results from Definition (1.15), we conclude that the
surjective linear map rot : E*! — [ is isometrical, therefore iso-
morphism, too, having the bounded inverse rot~! : ¥ — Es+1,
s=0,1,2.

In an analogous way like John Heywood in [7], we will use the follow-
ing well known Lemma from the theory of ordinary differential equa-
tions, cp. [25]:

Lemma 1.1: Let g(t,z) > 0, f(t) > 0, and ¥(t) > 0 denote continu-
ous functions defined for positive arguments t > 0,z > 0, g(t, z) being
locally Lipschitz continuous in x.

(a) Then each solution ¢ = p(t, o) of the differential inequality

(1.30) Lo+ p(t) <glt,o)+ f(t) fort>ty >0,
| w(to) < ¥o for some g >0

is bounded from above by the solution ®(t,pg) to the initial value prob-
lem

1o =g(t, @)+ f(t) fort>ty=>0,
(I)(t()) = Yo,

on the right hand maximal interval [to, T') of existence of @,

(1.31)

the function ®(t,pq) being monotone increasing in @q.

In case g(t, ) being monotone increasing in ¢, additionally there holds

(1.32) /w dr < O(t, ) = 900+/[g(T,<I>(T,soo))+f(T)]dT

to

d(t, o) being monotone increasing in t € [to, T).

(b) In the special case g(t,¢) = h(t) - ¢ we get the solution ¥ of (1.31)
explicitly from

(1.33) ®(t, o) = (900+Li f(T)e_ftg h(a)dUdT)effo h(r)dr . _ U(t, o, h, f),

and the bound ® is given by
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(1.34) (t,00) = o+ [ [(7) - B(7,00) + f(7)ldr := U(t, 00, D, f).

If we take @y from any sequence converging to 0, and the functions
h(t), f(t) each from some sequences converging to zero uniformly on
any fized interval [ty,t1] C [to,T), then the related bounds V(t, o, h, f)

and U(t, o, h, f) converge to zero uniformly in t € [to, t1].

2. Uniqueness of generalized solutions

Definition 2.1: We will call generalized solution to the initial value
problem (0.1), (0.2) each function w € C°([0,T), F'), 2w € C°((0,T), F"),
which

(i) has the representation w(t) = rot v(t) with some function

v e C%[0,T),E?) and

(i) fullfils the equations

(2w, o) + (Protw, Proty) = (w-Vv—uv-Vuw,p),
(2.1) teJo=(0,T),
<w(0)7 90> = <w0a 90>a

for all p € F*.

Each solution w = rotv € C°([0,T), F?), 2w € C°([0,T), F°) with v €
Co([0,T), E3) to (0.1), (0.2) on [0,T) will be called strong solution of

the initial value problem.

Evidently, because of (1.4) and F? C F!, E* C E?, each strong solution
of (0.1), (0.2) represents a generalized solution, too.

Theorem 2.1: The initial value problem (0.1), (0.2) of the vorticity
transport & diffusion equation admits at most one generalized solution.

Proof: Let w,, = rotv,,, m = 1,2, denote two solution of (2.1) having
the same initial value wy € F''. Then by a short calculation we see that
their differences

ni=1wy —wy, C:vs—uvy, thusn=rotl e F,
fullfil

0
n,¢) + (Protn, Protp) = (f,¢),t € Jo, (n(0),9) =0,

(2.2) <5
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where

(2.3)  f =0 Vv, 9) + (w1 V() = (C- Vwz, ) = (v1- V1, 9).

If we take ¢ := 1, the last term in (2.3) vanishes because of the skew
symmetry of this inner product in  and ¢. For the first term in (2.3)
we find

3/2
oay 10 Temnl <l 190l - Infos < el - s

Anll'? < pll Protn® + ¢ - flwn|* - [In]f?

using (0.5), the embedding (0.7), (1.10), (1.12), and finally Young’s
inequality (0.6).
Similarly we get
[(wi - V¢l < o[- IVCllze - [Inllzs
(2.5) < clunl| - [[Protn|l - [nll: - lIn][*> <
< p-|[Protnl? + ey - [lwil* - [l

and

¢ - Vway )| < [Clle - [[Vws]] - (17| s
(2.6) < cl|nl|35 - [|Protws| - [|Proty||Y/* <
< - [|Protl* + ¢, - [|Protws||* - ||n]|?

Summing up the last three inequalities, from (2.2) we see
il +2(1=3p) [|Protnl* < ¢ [Inll* - {[lwi]|*+
(2.7) +||ws]|* + || P rot wy||*}, t € Jo,
In(0)]I = 0.

Since, by our assumption, ||w;(t)| and || P rotw;(t)| are given contin-
uous functions on [0,7"), from Lemma 1.1 we conclude n(t) = wsy(t) —
wy(t) =0 in F' on their interval of existence. [J

3. Existence of a unique strong solution

In this section we will prove the existence of a unique F2-continuous
solution w(t) = rotwv(t) to the initial value problem (0.1), (0.2) by
means of Galerkin approximations on the basis of the complete or-
thonormal system (¢;) in F° from (1.14). The k™ Galerkin approxi-
mation

(3.1)  wi(t,2) ::Zbkj(t)-éj(x)EFo, bi; () = (w(t,-), &)
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defines the related Velocity v(t,-) :==rot L wy(t,-) € B,
(3.2) wi(t,z) Zak] (@), ar;(t) = (vi(t, ), e5) = A7 b (1)

in a unique way, || rot -|| being norm in E'. Let Py : L*(Q) — EY, Q. :
L*(Q)) — FY denote the projections of L*(Q2) onto the span EY or F}

of the first k£ functions e; or €; = )\]-_1/2 rote;,j =1,..., k, respectively.
Thus we have
k k
(33) Pof = (fepes, Quf =Y (f.6) &
j=1 j=1

for f € L*(Q).

Lemma 3.1: The equation

(3.4) ProtQrf = Pyrot f
holds for all f € H', and we have
(3.5) Qrrot f =rot Py f

for all f €H} .

Proof: Approximating f in H' by functions
bm € CHQ), and recalling Prot®e; = \je;, we see

(3.6) (b, &) = (10t b, A7 %e5)

because of/ N -[ej X ¢p]dS = 0. From (3.6) with ¢, — f in H', we
20
get (3.4).

Similarly approximating f € H} in H' by functions ¢, € Ceo, from
the equality

(3.7) (rot ¢, €;) = <¢m, “UV2 prot? e;)
we find (3.5). O

We will calculate wy from the initial value problem

Dwy, — Awy = Qplwy - Vog — vy, - V],  t >0,

(3.8) w(0) = Qrw(0), with
U, = rot ! wy, from (3.2),
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for all £k € N;.

Theorem 3.1:  Assume w(0) = rotv(0) € F?,v(0) € E3. Then all
Galerkin approzimations wy(t) = rotvg(t) € F? v,(t) € E* calculated
from (3.8), exist on a sufficiently small time interval J = [0,T).

The whole sequences (wi(t)), or (vi(t)), or (wi(t)) converge in F?, or
E3, or F°, respectively, uniformly with respect to t € J = [0,T'] for
each T' € (0,T). Their limit functions w = (rotv) € C°(J, F?),v €
CJ, E?), and wy € C°(J, F°) represent alltogether the unique strong
solution of (0.1), (0.2).

The proof is given in the following Sections 3.1 - 3.7.
3.1. Existence of the wy, vy :

The initial value problem (3.8) is equivalent to the following initial
value problem of k ordinary differential equations for the k& coefficients
bi;(t) : Taking the inner product of (3.8) with é; we find

%bk] + )\ka] fd Zk )\_1/2 . bkm . Cmnj . bkn,

m,n=1 "1

bk;(0) = (w(0),é;y, j=1,...,k,
because of (1.4). The coefficients
(3.10) Crnj = (€m - Ven, — ey - Ve, €;)

of the quadratic form in (3.9) are determined by the é,,, e,,. It is well
known from the theory of ordinary differential equations that for each
initial value (b;(0)) € R* the system (3.9) has a unique solution
(br;) € C°°(J,R¥) on each (possibly small) time interval J = [0,T), J
having the property that the |by;| remain uniformly bounded on each
compact subinterval [0,7"] with any fixed 7" € [0,T), [6].

3.2. Bounds in F!, E2:

For the projection Q) fx of the function
(3.11) fx = wy - Vo, — v, Vwyg , wy, = rot vy,

from (0.5), the imbedding theorems and (1.10), (1.12) we find the esti-
mate
(3.12)
1Qufill < Ifll < Nwellza - [Vorllze + lvgllze - | Vek]| < efl Protwgl|*.
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Taking the inner product in L?(2) of equation (3.8) with —Awy, gives
d
%HProt wi||? + 2| Awg||* = 2(Qp fr, —Awy) < || Protwy||® - || Awy|

because of (1.4) and wy,, wy; € F2. Thus applying Young’s inequality
(0.6) we get

%HProtwkH2 +2(1 — p)||[Awg|]? < c,||Protwg|?,

(3.13)
[P rotwi(0)]|* < [[Prot w(0)[* = 1,

with some p € (0,1),¢, from (0.6). The estimate of the initial values
results from Bessel’s inequality because of the orthogonality (1.6).
Recalling Lemma 1.1 we find the estimate

- I[P rot w12 < Bt 1) =
' =—2 _onJ=[0,T), T=

1—Ct~(p1

cp1
for each solution to (3.13). In addition we have
(3.15) lws@)[Fn < c@i(t @) and [[ue(t) 52 < c- Pa(t, o1)

because of (1.8),(1.12). Thus looking at the definitions (3.1), (3.2)
with the orthonormal system (€;) we see that the |by;(t)| are uniformly
bounded on each J' = [0,7"], T' <T.

Therefore all solutions wy(t) € F? v;,(t) € E® exist for each t € [0,T).

Moreover, Lemma 1.1 with (1.32) gives the estimate

(3.16), /0 | Awg (T)||? dT < él(t, 1)

the continuous function ®(t, ;) being monotone increasing in ¢ €
0,7).

3.3. Bounds in F2 E3:

We will write h;) = %h for the (generalized) first order derivative
of any function h € H*(§2). Then using (0.5), for

(3.17) fk(j) = wk(j)Vvk — Vg - Vwk(j) + wg - Vvk(j) — Uk(y) - Vwk
we get the estimate
el < llwrgllzs - [Vvkllze + [[okllzee - [Vl

(3.18)
Hllwkl oo - [1Vvrg) | + lvegp ez [ Vwr s
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From this with (3.4) we see
(3.19)  |[[Prot Qufill < c-|vot fill < ¢ [[PAwg|| - |[Protwgll,

since Py is projection and each single term of the sum in (3.18) is
bounded by the right hand side in (3.19).

Due to our regularity assumptions concerning the Stokes eigenfunc-
tions e;, and because of Lemma 3.1, we can apply the operator P rot
on both sides of equation (3.8), finding

%P rotwy — PAProtw, = ProtQyfy for t € [0,7T),
Prot wg(0) = P rotw(0).

Taking the inner product of both sides in (3.20) with —A rotwy, and
using (3.19), (1.4), (0.6) leads to

Gl (Aw) [P +2(1 — w)|| PA(P rot wy)||*
< cull Awp)|[* - [P rot wgl|?,

(3.20)

(3.21)

(3.22) I(AwrODI* < [Aw(0)]* = .

The estimate (3.22) expresses Bessel’s inequality which holds due to
the orthogonality (1.6). Since for all t € J = [0,7T), the norm values
| Prot wy(¢)||* are bounded by ®; in (3.14), Lemma 1.1 applies on
(3.21), (3.22), yielding

(3.23) [Awe()]* < Pa(t, ).

Thus from (1.8), (1.9) we see

(3.24) |we(#) |32 < - Pot, ) and
(3.25) v () |75 < - Palt, o) for all ¢ € J.

3.4. Bounds for wy, viy ¢

Writing 2 fi = fit = fi(), from (3.17) with j = 0 using (0.5) we
find

IV uullzs + el - [Vl +
.  { Tlles 1904
(3:26) Il fuel < { lleoellzs - [ Vudlls + ol L= - [V

From this recalling (0.7), (1.8), (1.12) we get
(3-27) @ frel| < [|fiel| < €l[Prot wyl] - [ Prot wy],

since Q. is a projection in F° and each single term in the sum of (3.26)
is bounded by the right hand side in (3.27).
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From (3.8) written with f; from (3.11), by differentiation with re-
spect to t we come to the initial value problem

Dwy — Ay = Qufut, t>0,
(3.28) wie(0) = Qrwi(0),
Wit = rot vi;.

In (3.28) we take the inner product in L?(Q2) with wys or wp(0),
respectively. Recalling (1.4), (3.15), (3.22), (3.27) and (0.6) we see

L we| [ + 2(1 = p)||Protwge| > < - @ - [Jwge] %,
(3.29) |[wie (0)]]? < [Jw(0)[|?
< o + cp1 = @3,

the function ®4(¢, 1) being continuous in ¢ € [0,7"). Thus Lemma 1.1
gives the estimate

(3.30) [lwee]|? < ®3(t,3) forallt € [0,7)

with a continuous function ®3(¢,p3) which is monotone increasing in
3. In addition from (1.32) we see

(3.31)  [][|Protwy(r)||>dr < ®s(t,ps) for t €0, 7).
Moreover by (1.10), (1.11), inequality (3.30) implies
(3:32)  [lowellfp < e~ Ds(t, 3).

3.5. Fl-convergence of (wy) :

We will see that the convergence of the sequence (wy) easily follows
from the well known error estimates to Fourier expansions in terms of
the complete orthogonal systems (€;) or (e;) in F'' or E', respectively.

Remark 3.1: For all vectorfunctions ¢ €H! NH®, 1 = rot¢, the
relation

(3.33)  g=(@ Vo— V) €H,
results immediately from ¢|sq = 0, the term ¢ - Vo representing

some tangential derivative of ¢ along 02 because of (1.3). Note that
g =rot(¢ - Vi) holds.

Proposition 3.1: The estimates

(334)  [|(Qm— Qu)fll S \ih - ||Prot f||  for fe FY,

(3.35)  ||(Pm— B fl| S A2 ||Prot fl| - for fe EY,
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hold true, n,m € Ny, n < m, A\, from (1.6). Thus on each bounded
subset M of F' or E*, the Fourier approzimations Q, f or P, f converge
with error O()\;}L/f) to f € M, respectively.

Proof: By (3.3) we have (Qn — Q.)f = >_7_, . (f,)¢é;. From the

identity (f,é;) = )\;1/2<r0t f,€;), which follows from e;|sq = 0, we see
(3.36) (f,é;)* =X;"- (vot f,e;)> = A;1 - (Prot f,e;)?,

which implies (3.34) by Bessel’s inequality due to (1.6). Similarly for
f Ehofcl,, thus Pf = f, we have (P, — P,)f = 327" . (f ¢;)e;, and
the equation (f,e;) = (f,A;'Prot?¢;) = )\j—1/2 - (rot f, )\]-_1/2 rote;) =
)\;1/2<P rot f, ;) implies (3.35) as above.

We will write n = w,,, —w,, ( = v, — vy, thus n = rot ( for m,n € Nj.
Due to (0.5), the difference

(3.37) = fo=n-Vo, +w, - V(= ((-Vwy, +v, - V,)
has the bound

[frn = full < llllzs - IV OmliLs + llwnllzs - [[VC] s+
[l Lo - [ Vwmlzz + [[vn] Lo - [[Va]l-

Thus there holds

(3.38)

(3-39)[[frm = full < ¢ |[Protnl] - ([[Prot wpm|| + |[Prot wyl[)

and

||mem - ann” < ||(Qm - Qn)fm” + ||Qn(fm - fn)H <
¢ (At - | PAw| + || Protn]]) - @1

because of (3.14), (3.19), (3.34), @, being projection, and since, due to
(1.8),(1.12), each single term of the sum in (3.38) is bounded by the
right hand side in (3.39).

(3.40)

Any two functions wy,(t), w,(t) € F? being solution of the initial
value problem (3.8) for all ¢ € [0,7") = J, their difference n = w,,(t) —
wy,(t) must solve

%H_An :(Qm_Qn)fm+Qn(fm_fn)a tEJ,
(3.41) n(0) = (Qm — Qn)w(0),
U =10t(, (= (vm(t) —va(t)) € E°.
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Multiplying through in (3.41) by —An or —An(0) respectively, inte-
grating over € and applying Young’s inequality (0.6) we obtain

d
(342)  —|Protn|* +2(1 = mllAn|” < cull(Qm — @n) fmll”
+eull(@Qn(fn = )1 t e,
1Protn(0)[|* < [|(P — Pa)Prot w(0)[?

wlv
because of (1.4). From (3.34) with (3.19), (3.14) we see

(3'43) ||(Qm - Qn)fm||2 < )‘v:—il-l e Py ||PAwm||27
and (3.39), (3.14) give

(3.44) |Qu(fin = fa)l[? < ¢+ @1+ ||Protn][?,
Q. being projection in F°,

Thus inequalities (3.42) imply

VAN

d _
(345 ZlIProtyl +2(1— llAnlP < e @y AL PAw

+||Protn||*}, te€J,
|[Protn(0)|* < 4
< ¢ Mgy [P rot? w(0)]?

o1,

the latter because of (3.35). Therefore Lemma 1.1 (b) applies with
h(t) = ¢, @i(t, 1), f(t) = cu- Appy - @1+ || PAwp,|*. In order to use the
bound (3.16), in (1.33) under the first integral we introduce the bound
Py = sup,cpy Pi(7, 1), getting

(3.46) IProty|* < {th+cu- Aty By Dyt 1)} - eloh)dm

- \Ijl(t’wla ha f)

Due to the completeness of the system (e;) in L2, 1, — 0 holds with
m,n — oo since Protw(0) € L2. From (3.46) because of (1.8), (1.12)
we get the estimates

(3.47) Il = Nfwm(t) = wa ()] < - T,
1€z = [lom(t) = va(O)][2 < - Wy

From this inequality, recalling (3.14) on [0,T), we see that even in case
w(0) € F', v(0) € E? the sequences (wy(t)) or (vi(t)) are converging
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in F'' or E? uniformly on each compact time interval [0,7"] C [0,7),
respectively.

3.6 [’-convergence of the wy, :

Due to the bound for ||Awy(¢)|| in (3.23) and the H'(£2)-convergence
of the wy(t) established in (3.47), inequality (3.40) shows the L*(Q)-
convergence of the sequence (Qyfx(t)) uniform in ¢ € [0,7"] for each
T" € (0,T). Consequently from the differential equation in (3.8) and es-
timate (1.9) we see that the H?(2)-convergence of the sequence (wy(t))
(together with the H?3(f2)-convergence of the related velocities v(t))
will result from the L2-convergence of the time derivatives wy(t).

Differentiating (3.41) with respect to t, for the function %77 = we
find the initial value problem

D = Am = Qo = Ou)fot + Onlfot — Fo)s £ € [0,T),

ot
777:(0) = (Qm - Qn)wt(o)a
ne = 10t

(3.48)

Multiplying through by n; in L?(Q) and recalling (1.4) we obtain

d
(3.49) allmH2 +2||Protl|* = ((Qm — Qn) fimt: )

+<Qn(fmt - fnt)ant>7 te [O,T),
O = [[(Qn — Qu)wi(0)[|* = ¥s.

Since the function rot ™ (Q,, — Q) fm¢ is vanishing on 9, the identity
(350) <r0t_1(Qm - Qn)fmt7 rot nt> = <(Qm - Qn)fmta nt>

follows by elementary calculus. Due to the statements in (1.6) and the
Definition (3.3) of the projections Py, and @Qx we find

m

(3.51) 1ot N (Qm — Qn) frt = Z (rot fmt,

=n

m

= Z(A 10t fint, €5)€;

j=n+1

= (P, — P)A ' 10t fo.

Note that rot f,,,; € L2 hold true because of Remark 3.1.
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Moreover our estimate (3.35) together with (1.8) implies the inequal-
ities

(3.52) [|(Pm — Pa)A M v0t fou|l < - A - [|[Prot A7 rot fu|
¢ A2 AT Ot fout] |
¢ A2 |10t font| [
¢ N el

The last inequality represents the usual H~(2)-bound for weak first
order derivatives in €, cp. [1.p. 50].

(VAN VAN VAN VAN

From (3.50) - (3.52) together with (3.27), (1.12), (3.14) we find
(3.53) {(Qm — Qn) fruts )| < € Al @17 - || P rot wp] -

In order to estimate the term

(354) <Qn(fmt - fnt)7 77t> = <fmt - fnta ant>’
too, writing D = v,, - V v,, — v, - Vv,,, we note
(3.55) Jmt = fat = 210t D = rot &D,

recalling a,,; = by, - )\]‘_1/2 € C*=(J),

6j EH}, ﬂH4.

From (3.54), (3.55) we get

(3.56) (Qn(fme = fat)s ) = <%D,I‘Ot Qnt)
because of v,,|9q = 0. A short calculation shows
(3.57) %D = Vo, + 0 - VC+ (- Vo + v, - VG,

consequently there holds

(3.58) DIl < G- IV vmll oo + [[onel[ s - [IV €] 15

HICH oo - [V 0mel |+ |onl 200 - V]
1/2 1/2 1/2
< ool {8y + 020y

due to (0.5), (0.7), (3.25), (3.32), (3.47) for all t € [0,T). Moreover,
from (1.12) and (3.4) we get

(3.59)  [[rot Quinl| < c-[|Qumellm < - [[Prot Qnil|
< c-||Protnl],

12
ot
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observing Q,n; € F*.

The results (3.54) - (3.59) together lead to
(3.60)  1(Qu(font — Fat)s )| < - |lmel] - || Prot ]| - {@3/° + 0% - 25/%).

From (3.49) with (3.53), (3.60), (0.6) we come to

d
(3.61) %Hmll?-l-?(l—M)||PI"0t77t||2 < g {h®

'||Pr0twmt||2 + el I”
(Dg + Uy - P3)},
1O = 1[(@m — Qu)we(0)[]”
= 3.

Again Lemma 1.1 (b) applies with h = ¢, - (P2 + V1 - ®3), f(t) =
cy )\;}rl - @) - ||Prot wy,||?. Using the bound &, = sup.¢po,q P1(7, ©1)
and inequality (3.31), from (1.33) we find

(362) I < (s +cu- ALy By By(t, 1)) - eho MO
S \DQ(tvw?nh?f)

for all t € [0,7).

Due to the completeness of the orthonormal system (€;) in F°, the
norm ||n:(0)|| = ||(Qm—Qn)w:(0)|| = 3 converges to zero with m,n —
00, the initial value w;(0) € F° being fixed by the differential equation
(0.1) and the initial value w(0) € E?. Consequently inequality (3.62)
shows the convergence ||n:(t)||* — 0 with m,n — oo, since this implies
An — 00, ®y(t), ®1(t, 1) being bounded uniformly on each compact
interval [O T'] C [0,T). Thus the time derivatives wy(t) being strongly
L*(Q)-convergent uniformly on each [0,7"] C [0,7), the wy; converge
to the time derivative w; of the limit function w(t) = limy_, wy(t).

3.7 Convergence to the solution :

The estimate (3.62), (3.40) together with (3.23) and (3.14) show
that the term Awy(t) in (3.8) is converging in L?*({2) uniformly on each
[0,7'] € [0,T). Moreover the inequality
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which we find from equation (3.41), by (1.8), (1.9) implies the conver-
gences

(3.64) |z = [|wm(t) — wp(t)|| gz — 0,
CE) [ar [0 () = vn ()| |15 — O

uniformly on each [0,7”] C [0,T). Thus the limit functions

w(t) = lim wi(t) € C°([0,7), F*) n C'([0,T), ),

lim vg(t) € C°([0,T), E®)

k—o00

v(t)
represent the solution of (0.1), (0.2), the solution being unique because
of Theorem 2.1.

Corollary 3.1: In case w(0) =rotv(0) € F? v(0) € E3,

1—p
-’

(3.65) | Protw(0)* < 2

the solution w(t) = rotw(t) exists globally for all t > 0, and the
convergences stated in Theorem 3.1 hold uniformly on each compact
time intervall [0,T],T > 0. Thus we get w € CY([0,00), F?),w; €

C°([0,00), FY),v € C°([0, 00), E3).

Proof: As we have seen from (3.14), (3.23), (3.31), (3.40), the interval
of guaranteed existence of the strong solution w(t) is fixed by the bound
®,, which we have calculated from (3.13) without taking in account
the second term in the sum of the left hand side. But because of
wy, = rotvy, € F?, from (1.9) we find

| Prot wy| < c- || Awg].
Thus (3.13) leads to

|| Protwg|* < ||Protwk|\2-{cu||ProtwkH2—21c_—2“ ,

(3.66) ,
[Protwi(0)[* < 1.

Therefore in the special case (3.65), the solution ®(t,¢;) to the dif-
ferential equation (1.31) related to (3.66) remains globally bounded,
which we can easily verify by elementary integration. Then from (3.62),
(3.64), (3.40) we get the uniform convergence of the (wy,(t)) C F?, (vi(t) C
E3, (wie(t)) C F° on each compact time interval [0, 7T].
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