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1 A review of free boundary problems

In this section we review free boundary problems for a viscous incompressible fluid. In writing
the review we are indebted to the works due to Zadrzyńska [54], Solonnikov [36] and Nishida

[21] that we consulted.

The domain $\Omega$_{t}\subset \mathbb{R}^{d} occupied by the fluid is given only on the initial time t=0 ,
while for

t>0 it is to be determined. The velocity vector filed v(x, t)= (vl, . . .

, v_{d} ) and the pressure

p(x, t) satisfy the Navier‐Stokes equations

v_{t}+(v\cdot\nabla)v-v\triangle v+\nabla p=f, \nabla\cdot v=0 x\in$\Omega$_{t}, t>0 (1.1)

and suitable initial and boundary conditions, where v>0 is a constant coefficient of viscosity
and f is a vector field of external forces. We classify three kinds of free boundary problems
with respect to the geometry of the domain $\Omega$_{t}.

1.1 The motion of an isolated mass of a viscous fluid

This is the problem of describing the motion of an isolated mass of viscous fluid bounded by a

free boundary. In the problem $\Omega$_{t} is a bounded domain, a free surface \partial$\Omega$_{t}=$\Gamma$_{t} is a compact,
and initial and boundary conditions are given by

v|_{t=0}=v_{0}(x) x\in$\Omega$_{0}

Sn- $\sigma$ Hn|_{x\in$\Gamma$_{t}}=0 . (1.2)

Here  $\sigma$\geqq 0 is a constant coefficient of the surface tension. n is the unit outward normal vector

to $\Gamma$_{t}. S=vD(v)-pI is the stress tensor, D(v) is the deformation tensor with the elements
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\{D(v)\}_{ij}=\partial v_{i}/\partial x_{j}+\partial v_{j}/\partial x_{i}, I is the identity matrix, H/(d-1) is the mean curvature of $\Gamma$_{t}.
The sign of H is chosen in such a way that Hn=\triangle(t)x ,

where \triangle(t) is the Laplace‐Beltrami
operator on $\Gamma$_{t}.

The most of the existence results are obtained after transforming the free boundary prob‐
lem written by Eulerian coordinates x to a problem in a fixed domain written by Lagrangean
coordinates  $\xi$ . Let  x( $\xi$, t) be a solution of the Cauchy problem

\displaystyle \frac{dx}{dt}=v(x, t) , x(0)= $\xi$ . (1.3)

Integrating (1.3), we connect Eulerian coordinates  x with Lagrangean coordinates  $\xi$ by the

formula

 x= $\xi$+\displaystyle \int_{0}^{t}u( $\xi$,  $\tau$)d $\tau$=X_{u}( $\xi$, t) , (1.4)

where u( $\xi$, t)=v(X_{u}( $\xi$, t), t) . A kinematic boundary condition at the free surface $\Gamma$_{t}=\{x=
x( $\xi$, t)| $\xi$\in $\Gamma$\} is assumed. This expresses the fact that the free surface $\Gamma$_{t} consists for all t>0

of the same fluid particles, which do not leave it and are not incident on it from inside $\Omega$_{t}.
Passing to Lagrangean coordinates  x\in $\Omega$ in (1.1) and (1.2), and setting  p(X_{u}( $\xi$, t), t)=q( $\xi$, t) ,

we obtain

u_{t}-v\nabla_{u}^{2}u+\nabla_{u}q=f(X_{u}, t) , \nabla_{u}\cdot u=0  $\xi$\in $\Omega$, t>0
u|_{t=0}=v_{0}( $\xi$) , S_{u}n- $\sigma$\triangle(t)X_{u}|_{ $\xi$\in $\Gamma$}=0 . (1.5)

Here

\displaystyle \nabla_{u}=\mathcal{A}\nabla=\{\sum_{m}A_{im}\frac{\partial}{\partial$\xi$_{m}}\}_{i=1,\ldots,d}
S_{u}=vD_{u}(u)-qI, \displaystyle \{D_{u}(u)\}_{ij}=\sum_{m}(A_{im}\frac{\partial u_{j}}{\partial$\xi$_{m}}+A_{jm}\frac{\partial u_{i}}{\partial$\xi$_{m}}) .

\mathcal{A} is the matrix with elements A_{im}=\partial$\xi$_{m}/\partial x_{i}|_{x=X_{u}( $\xi$,t)}, n=n(X_{u})=\mathcal{A}n_{\mathrm{O}}/|\mathcal{A}n_{\mathrm{O}}| ,
where n_{\mathrm{O}}( $\xi$)

is the unit outward normal to \partial $\Omega$= $\Gamma$.

1.1.1 The case of  $\sigma$=0

In this case the effect of surface tension on $\Gamma$_{t} is excluded. The pioneer work was done by
Solonnikov [33] in 1977, he proved the local in time unique solvability of (1.5) in the framework

of Hölder spaces C^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) by using the results of the linearized problem [32].
Later on, Solonnikov proved in [37] the local in time unique solvability of (1.5) for arbitrary initial

data and the global in time unique solvability of (1.5) for f=0 and sufficiently small initial

data in the class of isotropic Sobolev spaces W_{p}^{2,1} with  d<p<\infty when  d=2
, 3. Solonnikov

used the technique of the hydrodynamical potentials with the estimates of the kernels of the

corresponding singular integrals. Recently, we extended the Solonnikov results in [37] in the

class of anisotropic Sobolev spaces W_{q,p}^{2,1} with  d<q<\infty and  2<p<\infty of functions whose  L_{q}
norm with respect to the space variable together with the corresponding norms of the first and

second spatial derivatives and the first time derivative are integrable with respect to time with

the exponent p1.
The novelty of our results consists of two moments. First, we extend the results of Solonnikov

by unbinding of the exponents of integrability with respect to the space and time variables.

lThe results were announced in [29].
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Second, we allow the exponent of integrability with respect to time p go down up to 2 providing
the weaker setting than one that was allowed by Solonnikov whose case was p=q>d . We

develop the semigroup approach which consists on the following. The linear operator obtained

under the linearization of the free boundary problem generates the analytic semigroup on the

functional space of q‐integrable divergence free functions which was known due to Grubb and

Solonnikov [16] (cf. Theorem 2.1 in § 2). This should allow us to apply some facts of the

general analytic semigroup theory to obtain two coercive estimates (Theorems 2.3 and 2.6 in

§ 2) which are crucial for the study of the nonlinear problem. The core of our approach is to

show the L_{p}-L_{q} maximal regularity of the linearized problem global in time with exponential
decay, which is stated in Theorem 2.3. One of our main issues to prove Theorem 2.3 is to use

\mathcal{R}‐boundedness and operator valued Fourier multiplier theorem which are recently developed
by Weis [53], Denk, Hieber and Prüss [14] and Amann [4]. Methodologically, our approach
seems to be simpler and more demonstrative than the estimates of kernel of singular integrals
in the anisotropic Sobolev spaces. Thanks to the global in time L_{p}-L_{q} maximal regularity of the

linearized problem on the whole time interval (0, \infty) with exponential decay (Theorem 2.3), our

proof of the global in time existence theorem (Theorem 2.5 in § 2) for the nonlinear problem
(1.5) is much simpler than Solonnikov�s proof [37]. In fact, we can show Theorem 2.5 simply by
contraction mapping principle (cf. [31]). In the next section we state our results precisely.

Mucha and Zajaczkowski considered the case where the self‐gravitational force exists, namely
f= $\kappa$\nabla U ,

where  $\kappa$ is the gravitational constant and  U is the Newtonian potential. They proved
in [20] the local in time unique solvability of (1.5) in W_{p}^{2,1} with d=3 and  3<p<\infty for arbitrary
initial data. They used the local in time unique solvability result of the linearized problem of

(1.5) which was proved in [19].

1.1.2 The case of  $\sigma$>0

In this case the effect of surface tension on $\Gamma$_{t} is included. Solonnikov formulated the local in

time solvability of (1.5) in the Sobolev‐Slobodetskii space W_{2}^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) for f=0
and arbitrary initial data in [34]. In [35], Solonnikov proved the global in time solvability of (1.5)
in W_{2}^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) for f=0 provided that initial data are sufficiently small and the

initial domain $\Omega$_{0} is sufficiently close to a ball. In [38] and [41], Solonnikov considered the case

where the self‐gravitational force exists. He proved in [41] the local in time unique solvability
of (1.5) in W_{2}^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) for arbitrary initial data, and in [38] the global in time

unique solvability of (1.5) in W_{2}^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) for f= $\kappa$\nabla U ,
where  $\kappa$ is the gravitational

constant and  U is the Newtonian potential, provided that initial data are sufficiently small and

the initial domain is sufficiently close to a ball. In [34, 35, 41, 38], he used the local in time

unique solvability result of the linearized problem of (1.5) which was proved in [39].
Moglilevskiĭ and Solonnikov [18] proved the local in time solvability of (1.5) in Hölder spaces.

Schweizer [27] proved the local in time unique existence of (1.5) for small initial data by using
the semigroup approach. Padula and Solonnikov [26] proved the global in time unique solvability
of (1.1) and (1.2) in Hölder spaces by using the mapping of $\Omega$_{t} on a ball instead of Lagrangean
coordinates.
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1.1.3 The case of  $\sigma$ dependent on the temperature

This is an evolution problem of thermocapillary convection. Besides  v and p satisfy (1.1), the

temperature of the fluid  $\theta$(x, t) satisfies

$\theta$_{t}+(v\cdot\nabla) $\theta$- $\kappa$\triangle $\theta$= $\lambda$|D(v)|^{2} x\in$\Omega$_{t}, t>0

and they satisfy the initial and boundary conditions, where  $\kappa$ and  $\lambda$ are positive constants or

small positive functions of  $\theta$.

Solonnikov proved in [40] the local in time unique solvability in C^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) ,

and proved in [42] the global in time unique solvability in C^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) provided
that the initial velocity and the initial temperature are sufficiently small and the domain is close

to a ball. In the case  $\lambda$=0 , Lagnova and Solonnikov [17] obtained the local in time unique
solvability in Hölder spaces, and Wagner [52] obtained the local in time unique solvability in

Sobolev spaces.

1.2 Two phase problems

This problem describes the motion of two liquids separated by free interface. Let  $\Omega$ be a bounded

domain in \mathbb{R}^{d}(d\geqq 2) or the whole space. Let  $\Omega$_{t}^{+}\subset $\Omega$ be occupied by the fluid of viscosity
 v^{+}>0 and $\Gamma$_{t} be a boundary of $\Omega$_{t}^{+} which is strictly contained in  $\Omega$ . Put  $\Omega$_{t}^{-}= $\Omega$\backslash ($\Omega$_{t}^{+}\cup$\Gamma$_{t}) .

$\Omega$_{t}^{-} is occupied by the fluid of viscosity v^{-}>0 . Given functions w^{\pm} defined on $\Omega$_{t}^{\pm} ,
we put

w=\left\{\begin{array}{ll}
w^{+} & x\in$\Omega$_{t}^{+}, t>0\\
w^{-} & x\in$\Omega$_{t}^{-}, t>0.
\end{array}\right.
Moreover given function w defined on  $\Omega$, w^{\pm} denote the restriction of w to $\Omega$_{t}^{\pm} . The velocity
vector field v^{\pm} and the pressure p^{\pm} satisfy the Navier‐Stokes equations

\partial_{t}v+(v\cdot\nabla)v-\mathrm{D}\mathrm{i}\mathrm{v}S^{\pm}(v,p)=f, \nabla\cdot v=0 \mathrm{i}\mathrm{n}$\Omega$_{t}^{\pm}, t>0 (1.6)

and the boundary and the initial conditions

[\displaystyle \lim_{x\rightarrow x_{0}\in$\Gamma$_{t},x\in$\Omega$_{t}^{+}}S^{+}(v,p)-\lim_{x\rightarrow x_{0}\in$\Gamma$_{t},x\in$\Omega$_{t}-}S^{-}(v,p)]n|_{$\Gamma$_{t}}= $\sigma$ Hn|_{$\Gamma$_{t}}
\displaystyle \lim_{x\rightarrow x_{0}\in$\Gamma$_{t},x\in$\Omega$_{t}^{+}}v|_{$\Gamma$_{t}}=\lim_{x\rightarrow x_{0}\in$\Gamma$_{t},x\in$\Omega$_{t}-}v|_{$\Gamma$_{t}}
v|_{\partial $\Omega$}=0, v|_{t=0}=v_{0} , (1.7)

where  $\sigma$\geqq 0 is coefficient of the surface tension, n is the unit outward normal to $\Gamma$_{t} of $\Omega$_{t}^{+},
and S^{\pm}(v,p) are stress tensors defined by S^{\pm}(v, p)=v^{\pm}D(v)-pI . A kinematic boundary
condition at the free interface $\Gamma$_{t} is assumed. When  $\Omega$ is the whole space, additional conditions

are necessary.

In the case of a bounded  $\Omega$
,

Tanaka [46] proved the global in time solvability of (1.6) and

(1.7) in  W_{2}^{2+ $\alpha$} with  $\alpha$\in (\displaystyle \frac{1}{2},1) for  $\sigma$>0, d=3 and sufficiently small data with discontinuity
of densities. Giga and Takahashi [15] and Takahashi [45] proved the global in time existence of

weak solutions of (1.6) and (1.7) in the spaces such that the first derivative of the velocity in

L_{p} with p>2(d+1) with respect to time and space for  $\sigma$=0 provided that v^{+} is close to v^{-}

Nouri and Poupand [25] proved the local in time existence of a weak solution of the Navier‐

Stokes equation describing a multi fluid flow for arbitrary initial data for  $\sigma$=0 . Recently, one
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of the authors Shimizu obtained the global in time unique solvability of (1.6) and (1.7) for f=0
and sufficiently small initial data, and the local in time unique solvability of (1.6) and (1.7) for

arbitrary initial data in W_{q,p}^{2,1} with  2<p<\infty and  d<q<\infty when  $\sigma$=0 . The proofs of the

result will be given in a forthcoming paper.

In the case of the whole space  $\Omega$
,

Denisova [10] proved the local in time unique solvability
for arbitrary initial data in  W_{2}^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) for  $\sigma$\geqq 0 and d=3 with discontinuity of

densities by using the local in time unique solvability result of the linearized problem in [8] and

[11]. Denisova and Solonnikov [13] proved the local in time unique solvability for arbitrary initial

data in the Hölder spaces with a power‐like weight for  $\sigma$>0 and d=3 with discontinuity of

densities by using the local in time unique solvability result of the linearized problem in [9] and

[12]. Recently, Abels [2] proved the existence of varifold and measure‐valued varifold solutions

for singular free interfaces for  $\sigma$\geqq 0.

1.3 Surface wave problems

This problem describes the motion of a fluid which occupies a semi‐infinite domain in \mathbb{R}^{d}(d=
2

, 3) between the moving upper surface and a fixed bottom. Let

$\Omega$_{t}=\{x=(x', x_{d})\in \mathbb{R}^{d}|x'\in \mathbb{R}^{d-1}, -b(x')<x_{d}< $\eta$(x', t

The velocity vector v and the pressure p satisfy the Navier‐Stokes equation (1.1). The upper

free surface S_{F} : x_{d}= $\eta$(x', t) satisfies the kinematic boundary condition

$\eta$_{t}=u_{d}-\displaystyle \sum_{k=1}^{d-1}(\partial_{k} $\eta$)u_{k} on S_{F} . (1.8)

The boundary condition on S_{F} is given by

pn_{i}-vD_{ij}(v)n_{j}=[g $\eta$- $\sigma$\nabla\cdot\{(1+|\nabla $\eta$|^{2})^{-\frac{1}{2}}\nabla $\eta$\}]n_{i} on S_{F} , (1.9)

where n=(n\mathrm{l}, . . . , n_{d}) is the outward normal to S_{F}, g is the gravitation constant, and  $\sigma$ is

the coefficient of surface tension. On the bottom surface  S_{B} : x_{d}=-b(X) the boundary is

impenetrable
v=0 on S_{B} . (1.10)

The initial condition is the following

 $\eta$=$\eta$_{0}(x')x\in \mathbb{R}^{d-1}, u=u_{0}(x)x\in$\Omega$_{0} at t=0 . (1.11)

The pioneer work of this problem was done by Beale [5] in 1980. Beale proved the local in time

unique solvability for  $\sigma$=0 and d=3 in the Bessel potential spaces H_{2}^{\ell,\frac{\ell}{2}} with 3<\displaystyle \ell<\frac{7}{2} . In

[6], Beale proved the global in time unique solvability in H_{2}^{\ell,\frac{\ell}{2}} with 3<\displaystyle \ell<\frac{7}{2} for  $\sigma$>0, d=3

and f=0 provided that the initial data $\eta$_{0} and u_{0} are sufficiently small. Beale and Nishida [7]
obtained the asymptotic power‐like in time decay of the global solutions. The local existence

theorem for  $\sigma$>0 and d=2 was established by Allain [3]. Tani [47] proved the local in time

unique solvability for  $\sigma$>0 and d=3 in W_{2}^{2+ $\alpha$,1+\frac{ $\alpha$}{2}} with  $\alpha$\in (\displaystyle \frac{1}{2},1) . Sylvester [44] showed the

global in time solvability in H_{2}^{\ell,\frac{\ell}{2}} with \displaystyle \frac{9}{2}<\ell<5 for  $\sigma$=0 and d=3 provided that initial

data are sufficiently small by using Beale�s method. Tani and Tanaka [48] proved the global in

time solvability in W_{2}^{2+ $\alpha$} with  $\alpha$\in (\displaystyle \frac{1}{2},1) for  $\sigma$\geqq 0 and d=3 provided that initial data are
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sufficiently small by using Solonnikov�s method. Recently, Abels [1] proved the local in time

unique solvability in the isotropic Sobolev spaces W_{p}^{2,1} with d<p<\infty.
Nishida, Teramoto and Yoshihara [22] considered this problem under the assumption that

the motion of fluid is horizontally periodic and that spatial mean of the motion of unknown free

surface over the space period is equal to zero. They proved the global in time unique solvability

and exponential stability in H_{2}^{\ell,\frac{\ell}{2}} with 3<\displaystyle \ell<\frac{7}{2} for sufficiently small initial data.

Teramoto has studied the motion of a viscous incompressible fluid which flows down an

inclined plane under the effect of gravity. The fluid is bounded from below by a fixed plane
which is inclined at an angle 0< $\phi$< $\pi$/2 to the horizontal plane. He proved the local in time

unique solvability for  $\sigma$=0 and d=3 in [49], for  $\sigma$>0 and d=3 in [50] by using Beale�s idea.

Nishida, Teramoto and Win [24] proved the global in time unique existence and stability for

d=2 and sufficiently small initial data. Nishida, Teramoto and Yoshihara provided the Hopf
bifurcation theorem in [23].

2 Results

As mentioned in the previous section, in this section we state our results precisely. We consider

a time dependent problem with free surface for the Navier‐Stokes equations which describes the

motion of an isolated finite volume of viscous incompressible fluid without taking surface tension

into account. The region $\Omega$_{t}\subset \mathbb{R}^{d}, d\geqq 2 , occupied by the fluid is given only on the initial time

t=0 ,
while for t>0 it is to be determined. The velocity vector field v(x, t)=(\mathrm{v}_{1}, \ldots, v_{d})^{*}2

and the pressure  $\theta$(x, t) for x\in$\Omega$_{t} satisfy the Navier‐Stokes equations:

v_{t}+(v\cdot\nabla)v-\mathrm{D}\mathrm{i}\mathrm{v}S(v,  $\theta$)=f(x, t) in $\Omega$_{t}, t>0

\mathrm{d}\mathrm{i}\mathrm{v}v=0 in $\Omega$_{t}, t>0

S(v,  $\theta$)n_{t}+$\theta$_{0}(x, t)n_{t}=0 in $\Gamma$_{t}, t>0

v|_{t=0}=v_{0} on  $\Omega$ . (2.1)

Here,  $\Gamma$_{t} denotes the boundary of $\Omega$_{t}, n(x) is the unit outward normal to $\Gamma$_{t} at the point x\in$\Gamma$_{t},

\nabla=(\partial_{1}, \ldots, \partial_{d}) with \partial_{i}=\partial/\partial x_{i} ,
and S(v,  $\theta$) is the stress tensor defined by S(v,  $\theta$)=D(v)- $\theta$ I

where D(v) is the deformation tensor of the velocities with elements D_{ij}(v)=\partial_{i}v_{j}+\partial_{j}v_{i} and

I is the d\times d identity matrix. The external force f(x, t) and the pressure $\theta$_{0}(x, t) are functions

defined on the whole space. In what follows, we may always assume that $\theta$_{0}(x, t)=0 ,
since we

can arrive at this case by replacing  $\theta$(x, t) by  $\theta$+$\theta$_{0}.
Aside from the dynamical boundary condition, a further kinematic condition for $\Gamma$_{t} is satis‐

fied. We write  $\Omega$=$\Omega$_{0} and  $\Gamma$=$\Gamma$_{0} and we assume that  $\Gamma$ is a  C^{2,1} compact hypersurface.
Passing to Lagrangean coordinates in (2.1) and setting  $\theta$(X_{u}( $\xi$, t), t)= $\pi$( $\xi$, t) ,

we obtain

u_{t}-\mathrm{D}\mathrm{i}\mathrm{v}[S(u,  $\pi$)+U(u,  $\pi$)]=f(X_{u}( $\xi$, t), t) in  $\Omega$\times(0, T)

\mathrm{d}\mathrm{i}\mathrm{v}u+E(u) = div[u + Ẽ(u)] =0 \mathrm{i}\mathrm{n} $\Omega$\times(0, T)

[S(u,  $\pi$)+U(u,  $\pi$)]n=0 \mathrm{o}\mathrm{n} $\Gamma$\times(0, T)
u|_{t=0}=u_{0} in  $\Omega$

, (2.2)

where  u_{0}( $\xi$)=v_{0}(x) . Here and hereafter, n denotes the unit outward normal to  $\Gamma$
,

and  U(u,  $\pi$) ,

2M^{*} denotes the transpose of M
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E(u) and Ẽ(u) are nonlinear terms of the following forms:

 U(u,  $\pi$)=V_{1}(\displaystyle \int_{0}^{t}\nabla ud $\tau$)\nabla u+V_{2}(\int_{0}^{t}\nabla ud $\tau$) $\pi$
 E(u)=V_{3}(\displaystyle \int_{0}^{t}\nabla ud $\tau$)\nabla u, \ovalbox{\tt\small REJECT}(u)=V_{4}(\int_{0}^{t}\nabla ud $\tau$)u

with some polynomials V_{j}() of \displaystyle \int_{0}^{t}\nabla ud $\tau$, j=1 , 2, 3, 4, such as V_{j}(0)=0 . As a linearized

problem of (2.2), we obtain the following Stokes equation with Neumann boundary condition:

u_{t}-\mathrm{D}\mathrm{i}\mathrm{v}S(u,  $\pi$)=f \mathrm{i}\mathrm{n} $\Omega$\times(0, T)
\mathrm{d}\mathrm{i}\mathrm{v}u=g=\mathrm{d}\mathrm{i}\mathrm{v}\tilde{g} in  $\Omega$\times(0, T)

S(u,  $\pi$)n|_{ $\Gamma$}=h, u|_{t=0}=u_{0} . (2.3)

In order to state our main results precisely, we introduce the function spaces and some

symbols which will be used throughout the paper. For any domain D in \mathbb{R}^{d}
, integer m and

1\leqq q\leqq\infty, L(D) and W_{q}^{m}(D) denote the usual Lebesgue space and Sobolev space of functions

defined on D with norms: \Vert\cdot\Vert_{L_{q}(D)} and \Vert\cdot\Vert_{W_{q}^{m}(D)} , respectively. And also, for any Banach space

X
,

interval I
, integer \ell and  1\leqq p\leqq\infty, L_{p}(I, X) and W_{p}^{\ell}(I, X) denote the usual Lebesgue

space and Sobolev space of the X- valued functions defined on I with norms: \Vert \Vert_{L_{p}(I,X)} and

\Vert \Vert_{W_{p}^{\ell}(I,X)} , respectively. Set

W_{q,p}^{m,\ell}(D\times I)=L_{p}(I, W_{q}^{m}(D))\cap W_{p}^{\ell}(I, L(D))

\Vert u\Vert_{W_{q,p}^{m,\ell}(D\times I)}=\Vert u\Vert_{L_{p}(I,W_{q}^{m}(D))}+\Vert u\Vert_{W_{p}^{\ell}(I,L_{q}(D))}
W_{p,0}^{\ell}((0, T), X)= { u\in W_{p}^{\ell}((-\infty, T), X)|u=0 for t<0 }

W_{q}^{0}(D)=L_{q}(D) , W_{p}^{0}(I, X)=L_{p}(I, X) , W_{p,0}^{0}((0, T), X)=L_{p,0}((0, T), X) .

Given  $\alpha$\geqq 0 ,
we set

<D_{t}>^{ $\alpha$}u(t)=\mathcal{F}^{-1}[(1+s^{2})^{ $\alpha$/2}\mathcal{F}u(s)](t)
H_{p}^{ $\alpha$}(\mathbb{R}, X)=\{u\in L_{p}(\mathbb{R}, X)|<D_{t}>^{ $\alpha$}u\in L_{p}(\mathbb{R}, X)\}

\Vert u\Vert_{H_{p}^{ $\alpha$}(\mathrm{R},X)}=\Vert<D_{t}>^{ $\alpha$}u\Vert_{L_{p}(\mathrm{R},X)}+\Vert u\Vert_{L_{p}(\mathrm{R},X)}.
Here and hereafter, \mathcal{F} and \mathcal{F}^{-1} denote the Fourier transform and its inverse formula, respec‐

tively. Set

H_{q,p}^{1,1/2}(D\times \mathbb{R})=H_{p}^{1/2}(\mathbb{R}, L_{q}(D))\cap L_{p}(\mathbb{R}, W_{q}^{1}(D))
H_{q,p,0}^{1,1/2}(D\times \mathbb{R}_{+})= { u\in H_{q,p}^{1,1/2}(D\times \mathbb{R})|u=0 for t<0 }

\Vert u\Vert_{H_{q,p}^{1,1/2}}=\Vert u\Vert_{H_{p}^{1/2}}(D\times \mathrm{R})(\mathrm{R},L_{q}(D))+\Vert u\Vert_{L_{p}(\mathrm{R},W_{q}^{1}(D))}.
Finally, given  0<T<\infty we set

 H_{q,p}^{1,1/2}(D\times(0, T))= { u|\exists_{v}\in H_{q,p}^{1,1/2}(D\times \mathbb{R}) ,
u=v on D\times(0, T) }

\displaystyle \Vert u\Vert_{H_{q,p}^{1,1/2}}=\inf {\Vert v\Vert_{H_{q,p}^{1,1/2}}|^{\forall}v(D\times(0,T))(D\times \mathrm{R})\in H_{q,p}^{1,1/2}(D\times \mathbb{R}) ,
v=u on D\times(0, T) }

H_{q,p,0}^{1,1/2}(D\times(0, T))= { u|\exists_{v}\in H_{q,p,0}^{1,1/2}(D\times \mathbb{R}_{+}) ,
u=v on D\times(0, T) }
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\displaystyle \Vert u\Vert_{H_{q,p,0}^{1,1/2}}=\inf\{\Vert v\Vert_{H_{q,p}^{1,1/2}}|^{\forall}v(D\times(0,T))(D\times \mathrm{R})\in H_{q,p,0}^{1,1/2}(D\times \mathbb{R}_{+}) ,
v=u on D\times(0, T

Given Banach space X with norm \Vert \Vert_{x} ,
we set X^{d}=\{v=(\mathrm{v}_{1}, \ldots, v_{d})^{*}|v_{j}\in X\}, \Vert v\Vert_{x}=

\displaystyle \sum_{j=1}^{d}\Vert v_{j}\Vert_{x} . The dot. denotes the inner‐product of R. F=(F_{ij}) means an d\times d matrix

whose i‐th column and j‐th row component is F_{ij} . For the differentiation of an d\times d matrix of

functions F=(Fi_{ij}) ,
an d‐vector of functions u= (ul, . . .

, u_{d})^{*} and a scalar function  $\theta$
,

we use

the following symbols:  $\theta$_{t}=\partial_{t} $\theta$=\partial $\theta$/\partial t, \partial_{j} $\theta$=\partial $\theta$/\partial x_{j},

\nabla $\theta$=(\partial_{1} $\theta$, \ldots, \partial_{d} $\theta$)^{*}, \nabla^{k} $\theta$=(\partial_{x}^{ $\alpha$} $\theta$|| $\alpha$|=k) , u_{t}=\partial_{t}u=(\partial_{t}u_{1}, \ldots, \partial_{t}u_{d}) , \nabla u=(\partial_{i}u_{j}) ,

d d d

\nabla^{k}u=(\partial_{x}^{ $\alpha$}u_{i}, | $\alpha$|=k, i=1, \ldots, d) , \displaystyle \mathrm{d}\mathrm{i}\mathrm{v}u=\sum_{j=1}\partial_{j}u_{j}, \displaystyle \mathrm{D}\mathrm{i}\mathrm{v}F=(\sum_{j=1}\partial_{j}F_{1j}, \ldots,\sum_{j=1}\partial_{j}F_{dj})^{*}
The inner products )_{ $\Omega$} and )_{ $\Gamma$} are defined by (u, v)_{ $\Omega$}=\displaystyle \int_{ $\Omega$}u(x)\cdot v(x)dx and (u, v)_{ $\Gamma$}=
\displaystyle \int_{ $\Gamma$}u(x)\cdot v(x)d $\sigma$ where  d $\sigma$ denotes the surface element of  $\Gamma$ . By  C we denote a generic constant

and  C_{a,b},\cdots denotes the constant depending on the quantities  a, b, \cdots

. The constants  C and

 C_{a,b},\cdots may change from line to line.

In order to introduce our class of initial data for (2.2), we discuss an analytic semigroup
approach to the initial boundary value problem:

 u_{t}-\mathrm{D}\mathrm{i}\mathrm{v}S(u,  $\pi$)=0, \mathrm{d}\mathrm{i}\mathrm{v}u=0 \mathrm{i}\mathrm{n} $\Omega$\times(0, \infty)

S(u,  $\pi$)n|_{ $\Gamma$}=0, u|_{t=0}=u_{0} . (2.4)

Since the time derivative of  $\pi$ is missing in (2.4), to obtain the evolution equation for  u we have

to eliminate  $\pi$ from (2.4). To do this, for a while instead of (2.4) we shall consider the resolvent

problem:
 $\lambda$ u-\mathrm{D}\mathrm{i}\mathrm{v}S(u,  $\pi$)=f, \mathrm{d}\mathrm{i}\mathrm{v}u=0 \mathrm{i}\mathrm{n} $\Omega$\times(0, \infty) , S(u,  $\pi$)n|_{ $\Gamma$}=0 (2.5)

and we shall discuss how to eliminate  $\pi$ from (2.5). We introduce the second Helmholtz decom‐

position corresponding to (2.4). Set

 J_{q}( $\Omega$)=\{u=(u_{1}, \ldots, u_{d})^{*}\in L_{q}( $\Omega$)^{d}|\mathrm{d}\mathrm{i}\mathrm{v}u=0 \mathrm{i}\mathrm{n} $\Omega$\}
G_{q}( $\Omega$)=\{\nabla $\pi$| $\pi$\in W_{q}^{1}( $\Omega$),  $\pi$|_{ $\Gamma$}=0\}.

Then, by Grubb and Solonnikov [16] (cf. also Shibata and Shimizu [28]) we know that

L_{q}( $\Omega$)^{d}=J_{q}( $\Omega$)\oplus G()
for 1<q<\infty, where \oplus denotes the direct sum. Let  P_{q} be the solenoidal projection:  L_{q}( $\Omega$)^{d}\rightarrow
 J_{q}() along G_{q} Then, substituting the 2nd Helmholtz decomposition of f:f=P_{q}f+\nabla $\theta$,
where  $\theta$\in W_{q}^{1}() and  $\theta$|_{ $\Gamma$}=0 ,

into (2.5), we have

 $\lambda$ v-\mathrm{D}\mathrm{i}\mathrm{v}S(v,  $\pi$- $\theta$)=P_{q}f, \mathrm{d}\mathrm{i}\mathrm{v}v=0 \mathrm{i}\mathrm{n} $\Omega$, S(v,  $\pi$- $\theta$)n|_{ $\Gamma$}=0 . (2.6)

Denoting  $\pi$- $\theta$ by  $\pi$ in (2.6) again, from now on we consider (2.5) under the condition that

\mathrm{d}\mathrm{i}\mathrm{v}f=0 . Then, applying the divergence to (2.5) and multiplying the boundary condition by
n

,
we have

\triangle $\theta$=0 \mathrm{i}\mathrm{n} $\Omega$,  $\theta$|_{ $\Gamma$}=[D(v)n]\cdot n-\mathrm{d}\mathrm{i}\mathrm{v}v|_{ $\Gamma$} , (2.7)
where we have used the facts that \mathrm{d}\mathrm{i}\mathrm{v}v=0 in  $\Omega$ and  n\cdot n=1 on  $\Gamma$ . We know that given

 v\in W_{q}^{2}( $\Omega$)^{d} there exists a unique  $\theta$\in W_{q}^{1}() which solves (2.7) and enjoys the estimate:

\Vert $\theta$\Vert_{W_{q}^{1}( $\Omega$)}\leqq C\Vert v\Vert_{W_{q}^{2}( $\Omega$)}.
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From this point of view, let us define the map K : W_{q}^{2}( $\Omega$)^{d}\rightarrow W_{q}^{1}() by  $\theta$=K(v) for

v\in W_{q}^{2}( $\Omega$)^{d} . By using this symbol, the equation (2.5) is rewritten in the form:

 $\lambda$ v-\mathrm{D}\mathrm{i}\mathrm{v}S(v, K(v))=f \mathrm{i}\mathrm{n} $\Omega$, S(v, K(v))n|_{ $\Gamma$}=0 (2.8)

for f\in J_{q} We set

A_{q}u=-\mathrm{D}\mathrm{i}\mathrm{v}S(u, K(u)) for u\in \mathcal{D}(A)

\mathcal{D}(A_{q})=\{u\in J_{q}( $\Omega$)\cap W_{q}^{2}( $\Omega$)^{d}|S(u, K(u))n|_{ $\Gamma$}=0\}.
From Grubb and Solonnikov [16] and Shibata and Shimizu [28], we know the following theorem.

Theorem 2.1. Let  1<q<\infty . Then,  A_{q} generates an analytic semigroup \{e^{-A_{q}t}\}_{t\geqq 0} on

J_{q}() .

Remark 2.2. The function e^{-A_{q}t}u_{0} is an initial flow for (2.2).

Now, we shall state our results. For the initial data, we introduce the following space:

\mathcal{D}_{q,p}( $\Omega$)=[J_{q}( $\Omega$), \mathcal{D}(A_{q})]_{1-1/p,p}.

Here and hereafter, ]_{ $\theta$,p} denotes the real interpolation functor. In order to state a global
in time existence theorem for (2.2), we introduce the rigid space \mathcal{R}_{gd} which is defined by the

relation:

\mathcal{R}_{gd}= {Ax+b|A:d\times d anti‐symmetric matrix, b\in \mathbb{R}^{d} }.

In what follows, we denote the basis of \mathcal{R}_{gd} by \{p_{\ell}\}_{\ell=1}^{M} ,
which are normalized such as (p_{\ell},p_{m})_{ $\Omega$}=

$\delta$_{\ell m} (, m=1, \ldots, M) ,
where $\delta$_{\ell m} are Kronecker�s delta symbols.

The first theorem is the main result which shows the global in time L_{p}-L_{q} maximal regularity
of (2.3) with exponential stability.

Theorem 2.3. Let 1<p,  q<\infty . Then, there exists a $\gamma$_{0}>0 such that if u_{0}, f, g, \tilde{g} and h

satisfy the following conditions:

u_{0}\in \mathcal{D}_{q,p}( $\Omega$) , e^{ $\gamma$ t}f\in L_{p}((0, \infty), L_{q}( $\Omega$))^{d}, e^{ $\gamma$ t}g\in L_{p,0}((0, \infty), W_{q}^{1}
e^{ $\gamma$ t}\tilde{g}\in W_{p,0}^{1}((0, \infty), L_{q}( $\Omega$))^{d}, e^{ $\gamma$ t}h\in H_{q,p,0}^{1,1/2}( $\Omega$\times(0, \infty))^{d}

for some  $\gamma$\in[0, $\gamma$_{0}] ,
and

(u_{0},p_{\ell})_{ $\Omega$}=0, (f(\cdot, t),p_{\ell})_{ $\Omega$}+(h(\cdot, t), g_{\ell})_{ $\Gamma$}=0

fort\geqq 0 and \ell=1
,

. . .

,
M

,
then the equation (2.3) with  T=\infty admits a unique solution

(u,  $\pi$)\in W_{q,p}^{2,1}( $\Omega$\times(0, \infty))^{d}\times L_{p}((0, \infty), W_{q}^{1} 

Moreover there exists \tilde{ $\pi$}\in H_{q,p}^{1,1/2}( $\Omega$\times(0, \infty)) such that \tilde{ $\pi$}= $\pi$ on  $\Gamma$\times(0, \infty) . The solution

satisfies the estimates:

\Vert e^{ $\gamma$ t}u\Vert_{W_{q,p}^{2,1}( $\Omega$\times(0,\infty))}+\Vert e^{ $\gamma$ t} $\pi$\Vert_{L_{p}((0,\infty),W_{q}^{1}( $\Omega$))}+\Vert e^{ $\gamma$ t}\tilde{ $\pi$}\Vert_{H_{q,p}^{1,1/2}}\leqq C\{\Vert u_{0}\Vert_{D_{q,p}( $\Omega$)}( $\Omega$\times(0,\infty))
+\Vert e^{ $\gamma$ t}f\Vert_{L_{p}((0,\infty),L_{q}( $\Omega$))}+\Vert e^{ $\gamma$ t}g\Vert_{L_{p}(\mathrm{R},W_{q}^{1}( $\Omega$))}+\Vert e^{ $\gamma$ t}\tilde{g}\Vert_{W_{p}^{1}(\mathrm{R},L_{q}( $\Omega$))}+\Vert e^{ $\gamma$ t}h\Vert_{H_{q,p,0}^{1,1/2}}\}( $\Omega$\times(0,\infty))

and the condition: (u(\cdot, t),p_{\ell})_{ $\Omega$}=0 fort\geqq 0 and \ell=1
,

. . .

,
M.
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Remark 2.4. Let us define the Besov space B_{q,p}^{2(1-1/p)}( $\Omega$) by the real interpolation:

B_{q,p}^{2(1-1/p)}( $\Omega$)=[L_{q}( $\Omega$), W_{q}^{2}( $\Omega$)]_{1-1/p,p}
and set

JB_{q,p}^{2(1-1/p)}() = { u\in B_{q,p}^{2(1-1/p)}( $\Omega$)^{d}|\mathrm{d}\mathrm{i}\mathrm{v}u=0 in  $\Omega$ }.

Then, we see that \mathcal{D}_{q,p}( $\Omega$)\subset JB_{q,p}^{2(1-1/p)}( $\Omega$) . Moreover, from Proposition 2.13 combined with

Remarks 2.7 (c) in Steiger [43] (cf. also Triebel [51]) it follows that

\mathcal{D}_{q,p}( $\Omega$)=\left\{\begin{array}{ll}
\{v\in JB_{q,p}^{2(1-1/p)}() |S(v, K(v))n|_{ $\Gamma$}=0\} & 2 (1-1/p)>1+1/q\\
JB_{q,p}^{2(1-1/p)}( $\Omega$) & 2 (1-1/p)<1+1/q.
\end{array}\right.
The next theorem shows the global in time unique solvability of (2.2) for f=0 and suffi‐

ciently small initial data which are orthogonal to the rigid space, which is proved by using the

contraction mapping principle based on Theorem 2.3.

Theorem 2.5. Let  2<p<\infty and  d<q<\infty . We consider the case where  T=\infty and  f=0
in (2.2). Then, there exist positive numbers  $\epsilon$ and  $\gamma$ such that if  u_{0}\in \mathcal{D}_{q,p}( $\Omega$) , \Vert u_{0}\Vert_{D_{q,p}( $\Omega$)}\leqq $\epsilon$
and (u_{0},p_{\ell})_{ $\Omega$}=0 for \ell=1

,
. . .

,
M

,
then the equation (2.2) with  T=\infty and  f=0 admits a

unique solution

(u,  $\pi$)\in W_{q,p}^{2,1}( $\Omega$\times(0, \infty))^{d}\times L_{p}((0, \infty), W_{q}^{1} 
Moreover there exists \tilde{ $\pi$}\in H_{q,p}^{1,1/2}( $\Omega$\times(0, \infty)) such that \tilde{ $\pi$}= $\pi$ on  $\Gamma$\times(0, \infty) . The solution

satisfies the estimate:

\Vert e^{ $\gamma$ t}u\Vert_{W_{q,p}^{2,1}( $\Omega$\times(0,\infty))}+\Vert e^{ $\gamma$ t} $\pi$\Vert_{L_{p}((0,\infty),W_{q}^{1}( $\Omega$))}+\Vert e^{ $\gamma$ t}\tilde{ $\pi$}\Vert_{H_{q,p}^{1,1/2}}\leqq C $\epsilon$( $\Omega$\times(0,\infty))
for some  $\gamma$>0 and the condition:

(u(\cdot, t),p_{\ell})_{ $\Omega$}=0 for \ell=1
,

. . .

,
M and t\geqq 0.

The next theorem shows the L_{p}-L_{q} maximal regularity of (2.3) local in time.

Theorem 2.6. Let 1<p,  q<\infty and  0<T<\infty . If  u_{0}, f, g, \tilde{g} and h satisfy the condition:

u_{0}\in \mathcal{D}_{q,p}( $\Omega$) , f\in L_{p}((0, T), L_{q}( $\Omega$))^{d}, g\in L_{p,0}((0, T), W_{q}^{1}
\tilde{g}\in W_{p,0}^{1}((0, T), L_{q}( $\Omega$))^{d}, h\in H_{q,p,0}^{1,1/2}( $\Omega$\times(0, T))^{d}

then the equation (2.3) admits a unique solution

(u,  $\pi$)\in W_{q,p}^{2,1}( $\Omega$\times(0, T))^{d}\times L_{p}((0, T), W_{q}^{1} 

Moreover there exists \tilde{ $\pi$}\in H_{q,p}^{1,1/2}( $\Omega$\times(0, T)) such that \tilde{ $\pi$}= $\pi$ on  $\Gamma$\times(0, T) . The solution satisfies
the estimate:

\Vert u\Vert_{W_{q,p}^{2,1}( $\Omega$\times(0,T))}+\Vert $\pi$\Vert_{L_{p}((0,T),W_{q}^{1}( $\Omega$))}+\Vert\tilde{ $\pi$}\Vert_{H_{q,p}^{1,1/2}}\leqq C(1+T)\{\Vert u_{0}\Vert_{D_{q,p^{( $\Omega$)}}}( $\Omega$\times(0,T))
+\Vert f\Vert_{L_{p}((0,T),L_{q}( $\Omega$))}+\Vert g\Vert_{L_{p}((0,T),W_{q}^{1}( $\Omega$))}+\Vert\tilde{g}\Vert_{W_{p}^{1}((0,T),L_{q}( $\Omega$))}+\Vert h\Vert_{H_{q,p,0}^{1,1/2}}\}( $\Omega$\times[0,T)) (2.9)

where the constant C is independent of T, u,  $\pi$, u_{0}, f, g, \tilde{g} and h.
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The next theorem shows the local in time unique solvability of (2.2) for any initial data

and right member of f ,
which is proved by using the contraction mapping principle based on

Theorem 2.6.

Theorem 2.7. Let  2<p<\infty and  d<q<\infty . Then, for any  R>0 and R'>0 there exists a

time T>0 depending on R and R' such that the equation (2.2) admits a unique solution

(u,  $\pi$)\in W_{q,p}^{2,1}( $\Omega$\times(0, T))^{d}\times L_{p}((0, T), W_{q}^{1} 

Moreover there exists \tilde{ $\pi$}\in H_{q,p}^{1,1/2}( $\Omega$\times(0, T)) such that \tilde{ $\pi$}= $\pi$ on  $\Gamma$\times(0, T) . The solution satisfies
the estimate:

\Vert u\Vert_{W_{q,p}^{2,1}( $\Omega$\times(0,T))}+\Vert $\pi$\Vert_{L_{p}((0,T),W_{q}^{1}( $\Omega$))}+\Vert\tilde{ $\pi$}\Vert_{H_{q,p}^{1,1/2}}\leqq CR( $\Omega$\times(0,T))
for some constant C depending essentially only on p and q provided that u_{0}\in \mathcal{D}_{q,p}( $\Omega$) ,  f\in
 L_{p}(\mathbb{R}_{+}, L_{q}(\mathbb{R}^{d})) , \nabla f\in L_{\infty}(\mathbb{R}^{d}\times \mathbb{R}_{+}) and

\Vert u_{0}\Vert_{D_{q,p}( $\Omega$)}+\Vert f\Vert_{L_{p}(\mathrm{R}L_{q}(\mathrm{R}^{d}))}+,\leqq R, \Vert\nabla f\Vert_{L_{\infty}(\mathrm{R}^{d}\times \mathrm{R})}+\leqq R'.
The proofs of Theorems 2.3 and 2.6 are given in [30] and those of Theorems 2.5 and 2.7 are

given in [31].
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