NAVIER-STOKES DYNAMICS ON A DIFFERENTIAL ONE-FORM
TROY L. STORY

ABSTRACT. After transforming the Navier-Stokes dynamic equation into a differential one-
form on an odd-dimensional differentiable manifold, exterior calculus is used to construct a
pair of differential equations and tangent vector(vortex vector) characteristic of Hamilton-
ian geometry. A solution to the Navier-Stokes dynamic equation is then obtained by solving
this pair of equations for the position ¥ and the conjugate by, to the position as functions
of time. The solution by is shown to be divergence-free by contracting the differential 3-
form corresponding to the divergence of the gradient of the velocity with a triple of tangent
vectors, implying constraints on two of the tangent vectors for the system. Analysis of the
solution by shows it is bounded since it remains finite as |xk| — 00, and is physically rea-
sonable since the square of the gradient of the principal function is bounded. By contracting

the principal differential one-form with the vortex vector, the Lagrangian is obtained.

1. INTRODUCTION

In fluid dynamics, the Euler and Navier-Stokes equations model the dynamics of a fluid
in R"(n = 2 or 3) for times ¢ > 0. For incompressible fluids filling all of R™, the Navier-

Stokes equations are given by the three equations

ov "9 [ov
= = —(v Vv + —VP+u;@<%>+f (1.1)

divv =0 (1.2)
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v? (xl,...,x") zv(xl,...,x”, t) lt=0 (1.3)

where ((z!,...,2") € R", ¢t > 0). For the case of zero viscosity v, these equations are the
Euler equations. Eqn.(1.3) is the initial condition for position z* and time ¢, eqn.(1.2)
is is the divergence-free condition, and eqn.(1.1) is the equation describing the dynamics,
with externally applied force f(z!, ..., 2™, t) € R, velocity v(z!, ..., 2", t) € R", pressure
P(z', ..., 2" t) € R, and with forces due to pressure gradient VP and viscous friction
V351 e ()

Many investigations have focused on finding solutions v and P to the Navier-Stokes
equations satisfying the first three equations or on proving or disproving the global existence,
smoothness and breakdown of solutions on R? or on R3/Z3, e.g., the work of Ladyzhenskaya
[1] and later the work of Bertozzi and Majda [2], and Constantin [3]. Examples of the
development of weak and strong solutions are given in the works of Leray [4], Scheffer [5],
Caffarelli, Kohn and Nirenberg [6], Shnirelman [7], Lin [8], and Amann [9]. A critical analysis
on many analytic and numerical solutions to the Navier-Stokes equations led Fefferman [10]
to doubt whether standard methods of solving these equations are adequate.

In the present investigation a different approach is employed; namely, the dynamic
Navier-Stokes equation is transformed into a differential one-form on an odd-dimensional
differentiable manifold. It is then shown that the use of exterior calculus predicts a set
of differential equations and tangent vector characteristic of Hamiltonian geometry [11, 12].

k¥ as a function of time and for the conjugate

This pair of equations is solved for the position x
b to the position as a function of time. The solution by is shown to be divergence-free by
contracting the differential 3-form corresponding to the divergence of the gradient of the
velocity with a triple of tangent vectors, implying constraints on two of the tangent vectors
for the system. Analysis of the solution by shows it is bounded since it remains finite as
|xk| — 00, and is physically reasonable since the square of the gradient of the principal
function is bounded. By contracting this differential one-form with the characteristic tangent

vector, the Lagrangian is obtained.
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2. DIFFERENTIAL ONE-FORM FOR THE NAVIER-STOKES DYNAMIC EQUATION

Multiplying the first equation by — dt gives

dS = B;ds’ — Qdt (2.1)
where

[ Ov

Bjdr' = (v -V) vdt (2.3)
_ ~ (0B,

Q= —-VP + uj; (%) + f (2.4)

ov
ds = — <§> dt (2.5)

where S will be referred to as the principal function.

To develop € as a function of (B, , 27, t) and further characterize the equation for
dS (zk, t), the quantity 0,;B; in € is analyzed in the following manner: first Taylor’s ex-
pansion of B; is taken in the neighborhood of initial position (Bj (0), l’%, to), then 0,;B;
is taken, then 0,;B;(0) from Taylor’s expansion of B; is substituted into the expression for

0,:B, giving
0.B; = [B; —B;(0) — (t — £) 8, B;(0)] (z/ — )"
(2.6)

22 l% 05 0B (0)| (af — )Yt — o)

with B;(0) = B;(z), to). Substituting this 9,,B; into £ gives
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Q=-VP + f + Vzn:[Bj — B;(0) — &;B;(0)(t — to)] (27 — )"

j=1
(2.7)
S [T s 0] @)
j=1N=2r=0
The differential one-form corresponding to d S is
dS = B;ds’ — Qdt (2.8)

where boldface symbol d is the exterior derivative operator and dS is the exterior derivative
of vector field S. Let the set of 27 now represent a configuration space. In order for d S to
satisfy Hamiltonian geometry, three conditions must be satisfied; namely, (1) B, must be the
gradient of the function S, (2) 27 and B; must be functions of temporal coordinate ¢ alone
and (3) @ = Q(B;, a7, t). The first condition is automatically satisfied by reference to
the equation for dS, i.e., B; is the gradient of S. Since the existence of v implies 2/ = 7 (t)
and since B; = B; (a7,t) = B; (27(t),t) = b;(t), then the second condition is satisfied.
Condition three is satisfied by the definition of 2. Hence dS becomes,

dS = b;dz’/ — Qdt (2.9)

which is analogous to the expression for the differential one-form for the action in Hamil-
tonian mechanics. The geometric object dS is called a vector-valued differential one-form on
extended cotangent space T*M,;(coordinates (b;, 27, t)), with basic differential one-forms
db; , dz?, dt and function Q (b;, 27, t)(analgous to the Hamiltonian). With this devel-
opment, the Navier-Stokes equation is expressed as a differential form useful for applying
exterior calculus to analyze Navier-Stokes dynamics.
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3. NAVIER-STOKES DYNAMICS ON A DIFFERENTIAL ONE-FORM

Using the symbol w = dS , the exterior derivative of dS is

; oQ oQ oQ
= db; ) — J — | db; — ) dt| A dt 3.1
dw =db; A dz l(@aﬂ) dx (ab])d]—l- (615) ] (3.1)
Following the procedure of Story [11], consider the vectors £, n € T (T*M,), where
db; da?
= , 3.2
- (P)a+ (Z)a +a (32)
and
n = /6bj abj + ij axj + at (33)
and the mapping dw : (£, n) — dw (£, n). This mapping and the contraction
dw (€, 77) =0 (3.4)
are defined only if the coordinates d‘c] and 22 of ¢ have the values
dv?  0Q db; o0
@ gBe - =2 3.5
dt  Ob; and dt O’ (3:5)

Using the definition of 2, with b; replacing B; , the above equations become

dxF v
— _ — x’g (3.6)
and
dby,
D 00 (VP) ~ 0t
n : 1
P Z b, — B, (0) — (t — to) &,B; (0)] (27 — ) (3.7)

o35S (M o, 0] (0 a) T -y

j=1 N=2 r=0

This is an equation whose solution is b;, with constants of the type 650\;_’” 0; B;(0)

appearing, not B; (27, ¢).
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4. THE SOLUTION

The solution to the differential equation for dg—: is

o = xk + 2wt — ty) (4.1)

To change the equation for % so that a series expansion method can be used for its

solution, first P and f are approximated by a Taylor’s series to second order and VP
is taken, then partial derivatives d,xf and 0,V P are taken. When comparing the terms
Oy Oprr1 £(0) (%1 — 2§ 1) and Opr+20,x £(0) (25 +2 — 2§7?) with 62, £(0) (2% — 2f), all
being terms from 9,+f, it is assumed O,x+10,x £(0) < 02,£(0) and J,x+20,x £(0) < 02,£(0);
these terms are excluded as an approximation. The notation k, £ + 1, £k + 2 is intended to
imply cyclic order in z, y, z. Following the above indicated procedure and noting once again
that b; = b,(¢), the differential equation for dd% becomes

dby, o X v(IN —r =17 5 o k kNN — 7 —2 r
T | T O B0 (@ - )T )

— 9 0,£(0) (t — to) — 2£(0) (2" — ()

+ [(ex0% + €100 +1 + €grr20,k+20,) P(0) — 9f(0)] (4.2)
+ v [by — By(0)] (2" — x5)7
— v, By(0) (z* — )72t — to)

where e are unit vectors arising from use of the gradient. After multiplying the foregoing

equation by (2% — x%)? and using 2% = xf & /2v(t — ty) to remove the remaining (t — ¢,)

dependence, the equation for % becomes
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(o~ 2P = (b~ Bu(0)

00 N 2
_ Z Z (Nrjlr — 1) 8]\;—7"6;"Bk(0) (ilfk— l.l(;:)N-i—r
2(2v)" T r (N —=r)t *

4.3
— (20) 7100, £(0) (2% — Bt — 9% £(0) (F — 2f)? (43)
1
— 58,5Bk(0) — 0,+£(0)
+ (z% — h)?
+ (ekﬁzk + er+1040k+1 + exk+26xk+26xk) P(0)
The series solution to the foregoing equation proceeds by assuming by, is given by
b (t) = Y Cy(t — tg)"*exp (= Na(t — t)"/?) (4.4)
N=1
Using % = ok £ /2u(t — to) ,
= Cy Na
by, (zF) = zF — 2N exp (— ——(aF — xk)> (4.5)
( ) NZ:1 (21/)%( 0 \/@ 0

where the Cy and the a are constants. Computing dd% with the use of the equation for

by, (t), followed by use of z¥ = zk £ \/2v(t — t;) to express dd% as a function of (z* — zf),

use of the equation for by (xk), expanding the exponential function by a Taylor’s series to

k k dby

second-order, rearranging and combining terms, changes (93 — x0)2 -+ into the following



8

result:

Changing (xk - T
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X N —r—1 2 N —r qr k N+r
Z Z 2(;1/)7”_17“!(]\[17“)!8%’6 a15 Bk(o) (.’If - xlg)

—a3(N —3°Cy_s+a®(N - 2)°(N—1)Cpn_s|
. 4(2v)% 1
N
+ Z (2% — af)
—2a (N-1°Cy_1 + 2(N — 1) Cy
420)% !

+ (20) 710,40, £(0) (2F — 2h)*

I 1 1
+ 8§kf(0) + E (5 a201 - 2(102 + Cg):| (xk — 37’8)3

- (Yo + (%) Gy + ZOB(0) + 0,:H(0)

— (ekaik + ep+10600+1 + ezk+2azk+2a$k) P(0)

+ vBL(0) = 0

k

k)N+T to (zk — :L'O)N gives
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where
N —2r — 1)
Ay ., = ( — ) ON "2 ' Br(0)| for N—2r > 0 (4.8)
2(2v)" " rl (N = 2r)! "

and where the term [&BT‘“(O)] (xk — x’é)Q is generated by the sums > v _, Z:iév /% but is not
generated by the sums "% _, Ziv:o , hence it is subtracted; there are no other terms of this
type. The meaning of the limit 7., < % is illustrated as follows: if N = odd number, e.g.,
N = 3then rp. = 1since rp. = 2 would contradict rpa < % If N = even number,
e.g., N = 4, then rp.x = 2since rp. = 3 would contradict 1., < % This new sum is

expanded to start at N = 5 and the Ay_, , are evaluated, giving
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("SNP (N -2 — 1)

= (20) 7 (N - 2

ON " 0] By(0)

—a® (N =3 Cy_s+ a®>(N — 2)*(N—1)Cn_

| —2a (N-1)°Cy_; + 2(N — 1) Cy

+ | + (2v) 0,0, £(0)

1

—(21/)—133) B (0)

8 4

() - () ()

2

3 1
+ (—Vaik + Z@ikﬁt +

N —

. (g) C, + (%) Cy + 9,:£(0) +

— (ekaik + e +10,60+1 + €gh+20,k+2 zk) P(O)

+ vBL(0) = 0

—ady! 3a’v~! —9a vt R
(Z5=) e (M) e () e () @

(5 — k)™

A(2v) % — 1

(V ka + 8t) Bk(O)

(4.9)



NAVIER-STOKES DYNAMICS ON A DIFFERENTIAL ONE-FORM 11

The right side of the above equation is zero only if the coefficients of the individual powers

of (xF — zk) are zero; hence,

Bi(0) = 0 (4.10)

C, = (4.11)
+2 (ekﬁgk + € +10,60+1 + ezk+2amk+2a$k) P(O)

2 3
(3i> C, — <2aua§k + @aik + 2a8t> B(0)

2 3
C; = 4.12
’ - (4aamk + \@agk) £(0) (4.12)
+ 4a (ekﬁik + € +10,%0k+1 + e$k+2(9$k+2(9$k) P(O)
[ 20> (2v) 0% +a(2v)F 35, ]
3 1
(8%) Cl — +§ (21/)2 (9;1k + 4(12 &5 Bk(O)
le s Loy
C, = 6 3 (4.13)

- (8 20, + 3a(2w)* 0% + gawkat> £ (0)

+ 8a? (ekaik + eh+100,6 41 + exk+26xk+26wk) P(O)
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N —3)° N — 2)?
CN = a3ﬁ01\[_3 — a2%01\[—2 + a (N— 1) CN—l
(4.14)
T (N — 29 — 1)

- = N9, Be(0) ;N > 5
o (N=1)2v)" "2 (N — 2r)!

r

The equations for By (0) and the coefficients can be used to compute all constants relative
to the value of C; , but do not provide an explicit calculation of C;. These constants are
functions of constant coefficients of the type 0%, d? B, (0), 0% a7 £(0) and 0% d? P(0). Recall
that B, = By (z%,t) = By, (2%(t),t) = by(t); hence, the equation B,(0) = 0 states that
the gradient of the velocity is zero at the initial conditions defined by by (ty) = 0, 2% = zf

and t = .

5. ANALYSIS OF THE SOLUTION

5.1. The solution (initial conditions, bounds on by, bounded energy, graphs, zero
external forces). The solution to eqn.(1.1) depends on the existence of smooth functions
By, f, and P such that Taylor’s expansion theorem can be used; hence the solution depends
on these functions being C'*°; although f and P are expanded only to second - order. These

three functions are real and belong to R"™ x [0, 00).

5.1.1. Initial conditions. The solution, z¥ = z& & /2uv(t — to), shows that if t = ¢, then
zF = xk: hence, the equations for by (t) and by (z*) give by(ty) = 0. The initial conditions
are given in the appropriate variables for extended cotangent space (bk, ", t)) rather than

extended tangent space (V, xk, t))

5.1.2. Bounds on by. Using by = by (zk), the a-th derivative of by, is

= 33 vy (5= )" e |- u)] )

N=1m=0
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where
1 —aN]" [ « N!
ma — 5.2
N (20)N/? [\/21/} (m) {[N— (a—m)]!} (52)
and where N > a — m. At t =ty , note that gz,?lj = 0, since z* = 93’5 at t = ty. This
analysis shows that at 2% = zf | lim ZZ,E’Q | = 0 for any a . Hence by, will not grow large

|| o0
as |xk| — 00. The behavior of by, as |xk| — 00 can also be examined directly from by (z*).
As |z¥| — oo, exp (—Na (2v) " (aF — x’g)) — 0 faster than (2% — z§)N — oo, hence

b, — 0; blow-up does not occur.

5.1.3. Bounded energy. Since the motion of the system occurs in extended cotangent space
rather than extended tangent space, evaluation of the following integral will show that the

energy is bounded:

/|bk|2dxk < Cforallt > t) and C < oo (5.3)
Rn

Evaluation of this integral gives

fooo |bk|2 dzF = leNzl \{l%-?%ffv [(MLJ‘JJV;FM]\Q;H—I}
o (5.4)
= constant,

which is finite for finite C,;, Cy and where [M——MNEM} — 0 for large M, N. Hence

the above results imply the function |b;.€|2 is bounded.

A physically reasonable solution has a bounded energy in field-free space when

/|p|2d$ < constant, for all ¢ > 0 (5.5)
Rn

since in this case, the energy is proportional to the square of the momentum |p|2. The

solution by, (the gradient of S) can be used as the integrand in f[g, Ip|* dz in place of the
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momentum (the gradient of the action) for proof of a physically reasonable solution. This is
based on the fact that both principal functions (S and the action) can be represented by a
family of surfaces with the gradient of the principal function always normal to a surface at
a point; the larger the gradient, the slower the fronts representing the surfaces. When the
square of the gradient of the principal function is a function of time (|by (t)[* or |p (t)|) it
characterizes the motion in field-free space; hence, the square of the gradient of the principle
function is proportional to the kinetic energy. Therefore, the fact that f[;, |bk|2d93k < C

forallt > 0and C < oo, shows the solution is physically reasonable.

5.1.4. Graphing the solution. The solution by contains constants Cy and a, which cannot be
graphed without knowledge of these constants. Quantity a is merely a unit constant present
to make the argument of the exponential dimensionless; hence, its value 1 sec - /2. Constants
Cy are functions of the constant coefficients 0%, d? B, (0), % 97 £(0) and 0% d? P(0). The
procedure to obtain the expansion coefficients is to treat them as parameters and determine
them experimentally. This involves fitting the experimental data with the use of these pa-
rameters, then designating these evaluated parameters as the characteristic constants for the
system. This is a commonly used technique for precise quantum mechanical measurements,
for example the older frequency standard work on cesium by means of atomic beam magnetic

resonance spectroscopy, where hyperfine structure constants are treated as parameters.

5.1.5. Solution for b, when f = 0. By setting the external force f = 0, by then depends
on the expansion coefficients 9, P B (0) and 0% P P(0). By this procedure it is possible
to eliminate some of parameters required to fit experimental data and hence allow a first

approximation for determination of some of the required coefficients.

5.2. Incompressibility. The divergence equation is the condition for the velocity vector
field v to be divergence-free. If 0, is taken on each side of this equation, the result becomes
div By = divby = 0. In differential geometry the divergence of a vector field belonging
to R? is the source density in the expression for the 3-form on R?. In the present case the
divergence of vector field by, belonging to R? is the source density in the expression for the

3-form w? on R3, given by
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W = (div bg) dz® A dz® A dz® (5.6)

where w? characterizes the sources in an elementary parallelepiped with edges (¢ &,, €&s,
£¢,) and tangent vectors &, where dz(Y), dz®, and dz® are basis one-forms on R? at point
(21, 2@, 2®), where dz¥ A dz® A dz' is the volume form, and ¢ is an arbitrarily small
number. In order for div b, = 0, then the contraction dz™™ A dz® A dz® (&, &5, &) =

0. For tangent vector &,

dz™ dz? dz®)
&y = ( 7 ) d,0) + (7> 0,02 + <7> 0,3 (5.7)
and arbitrary tangent vectors £g, & , namely
dx™M dx?) dx®)
fﬁ = ﬁx(m (7> (936(1) + ﬁx(z) ( o > (936(2) + 6;,;(3) <7> (936(3) (5.8)
and
dz™) dz® dz®
& = Ky ( 7 > 0,1y + Ky (7> O0p2) + Ky <7> 03 (5.9)

it results that the contraction dz™W A dz® A dz® (&, &s, &) = 0 implies

Be (Fe@ — Fp@) + Bo (Ko — Fw) + Boe (Kew — Fge) = 0 (5.10)

where (9,1, 0,2, O, ) are basis tangent vectors belonging to R3. The condition on the (3,
and r,+ implies that the vectors {g and &, are not entirely arbitrary; the condition distorts
the parallelepiped (&, £, &) to allow the gradient of v to be divergence-free.

This condition is strictly true from a mathematical point of view, but involves assump-
tions which have not been adequately studied in terms of physical reasonableness. However,
if the volume of this parallelepiped is in the same region of space in which the motion of the

system occurs, then the requirements of the divergence equation are fulfilled.
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5.3. The Euler equation. Referring back to the introduction, the Euler equations are the
first three equations when the viscosity is zero. Hence, it would seem that the solution to
the Euler equations can be obtained by setting the viscosity to zero in the solution to the

Navier-Stokes dynamic equation. However, this procedure depends on the use of the solution
2% = 2k £ \/20(t — o) to change the functional dependence from ¢t — to to 7 — z}. If the

viscosity is set to zero, % =
x —Z‘O

procedure cannot be used. The present solution to the Navier-Stokes equations can be used

predicts 27 to be independent of time; therefore, this

as an approximation to solutions for the Euler equations only in the case of exceptionally
small, but non-vanishing viscosity.
6. VORTEX VECTOR, LAGRANGIAN

The vortex vector R , the vector which gives the direction of the system change, is
obtained by substituting the coordinate values for the coordinates of the tangent vector &;

hence the vortex vector is

R = — (8wkﬂ) 8bk + ((9ka) Opx + O
= — (048) Oy, + v(a"— l'k)_1633k + O

To obtain the Lagrangian for the system, the principal differential one-form dS is con-

(6.1)

tracted with the vortex vector giving

dS(R) = b0, Q2 — Q
. (6.2)
= bky(xk—mg) - Q

This equation can be made more detailed by substitution for by (¢) and €. Note that the same
technique for obtaining the Lagrangian has been demonstrated for Hamiltonian mechanics,
geometric optics, irreversible thermodynamics, black hole mechanics, and electromagnetic

and classical string field theory [11].

7. CONCLUSION

The technique employed in this paper for solving the Navier-Stokes model for fluid

dynamics in the case of incompressible fluids was to transform the dynamic equation into
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a differential one-form, and then use methods from exterior calculus to generate a pair of
differential equations and a vortex vector satisfying Hamiltonian geometry. This pair of

k¥ as a function of time and for the conjugate by, to

equations was solved for the position x
the position as a function of time.

The value of the solution by as |xk| — 00 was shown to be finite, hence the solution is
bounded; blow-up does not occur. The solution was shown to be physically reasonable since
the square of the gradient of the principal function is bounded. It is not possible to plot the
solution without knowledge of some of the constants contained in the solution, but these
constants can be treated as parameters and evaluated experimentally. One example of this
procedure is the older frequency standard work on cesium atom using atomic beam magnetic
resonance spectroscopy, where hyperfine interaction constants are treated as parameters and
determined with experimental data.

The gradient was taken on each side of the equation for the divergence of the velocity,
div v = 0, resulting in an equation for the divergence of the gradient of the velocity. Then the
3-form corresponding to the divergence of the gradient of the velocity was contracted with
a triple of tangent vectors and set to zero. As a result, a condition was placed on arbitrary
tangent vectors in R? , distorting the volume where the motion of the system occurs in a
manner that restricts the gradient of the velocity to be divergence-free.

The vortex vector (characteristic tangent vector) giving the direction of the system
change was constructed by substituting coordinate values for coordinates of a basic tangent
vector in T'(T*M,). By contracting the principal differential one-form defining the system
with the vortex vector, the Lagrangian was obtained.

The present solution to the Navier-Stokes equations is based on several assumptions,
namely, (1) assuming the gradient By of the velocity, the pressure P, the force f, and the
exponential part of the series solution for by are all smooth functions, with all but By, (infinite
order expansion) expanded to second order in a Taylor’s series, (2) assuming the cross terms
in 0,+f can be neglected and (3) assuming a certain condition on the coordinates of two

otherwise arbitrary tangent vectors in R3.
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