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Abstract. We show as the main result of the paper that if w is a weak global solution of homogeneous Navier-Stokes
equations satisfying the strong energy inequality and 5 € (3/4,1), then there exist tq > 0, Cy > 0 and §p > 0 such that

14%w(t)] + ()]
[t + o) 1wt + o) = °

for all t > to and § € [0,80]. So, measuring w in the graph norm ||A%w| + |jw|| and starting at time ¢y, we exclude fast
decays of w on short time intervals.
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1. Introduction

In this paper we study some asymptotic properties of weak global solutions of the Cauchy problem for the Navier-
Stokes equations in the space domain = R3:

%—?—Aw—i—w‘waLVp:O inR3><(0,oo), (D
V-w =0, w(a:, 0) = wO(:B)v ()

with wg € LZ(R?’)?’, V - wg = 0. By a weak global solution w we mean a function
w € Cy([0,00); L2(R?)?) N Li,c((0, 00); WH(R?)?) 3)

with V - w = 0, which satisfies the integral relation

@) 60+ [ [ (10051, 52067 ) + (V). V(5)) + (w(s) - V(). 65)| ds = (wo, 60)), ¢,

for all smooth vector fields ¢ with compact support and V - ¢ = 0. (-,-) denotes the scalar product and || - ||
denotes the norm in L2(R3?)3. C,, denotes the space of weakly continuous functions. The existence of weak
global solutions is well known (see [1] or [7]).

From now on we suppose that the solutions satisfy the strong energy inequality

W +2 [ 1900 Pdo < )P

for s = 0 and almost all s > 0, and all ¢t > s.
It is known (see [4]) that the global weak solutions with the strong energy inequality become strong after a
finite time:

there is some Ty = T (||wpl|) > 0, such that w € C([Tp, 00); LP) for every p € [2, 00). 4)

The following theorem is the main result of the paper.
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Theorem 1 Let 3 € (3/4,1), wo € L?>(R3)3, V- wy = 0, wg # 0. Let w be a weak global solution of (1) and (2)
satisfying the strong energy inequality and let Ty be from (4). Then there exist Cy > 1 and 0y € (0, 1) such that

[APw(t)] + ()]
< > T 2 .
TPl + ) + (e + 8y = 0 ¥ 2 Tot2, %0 € (0, 0] ©)

Let us present in this connection a theorem proved in [5]:

Theorem 2 Let wy € D(A), wg # 0. Let w be a strong global solution of the Navier-Stokes equations (1) and
(2) in a smooth and bounded domain Q@ C R? endowed with the homogeneous Dirichlet boundary conditions. If
k,l,m € N U{0}, then there exist C = C(k,l,m) > 1, tg = to(k,l,m) > 0 and dy € (0,1) such that

dFw
pra (t)

m,2

, Yt > tg, VO € [0,(50].

—(t+6)’

It is clear that the result from Theorem 2 for the case of a bounded domain is stronger than the result presented
in Theorem 1. In this paper we do not have the ambition to prove an analogical version of Theorem 2 for the
whole space R? and Theorem 1 is only the first step in this direction. Let us also remark that unlike the case of
a bounded domain, we do not have the inequality ||B(w,w)| < ||AY?w]|| ||APw||, which must be replaced by
| B(w,w)| < ||AY?w]|| (|| APw]|| + ||w||) (see the second section for the notation). It leads to the form of the left
hand side in (5). Therefore, Theorem 1 says that if we measure the solution w in the graph norm || A” - || + | - |,
then, starting at time 7§ + 2, fast decays of w on short time intervals are excluded. Let us remark, that the question
of fast decays of solutions on short time intervals was raised and studied in [3].

2. Notations

L7 = L9(R3),q > 1: the Lebesgue spaces with the norm || - ||,. If ¢ = 2, we denote || - || = || - ||
W4 = W34(R?),s > 0,q > 2: the Sobolev spaces endowed with the norm || - |5 4-

L2: the closure of {p € C§°(R3)% V- ¢ = 0} in L2(R3)3.

P,: orthogonal projection of L?(R?)3 onto L2.

A: the Stokes operator on L2, D(A) = {u € W?%,V - u = 0}, Au = —Au, Yu € D(A).

A%, a > 0: the fractional powers of the Stokes operator.

e~ t > 0: the Stokes semigroup generated by the Stokes operator —A.

B(w,w) = P,(w - Vw).

the graph norm [[|w||s = [[A%w] + [[w].

3. Auxiliary results

At first, let us present several known properties of weak global solutions which will be used in this paper.
According to [8], if w is a weak global solutions of (1) and (2) satisfying the strong energy inequality and if
wo € L2(R?)3 N LP(R3)3 with p € [1,2) then

_6-3p
|lw@®)| <C(1+t)" =, t>0.
Using the results from [2] and [8] we can disregard the assumption p € [1,2) and derive that
lw@® <CA+H)7™", t>0

for any p € (0,1/2) where C possibly depends on x. Applying now a result from [4], we get that for m,k € N
and i € (0,1/2) there is C, ), = Cyy (11, C), independent of T, such that
’ o dFw

D W(t)

< Cp(t—Ty—2)7+™2F ¢ > Ty +1. (6)




The following inequality can be derived as a consequence of Holder inequality and Lemma 2.4.3 form [6]: if
v € [3/4,1) then there exists ¢ > 0 such that

1B(u, w)|| < ¢ AY2ul|[[[ull],, Yu € D(A). )
Finally, if v € [3/4, 1) then there exists ¢ > 0 such that

1A 2ul| < ellfulll,, Yu € D(AT). (®)

4. Proofs of the main results

We prove at first the following lemma. Its corollary is substantial for the proof of Theorem 1.
Lemma 3 Ifw € D(AY), w #0,t > 0and 0 < 8 < « then

[A%w]| [A%e” Al
|APe=Atw]| ~ || APem2Atw|

Proof: Let £, A > 0 be the resolution of identity for the Stokes operator A. Then
o
| APe=Atw]|? =/ A=t || Eyw|?, > 0. )
0
By the Holder inequality we get easily that
x
AP tul2 = [T X2 By <
0
o0 1/2 [e'e) A 1/2 n
([T xaiewlp) ™ ([T e NdiBwl?) = 4% 4% )

and immediately

[A%w] A% M|
[ATe=Atw|| — || APem2Atw]"

(10)
We will show further that the function ¢ — || A%~ “*w||? /|| A®e~4*w||? is non-increasing. Firstly, for every v > 0

d
%HAVe_AthQ = 2| AT 2 y|I2, t>0
and therefore

d ”Aae—AthQ B 2”Aae—Atw”2HAB—H/ZG—Atw”Z o 2||Aa+1/26—Atw”2HAﬁe—AthZ

= , t>0.
dt || APe—Aty]2 || ABe—Atqy]|4

Further,
”Aae—Atw”2HA,B—H/Ze—AthZ < |‘Aa+1/26_‘4th2HA’Ge_At’wHQ,

as follows from the moment inequality

1A < || A%ul| == || A%ul| ===,
which holds for every 0 < z < y < z and u € D(A*). So,
d llAe —At 2
d [[A%e || <0, >0

dt || APe—Atw]]2 —

3



and due to the continuity from the right at 0 we get that the above mentioned function is non-increasing. It means
especially, that

A 2 A“ —At 2
[APwl|> ~ [|Afe=Atw|?
Using now (10) and (11), we get
[Avwl| A% [ A%wl  _ [|A%eMw|] [APem M| [[A%e” M|
[ASe=Atw|| | APw]| [ APe~Atw|| ~ [|Afe~Atwl| |APe=2Atw]| || Afe=2Atw]|”
which completes the proof of the lemma. ()
Corollary 4 If w € D(A%), w#0,t > 0and 0 < 3 < « then
w]l]a [lle=*wl][a
[lle=Awlllg ~ [lle=2A%w||g

Proof: The proof of the corollary follows immediately from Lemma 3 and from the elementary fact that if % > %
and 32 > % for some positive o, 3, i, i = 1,2, then % > giifﬁ Q . ‘
Throughout the proof of Theorem 1 ¢ denotes the generic constant which can change from line to line.

Proof of Theorem 1: Let the assumptions of Theorem 1 be fulfilled. We will use the method from [5]. We denote

H = max w(t .
e[l

It follows from (6) that H < oo. Since || A%w(t)| # 0 for all t € [T + 2, 00), there exist C) > 1 and ) € (0,1)
such that

Hw®)]lls / :
INB < of W€ [Ty + 2, Ty + 4], V6 € (0,5)]. (12)
lfw(t+6)llls = ° ’

We set now Dy = 6C{ and let &y € (0, 6] be such a number that
5Dg \3 [ §1P
AHc <D062<D0—1>> o gTh) <t (13)

We will prove now the following proposition:
Proposition P: Lett > T + 4, § € (0, d]. Let further

w(®)]l|s < ﬂL)
_ AR Do. Dae2@o—1) 14
T+ o)y ¢ \PorPoet (o
and
Hw®)lls = [[[w(s)ll[g, Vs € [t,t +d]. (15)
Then there exists t* € [t — ,t) such that
. _ lke@)lils \2
lw@)lls o, llwlls (1= 2552 »

fw@®llls — [llw(t+6)llls (1+ |||w2<2|||ﬂ) '

Proof of Proposition P: Let (14) and (15) be fulfilled. We can suppose that

LG lllw)llls < Clllw@llls, (17)

because otherwise (16) would be satisfied immediately. We begin with the integral representation of w:
6
w(t 4 6) = e Mw(t) + / e A=) Bw(t + s),w(t + s)) ds, (18)
0
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wt) =e Mwt—6 +/ =) B(w(t — & + ), w(t — & + s)) ds.
Applying gradually (7), (8) and (17) we obtain that
llw(t) — e~ P w(t - )|l <
5
/ (6 —5)P 1) |IBlw(t —6+s),w(t — 6+ s)| ds <
0
5
/ (6= 5) P+ 1) [AYPw(t — 5+ )| [[Jw(t — 6 + s)|[| 5 ds =

0
||A1/2w(t —d+39)|
lw(t — 0+ )]s

@il [ et(6 ~ 9+ 1)

[[lw(t =6+ s)
llw®)Ills

So we can get from (13) and (14) that

1-8
Hmuwwawu—&mﬁgmw@mﬂkﬂdﬁ(ﬁ +5>

8
|||w( )|||,8

llw®Ills

and also

1-p
nmawwawa—ﬁmﬁgMwa+&m5PHdﬂ<@’ﬂ+%)

Ol 1 1 gy 12

(21) now gives immediately that

_ _ w(t
e us(t) — et — ) 5 < [t + 8} 15 122,

It follows from (18), (7), (8), (14), (15) and (13) that
[[w(t +8) — e w(t)]l]g <
6
/0 (e(6 = )7 + DIIAY2w(t + )| [[w(t + 9)ll|s ds =

1A Pw(t + )| [[lw(t+ )]s
[l +$)llls [[lw(t+ )]s

e + )l [ (el6 ~ 97 + 1)
6
Mw@+swmds§Ww@+6WMHW@mm00/(@—8V5+Uds=

1-8 w v
|HUKt+-5HHﬁ[4HbC7<5 5T o )]Jﬂ—fz?ﬂﬁ~<|n (t+ 6|l ﬂLﬁ%?”ﬁ.

(22) and (23) provide the estimate

lle™*4w(t —8) —w(t +)llls < llle”*Pw(t —8) — e Pw(t)||5 +

[[[w®llls

lle™0w() — w(t + )5 < lfw(t +8)llls

6
L e~ 5+ 5yl ds < 1(@l1Be0? [(5 )7 +1) s

19)

(20)

2D

(22)

(23)

(24)



It follows now from Corollary 4 and (20) and (24) that

- G
T ok R Gl Cd
le=22w(t =0)llls ™ [[jw(t + 6)[||s (1 + Lplle)

If we put t* =t — 4, (16) is proved. The proof of Proposition P is finished and we can continue in the proof of
Theorem 1.
Letus fix t € [Ty + 2,00), d € (0, o] and suppose that

llw(®)lls > H/Do and (25)

w5 1+1/2
> Dy = 6Dy (26)
[[w(t+8)llls (1-1/2)2
Since Dy > C{j and §y < &), it follows from (12) and (26) that ¢t > T; + 4. We can also suppose without loss of
generality that

lw®llls = max [llw(s)]ls

and (by possible decreasing of ¢)

llw®Ills

— 2 =6D,.
Nw(t + )] ‘

5DQ
Let us notice that 6Dy < Dpe?Po-1 (Dgy > 1) and the conditions (14) and (15) are satisfied. By Proposition P

there exists t* € [t — J,t) so that

. (1 . |||w<t>|||5)2 )
[lw(@)llls o _[llw@llls oH 6D0(1 —1/2)? _ 0
Hw®llls — [llwt+0)llls (1+_'”w2<2”|ﬂ) - 1+1/2 '

Thus, by (25), |||w(t*)]||g = Dol|lw(t)|||s > DoH/Do = H and it is the contradiction with the definition of H.
Let D1 = 6Dy. We proved
Proposition P;: Lett € [Ty + 2,00), 6 € (0,60] and |||w(t)|||g > H/Dy. Then

w®)]lls

e < Dy
[Hw(t + )l

We define now L

1 + 2DgD1...Dp—2

D, = Dy -, VneN,n>2. 27)
1
(1 - 2D0D1...Dn_2>
We have
6<Dyg<Di<...<D, 1 <Dy, VTLGN, (28)
+ 555D, nl 1+2D’
—6D0H — DOH , Vn > 2
7=0 (1 oy D; <1—2éj>
and
n—1 1 1
InD,, <InDgy+ In|l+— ) —-2In[(1—— )], Vn>1.
nEimbor ( 209 ( u%)



It follows from the elementary properties of the function x — In (1 + x) that

n—1 1 1 5D0
In D, <InDg + — 44— | <lnDy+ —-—
' j;] <2D6 2D6> 2(Do — 1)

and
5D

_3Dg
D, < Dge?@Po-1  ¥n € N. (29)

We will prove now that for every n € NN the following proposition is valid:
Proposition P,: Lett € [Ty + 2,00), 6 € (0,dp] and

(G I —_
w _—
8~ DoD;... D0,

Then

(@)l
M@+ ol =2

We will use the mathematical induction. Proposition P, has already been proved. Let us suppose that P, holds
for some n € N and we will prove the validity of P,1;. Thus, lett € [Ty + 2,00), 6 € (0,d0] and |[|w(¢t)|||s >
H/DyD; ...D,. We can suppose that

lw(®)llsg < H/DoDy ... Dy, (30)

since otherwise we would apply Proposition P,, get |||w(t)|||g/|||w(t + 0)|||g < Dn < Dp1 and Proposition
P,,+1 would be proved. We suppose by contradiction that

le®llls -

n+1- 31
MG+ ol = 2 GD

It follows then from (12) and (28) that ¢ > T + 4. We can suppose without loss of generality that

@5 > w(s)lllg, Vs € [t + 3] 32)
andabo (@)l
w B _
MGt o)l ~ ©3)

Due to (28), (29), (32) and (33) we see that (14) and (15) are satisfied. Therefore, Proposition P, (33), (30) and (27)
yield that there exists t* € [t — d,t) so that

. _ lle@llls \? N 1 2

lols - ol (- 2572) (t- merirs)

Tw@lls > e+ ol (15 oy = P D)~ 6w
’ o (1 M) (1 + 2memims)

If we use the assumptions of Proposition P, we obtain that

H H
DoD;...D,  DoD;...Dp

Hw(@)lls = Dnlllw®)llls > Dn

and according to Proposition P, we get that

o e)llls
Tw@llls < 2™

which is the contradiction to (34). Therefore, (31) does not hold, in fact

HEEIIE

——=— < Dy
[w(t+ )15 "

7



and Proposition P, is proved. We proved that Proposition P, holds for every n € .
We now finish the proof of Theorem 1. Let us fix t € [T + 2, 00) and § € (0, dg]. Then there exists n € N so

that |||w(t)|||g > ﬁ. By Proposition P, and by (29) we get that

w®lls il
T+ )15

5Dg
Setting Cy = Doe2Po-1 the proof of Theorem 1 is complete. )
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