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Propagation of microlocal solutions through a
hyperbolic fixed point

By

Jean-Francois BONY* , Setsuro FuJiE**, Thierry RAMOND***
and Maher ZERZERI'

Abstract

The aim of this note is to review [BFRZ], where we have studied existence, uniqueness and
the asymptotics of the microlocal solutions of a semiclassical pseudodifferential equation near a
hyperbolic fixed point of its symbol. Here we focus on the construction of these solutions, that
we write, as in [He-Sj 2], as superpositions of time-dependent WKB solutions. The large time
asymptotic expansion of the phase and the symbol, which plays a crucial role, is described. We
also give a detailed treatment of the one-dimensional case.

§1. Introduction

This paper is devoted to the description of the propagation of semiclassical singular-
ities for pseudodifferential operators on L2(R%), d > 1, in the case where their associated
Hamiltonian vector field presents a hyperbolic fixed point. We have obtained a complete
description of this phenomenon in [BFRZ|, and our main aim here is to review what
concerns the representation of the solutions near the fixed point. For applications to
scattering theory, we send the reader to [ABR1] and [ABR2].

In this first section, we recall some well-known results concerning the simplest one-
dimensional operator with such a hyperbolic fixed point. We study the asymptotic
expansion of the solutions to the one-dimensional Schrodinger equation
(1.1) Pu := (—thd—; - %2.%2) u = hzu,
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with respect to a semiclassical parameter h — 0. Here \ is a positive constant (it
will play an important role in the d-dimensional case), and z is a spectral parameter
bounded with respect to h. In this model, the potential —\2z%/4 presents a non-
degenerate barrier at x = 0 and the energy hz is close to the maximum value 0. In this
one dimensional simple case, we describe here the solutions in terms of Weber functions.
The discussion in the general multidimensional case will use a different approach.

Changing the scale z = e”i/‘l\/gy, z = —i\v, u(z) = v(y), (1.1) becomes the
Weber equation:

d2 y2
(1.2) Qu:= (_d—y2 + Z) v = v.
About (1.2), the following facts are well known:

(Ql) v =k + %, ke N={0,1,...}, are the eigenvalues of @), and the corresponding

eigenfunctions are
2
vk (y) = Hy(y)e ¥ /™.
Here Hj, is the Hermite polynomial of degree k.

(Q2) If v € C\ (N+ 1), the Weber function
1 0 y2 772 1
D, - — (L £ V=12,
1/2(y) P(%_V)/O exp( <4+yn+ 2))?7 n

and D,,_;/5(—y) are solutions to (1.2). This integral is convergent only for Rev < 1
but continues analytically to C\ (N + %) by integration by parts (it has in fact a simple
pole at each point in N + % which is canceled by the Gamma prefactor).

Going back to the original variables, we obtain the following facts about (1.1):

(P1) If z = —i\ (k + %), k € N, then zh is a resonance for P, and the corresponding

resonant state is
i A .
ug(z, h) = Hy, (e 1/4\/;.7:) oiAa’/(4h)

The function uy is an “outgoing” wave for x — +oo in the sense that its frequency set
is included in the outgoing stable manifold of the corresponding classical Hamiltonian
vector field (see (1.5)).

(P2)If z € C\ —iA (N + 1), then

. A
u(z,h) =Diz/x—1/2 (€_m/4 7 $)

_ > A o i A L o\ _iz/a—1/2
—const./O exp(4hx e P = i |n dn,
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is a solution to (1.1). With the formal change of variable n = e =™/ 4\/% &, it becomes

e"*/%o0 i\ [x €2
u(:c, h) = const. / exp (z ( 1 + €+ > >£—iz/>\—1/2 de.
0

Now we define, modifying the contour of integration to (0, oc) and inserting a cutoff
function x which is identically equal to 1 on the interval [0, R] for a large R > 0,

o Z)\ 52 _“_1
(13) By = [ e (2 (e ) ertuie ae
0
Then we see that I;./x_1/2(x, h) is a quasimode. More precisely, for |z| < R, we have
(P —hz)liza—1/2(x, h) = O(Rh™).

In fact, the left hand side is the same integral as (1.3) with x replaced by its derivatives,
whose support does not contain any stationary point of the phase. Moreover, u(x, h) =
const - I,(x, h) + O(h™) on L*([-R, R]).

Proposition 1.1.  Suppose u stays in a compact subset of C\ N for any h small
enough. Then I, has an asymptotic expansion in powers of h uniformly for x in any
compact subset of R\ {0}: if > 0, there exists a symbol a(z,h) ~ > p- , ax(x)h* with
ap = 1 such that

o —mip/27 ﬁ g ixx?/(4h)
I,(z,h)=ce [(—pw) ) oe a(zx,h)

and if © < 0, there exist symbols b(x,h) ~ Z;O:o bi(x)h* with by = 1 and c(z,h) ~
ZZOZO Ck($)hk with co = 1 such that

H 2
I (x h) m,u,/2l-x( ) (%) ez')\a: /(4h)b(x, h)

+e7ri/4 27;\ | | u—1 —z)\ac /(4h) (x h)
Here a(x,h) ~ > oo ax(x)h* means that for any N € N, a(z,h) — Zfevzo ap(z)hF =
O(hN+1).

Proof. 'We compute only the main term of the expansions. Let f(x,§) = % +x€+
% be the phase function. The values of £ which contribute to the principal terms of the
asymptotic expansion are the origin £ = 0 and the critical point { = —x of f(x,&) (only
in the case x < 0). Let ¢ > 0 be a sufficiently small number and x(§) a cutoff function
which is 1 for 0 < & < e and 0 for £ > 2e. We set

IM(J’.? h’) = I/i(a;.? h’) + IZ(Q?, h)7
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where
o
Ty = [ MO €,
0

By = [ MM ()
0

2
For the principal term of I /}L, we can ignore 5 in the phase and get

o0
I (. h) ~ X7/ / ePEIhg iy (€)de.
0
It follows that

—impsgn(x Alx : iz
Iita,) ~ etmmemn iy (L) e,

using the following formula for the Laplace transform
0 ) h p
(1.4) / elas/hgp=L s — eimpsen(a)/2p (p) (|—|> , a€R\{0}, 0<Rep<l1.
0 a

Next we calculate I3 by the stationary phase method. When z > 0, there is no
critical point and hence [ 3 = O(h*®). When z < 0, assuming 2¢ < —x < R and using

2 2
Flz,€) = =5 + S5 we get

i) =10 [T (B4 02 )1 - v

T4 @ |x|—u—le—i)\m2/(4h)‘

Let us now see this result microlocally in the phase space. Let
2

p(r.€) =€ - o

be the classical Hamiltonian associated with the Schrodinger operator P. The solution
of the canonical system
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with initial data (2(0),£(0)) = (zo, &) is given by

z(t)\ [ coshAt ZsinhAt) [z
£t) )\ 3sinh At cosh At o

The origin (z,£) = (0,0) is a fixed point, and

Ae={@e) e % e=+0a)

are the outgoing and the incoming stable manifold respectively, namely, A1 is the set
of points from which the integral curve converges to the origin as ¢ — Foo respectively.

Let us investigate the frequency set of the solutions to (1.1) (see §4.1 for the def-
inition and some properties of the frequency set). First by Theorem 4.3, we know for
any solution u € L%(R%) to (1.1) with |lul| < 1 that

FS (u) C Char (P) = {(a:,é“) e R? 2 — )\ZQxQ = O} =ALUA_.

Next we study the frequency set of the solutions we obtained in (P1), (P2). In case
(P1), by Proposition 4.2, we have

(1.5) FS (ug) = At.
In case (P2), we set Ax = AT U AL, where
AL ={(z,&) € As; >0}, AL ={(z,§) € Ay; <O}
Then, with p =% — %, we have
FS(I,) =Ay UAZ.
More precisely, we see that
FS(I,)=Ay, FS(})=A".

The solution I, (x, h) describes the wave coming from = < 0 to the origin and scat-
tered to the positive and the negative directions. In the same way, I,,(—x, h) describes
the wave coming from z > 0 to the origin and scattered to the positive and the negative

directions.
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Thus Proposition 1.1 is interpreted as follows: The wave coming from z < 0 along
the incoming stable manifold A~ with amplitude

omif4 @m'—p—le—ikxz/@h)
A

transmits through the barrier at the origin to Ai with amplitude

W
6—7Tiu/21-\(_u) (ﬁ) ei)\x2/(4h)
h

and reflects to A} with amplitude

I
e”i“/QF(—,u) (%) pirz?/(4h)

In case (P1), on the other hand, the wave is purely outgoing. In the general case,
this is related to the fact that the outgoing wave is determined by the incoming wave if
and only if zh is not a resonance.

This paper is organized as follows: In §2, we state the results of [BFRZ], which deals
with the multidimensional general case. In §3, we survey how to construct microlocal
solutions on the outgoing stable manifold in terms of the data given of the incoming
stable manifold. In §4, we recall the notion of microlocal solution (§4.1), sketch the
theory of expandible solution (§4.2), perform an exact calculus for the one-dimensional
example of §1 using the technique of §3 (§.4.3) and finally give some brief proofs for
Propositions in §3 (§4.4).

§2. Microlocal Cauchy problem near a hyperbolic fixed point

§2.1. Classical mechanics

We suppose that the real-valued function p(z, &) € C*°(R??;R), defined in a neigh-
borhood of the origin in R¢ x Rg, behaves like

d_ )2
(2.1) p(a, &) = [ - Z 4’ (2,67 as (2,6 = (0,0),

where 0 < A\; < Ag < --. < )4 are constants.
Let us consider the canonical system of p:

d )\ Vgp
29 d (5) _ (_w) |
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The origin (z,&) = (0,0) is a fixed point of the Hamilton vector field H,. The lineariza-
tion of H,, at the origin is

#(0)-=()

where F), is the fundamental matrix

ol 8°
o e 0 21
P 2 2 -
_9p _9p 171: N2
52t 001/ |womo  \2UB(0)7 0

This matrix has d positive eigenvalues {\; };lzl and d negative eigenvalues {—A\; };lzl.
The eigenspaces AY corresponding to these positive and negative eigenvalues are re-
spectively outgoing and incoming stable manifolds for the quadratic part pg of p:

AL ={(x,€) € R*; exp(tH,,)(x,£) — (0,0) as t — Foo}
={(z,&) e R*; ¢; = i%xj, j=1,....d}.

By the stable manifold theorem, we also have outgoing and incoming stable manifolds
for p:

Ay ={(z,¢) € R exp(tH,)(x, &) — (0,0) as t — Foo}.
The tangent space of Ay at (0,0) is A%. The manifolds AL are Lagrangian manifolds
and can be written

Ao = {e) e B €= 2],

where the generating functions ¢4 behave like
d_ .
(2.4) ox(x) == Z iji +0(|z]?) as z—0.
j=1
Now suppose p+ = (v+,&+) € A+ \ {(0,0)}. Then by definition exp(tHp)p+ —

(0,0) as t — Foo. More precisely,

Proposition 2.1.  One has, in the sense of Definition 4.7,
o

exp(tHy) (p=) ~ S AE(HeEt as - Foo,
k=1

where
0<pr <po<---

are the linear combinations over N of {\; };l:l, and in particular py = \1. The ’y,:ct (t) are
vector valued polynomials int, and in particular v, is an eigenvector of F, corresponding
to £\ and independent of t (remark that yie= ™ is a solution to (2.3)).
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For the proof, see the remark after Corollary 4.10. In the sequel, we will also denote

the z-space projection of the vector v (p+) by X (p).

Remark.  If the remainder term of p in (2.1) is independent of £, then p is the
classical Hamitonian associated to the Schrédinger operator P = —h2A + V (x):

Ql\')

O(|z]*) as x — 0.

ALM

d
(25)  pl@,§) =g+ V(2), Z

The potential V(x) reaches its local non-degenerate maximum 0 at the origin. In this

case, by the symmetry with respect to &, one has

¢ (r) = —¢1(z), A ={(z,—€) eR* (x,6) €Ay}

In this case, if p+ = (x, ££), then

X (py) = X1 (p) = Xa(2).

§2.2. Microlocal Cauchy problem and its uniqueness

Suppose p € SP(1), i.e. p(x, &) € C°(R?*;R) is uniformly bounded with respect to
h with all its derivatives. Let P be the Weyl quantization of p(z, £), namely

(Pul@) = g [, € (S € uty) dy e

When p is of the form (2.5), it is the semiclassical Schrodinger operator
(2.6) P =—h*A+V(z).

For a small neighborhood Q of (0,0) and € > 0 small, we consider the microlocal

Cauchy problem in the sense of §4.1:

Pu=hzu in Q,
(2.7)

u=ug(z) onC:=QNA_N{|z|=¢}.

Remark that the initial surface C is transversal to the Hamilton flow. The spectral
parameter z may be complex but in a disc of center 0 and radius bounded with respect
to h.

We start with a uniqueness result for this problem. For the proof, we send the
reader to [BFRZ, Section 4]. Let r be any positive number and z complex number,
which may depend on h, in a disc D(r) :={z € C; |z| < r}.
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Theorem 2.2.  There exist a positive § and a h-dependent finite set T'(h) C
D(r)yn{z € C; Imz < =6}, whose cardinal number is bounded with respect to h, such
that if dist (z, I‘(h)) > h% for some C >0, and if ug = 0, then the solution u € L?(R?)
of (2.7), satisfying ||ul| < 1, is 0 in a neighborhood ' of the origin.

Remark. In the analytic category (i.e. p is analytic near the origin and the
microlocal solution is defined with the microsupport MS instead of the frequency set
FS, see §4.1), we have the same theorem with more precision on the set T'(h). In fact,
I'(h) is —i& modulo O(h), where

d
1
o= { oM+ ) (o )
=1

d 2
[
is the set of eigenvalues of the harmonic oscillator —A + E )\?Zj, see [BFRZ].

=1
In the C*° case, Helffer and Sjostrand ([He-Sj 1)) haxﬁe constructed the asymptotic
expansion (in powers of ht/ 2) of the eigenvalues at the bottom of a potential well.
The set of the first terms of the expansion is £&y. This means that —i& is included in
I'(h) modulo O(h). We expect that, modulo O(h>), I'(h) is the set of —i times the

eigenvalues obtained in [He-Sj 1].

If u =0in Q’, it is 0 also on A by Theorem 4.3. Hence this result can be expressed
as follows: The microsupport propagates from the incoming stable manifold A_ to the
outgoing stable manifold A, under a generic assumption on the energy z.

§2.3. Transition operator

Theorem 2.2 says that the data ug given on A_ N {|z| = €} uniquely determines
the solution u at any point pp = (zp,&{r) on A (if it exists). Our problem now is
to construct u near pp in terms of ug which, restricted to the initial surface C, has its
support in a small neighborhood of a point p; = (z1,&) € C.

For the sake of simplicity, we assume in the following that P is a Schrodinger
operator (2.6), see [BFRZ] for the general case.

We make two generic assumptions; one is on the spectral parameter z and the other
is on the initial point p; = (x1,&7) € C and the final point pp = (xp,{F) € Ay:

(A1) There exists v > 0 such that dist(z, —i&y) > v.
(A2) Xi(zr)-  Xi(zp) #0.

In particular, Xy (x;) # 0. This means that, in case A\; < Az, the Hamilton flow starting
from p; converges to the origin tangentially to the z;-axis. In case \; = Ao, also, we
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can assume, without loss of generality, that the xj-axis is parallel to X;(xy). Since p
is of real principal type near py, we can modify the initial surface C so that it is given
by {x1 = e} N A_ near p;. Hence, denoting z; = (e, 2%), the initial data ug on C is a
function of ' in a small neighborhood of z/; and 0 elsewhere.

Before stating the existence theorem, we state two lemmas describing the behavior
of classical quantities, which appear in the principal part of the representation formula
of the solution u.

Lemma 2.3.  Let x(t) be the x-space projection of the flow exp(tHp)pr. Then
the integral

Lo(x) = /0_00 <A¢+ %ZAJ dr

J=1
converges.

The proof is obvious from (2.4) and Proposition 2.1.
Lemma 2.4.  Fory' near z; and n' near &}, let
p(y' 1) = (e y's == = Vie.y).n')
be the point in {1 =} Np~1(0) and
(z(t,y' '), &ty 0') = exp(tH,)p(y',0)
the Hamiltonian trajectory starting from the point p(y',n'). Then the Jacobian

ox(t,y', 1)
a(t,y")

J(t,y',n") = det
has the non-vanishing limit

Joo (y/) = ]im M (— Z?:l >\j+2>\1)t‘
t=oe J (0,4, 1)

ﬂ'_W@ y’)
See (3.24) for the proof.
Theorem 2.5. If dist(z,T'(k)) > vh, for some v > 0, then the microlocal

Cauchy problem (2.7) has a solution u (unique thanks to Theorem 2.2). Microlocally
near pp = (rp,&r), it has the following representation formula

hS/)\l . ,
(2.8) (i, h) = m/ 6@ D (o By (o)
T Rd—1
Here
d
(2.9) S = % D N iz,

j=1
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and the symbol d € SP(1) has the following asymptotic expansion

o
(2.10) d(@.n'sh) ~ Y di(x,y’ Inh)RH/A
k=0
where 0 = fig < fi1(= po — 1) < fio < -+ is a numbering of the linear combinations

of {pr — 11}y over N, and di(x,y’,Inh) are polynomials in Inh. In particular, dy is
independent of Inh and given by

ol ') —e~ NS (- 2T oy (£>
21 ¥

(2.11) Xefoo<x>\/|detvi/¢—(€’y’)|, Xiey)l
Joo () X1 (e, y) - Xa ()|

where
o =sgn (X1(z1) - X1(zp)).

§3. Construction of the microlocal solution

§3.1. Expression on A_
On A_, we first write the solution u of (2.7) by means of Fourier integral operators,

1 ; / N
(3.1) u(x, h) = EDIE /Rd_l eV @y 'y hYag(n') dy,

where 4g(n’) is the h-Fourier transform of ug:

]_ AN}
o n - - - —iy'-n'/h ’ /
o) (2mh)(d=1)/2 /Rd—l ‘ uo(y) dy”

Since w is a solution to the equation of (2.7), the phase function ¢ should verify
the eikonal equation

(3.2) 0,0 + V() =0,

and, if the symbol b has an expansion of the form
o

(33) b(a, s h) ~ > bi(x, )P,
k=0

each term by should satisfy the transport equation

(3.4) 20,1 - O, by + (Aaﬂ,b — iz)bk =i b1, k>0.
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Here we used the convention b_; = 0.
On the other hand, the initial condition of (2.7) for u reads for ¢ and b

(35) ¢|m1=€ :x/ : 77/7
(3.6) b, - =1.

Proposition 3.1.  The local solution v to the Cauchy problem (3.2), (3.5) exists
and is unique.

In fact,
Ay = | Jexp(tH,)(A},) € p~*(0)
t

with

Ay ={(e.y,—2v/=V(e,v') =% 7'); ¢ near 27} C p~1(0),
is a Lagrangian manifold whose projection to the z-space is a diffeomorphism. Hence
the generating function is the solution to (3.2), (3.5) (if the constant is suitably chosen):

Ay ={@g e® ¢= ().

Now let us parametrize A%, by y':

o', n) = (@', n). €W 1)) = (e.vs =V —I']? = Ve, y), 1),

and let

plty'n') = (z(t,y',0'). £ty ) = exp(tHy,)p(y',n')
be the evolution by the Hamilton flow. A,, and A_ intersect transversely at a point
on 1 = . Recall that A_ = {(z,€) € R*"; & = —%xj + O(|x|2), j=1,...,d}. We
denote this point and its evolution by

Pc(ﬂl) = (xC(n/)a 56(77/))7 pc(t7 77/) = (xc(ta 77/)7 gc(ta 77/)) = eXP(th)Pc(n/)-

About the Jacobian

ox(t,y',n')
ot,y")

the following results are well known in the theory of WKB analysis (see [MF]).

(3.7) J(t,y',n") = det

Proposition 3.2.  The function J(t,y',n') verifies

(3.8) J0,y,7) =—2/-V(e,y) — 2,

(3.9) \/ ézn —exp/A’gb x(r,y' "), n')dr.
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Proposition 3.3.  The solution b to the Cauchy problem (3.4), (3.6) exists lo-
cally and uniquely. In particular,

e [J0,9,1)
1 /A N — 1zt A .
(3 0) bo(il'}(t,y » N )777 ) € J(t7y/7n/)

§3.2. From A_ to a neighborhood of the origin

3.2.1. WKB solution to the time-dependent Schrodinger equation

The WKB solution ¢*/"b in the integral (3.1) cannot be continued to a full neigh-
borhood of the origin (z,£) = (0,0) because the origin is a singularity of the Hamilton
vector field H,. In order to overcome this problem, we use an idea of Helffer and
Sjostrand in [He-Sj 2], and express this WKB solution on A_ as h-Fourier inverse trans-
form with respect to time of the time-dependent WKB solution:

1

ip(x,n')/h ropy ot
(3.11) e b(x,n';h) = CDRE

o
/ ew(t,x,n’)/ha(t, x,1'; h) dt.
0

Note that here the factor e?Z/" = ¢t for the h-Fourier inverse transform is taken into
account in the symbol a. Now u is of the form

1 o0 b .
(3.12) u(z, h) = W/ /Rd ) P EEm Mt @, n's h)io(n') dn' dt.
.

The time-dependent phase (¢, ,n') and the symbol a(t, z,n'; h) ~ >, ai(t,z,n’)h!
satisfy respectively the eikonal equation

(3.13) O+ |0x0)” + V(z) =0
and the transport equation
(3.14) Ora; + 20,0+ Ogay + (Agpp — iz)a; = iAgaj—1, 1>0

(a—1 = 0). We should solve these equations so that (3.11) holds.
For this purpose, we first take a hypersurface

To = {(2,6) € Ayi (e, n) = v(ae(nf). o))

in A,y containing p.(n’), and a Lagrangian manifold A intersecting transversally with
A, along T'y. Notice that
Ao Np~t(0) =Ty.

Let T'y and A; be the evolution by the Hamilton flow of I'g and Ag respectively:

Ty = exp(tHp)To C Ay, Ay = exp(tHp)Ao.
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We see that A; is a Lagrangian manifold and that if € is sufficiently small, then A,
(restricted suitably to a neighborhood of p.(t,n)) projects nicely to the x-space for
every large t and hence there exists a generating function ¢(¢, x).

At:{(x7£) ]R2dv 5_ so(t x)}
ox
It is determined modulo a function of ¢ but by the eikonal equation (3.13) it is determined
modulo a constant.
The x-space projection of I'; can be written as

T, — {a: e RY; %—f(t,x) - 0}.

In fact, if (z,£&) € Ty = Ay Np~1(0), then & = a—;f and ¢2 + V(z) = 0, namely, ‘3‘0 24
V(z) = 0 which means a—@ = 0 by the eikonal equation (3.13).

In other words, for each x near the curve {x.(t,n); t > 0}, let t = t(x,n') be the
time at which = € II,T";. Then t(z,n) is a critical point of ¢.

Proposition 3.4.  The function ¢(t,x,n') defined above is a solution to (3.13).
Moreover, there exists a neighborhood of the curve {x.(t,n'); t > 0} such that for any
point x there, there exists a unique t = t(x,n') such that x € I1,T, and we have

2
(3.15) aaf( t(z,n'),z,n') =0, 88;20 (t(z,n'),z,m') >0,
(316) ¢($7n/) = 90(75(33,77/),33,77/)~

Next, we calculate the asymptotic expansion of the right hand side of (3.11) coming
from the critical point t(x,n’) using the stationary phase method. The condition that
this expansion coincides with the WKB solution of the left hand side of (3.11) together
with the transport equation (3.14) determines all the a;(t,z,n’)’s successively in the
neighborhood of the curve. In particular,

eTri/4
bO (33, 77/) =
\/Sott (t(il'}, 77/)7 xr, 77/)

3.2.2. Asymptotic behavior at large time

(3.17) ao (t(z,n'),z,n').

Both the phase function ¢(t,z,7n") and each term of the symbol ag(t,z,7’) is ex-
pandible in ¢ in the sense of §4.2.

Proposition 3.5. Ast— +oo

(3.18) otz 1) ~ G (@) +9(0) + dr (' )e ™+ dlt,,n)e M,

k=2
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where
(3.19) (') = (n) -0’ = ¢ (xe(n')),
and ¢y (t,x,n') is a polynomial in t. In particular ¢y is independent of t and given by
(3.20) p1(z, ) = —-MXi(z) -2+ 0(2*) as x—0.
The vector X;(x) is given at the end of §2.1.
1
Proposition 3.6.  Recall that we have set S = 5 Z Aj—iz. Ast — +oo,
j=1

o

(3.21) ai(t,z,n') ~ e 5 Z ap(t, z,n')e Ht.

k=0

In particular, ago(x,n’) is independent of t.
Let us calculate ag,0(0,7n"). To use the fact
a00(0,7") = lim eStao(t,xc(t,n'),n'),
t—o0
we restrict ourselves to the curve x.(t,n’). First, we have

Proposition 3.7. Ast — +o00, one has

(3.22) pult,welt, ), 1) =1 X1 (ze(n) PATe 2 (14 O(e 7)),
d

(3.23) A(ae(t,n),n) = % — A1+ O(e™™1).
j=1

Integrating (3.23) from 0 to ¢ and taking its exponential, we see, by (3.9), the
existence of the limit

S (), ) -
(3.24) i ) exp (= A +20)t>0.

j=1
This limit is a function of ', but we write J(y') as function of vy’ = z.(n’).
On the other hand, since t(a:c(t, n'), 77’) = t, the equality (3.17) can be written as

(3.25) ao(t.xeltnf)on') = ¢ ™4 Jou (b xelt o)) bo(ze(t. ). ).
From (3.10) and (3.22), we obtain
ao(t, ('), 0') =~ Xa (e ()N P

JO,2.(7'), 1) (30 x,—2n) ~nt
c G=1NJ 1 1 M1 .
XJJmmmmwf (1o

Taking the limit ¢ — 400 after multiplying by %%, we get, by (3.24),
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Proposition 3.8.  Forn' = oy (e,9'), one has

6—772'/4)\:1)’/2 |X1 (xc(n/)) |
Joo(y')

(3.26) ao,o(o,ﬂ/) =

§3.3. From a neighborhood of the origin to A

The integral on the right hand of (3.11) is convergent when Re S > 0. But it is well
defined also for ReS < 0 under the assumption (A1). In fact, since ¢ — ¢, — (1) =
O(e=**), one gets by Taylor expansion,

LRSS SE N (TR ) R S

The last term of the right hand side is exponentially decaying for sufficiently large V.
On the other hand, the integral in ¢ of the first term of the right hand side is a finite
sum of the form

L(S+ w) = / e~ (SFTr)tp gy
0

modulo convergent integrals. Here p and [ are some non-negative integers, see also

(3.29). We give a meaning to this integral setting I,(¢) = which is the analytic

P
Cp-l-l
extension of I,(¢) from {¢ € C; Re( > 0} to C¢ \ {0}. It is important to remark that
the assumption (A1) implies S + p; # 0.

Proposition 3.5 and Proposition 3.6 together with the formula (1.4) lead to the

following proposition:

Proposition 3.9. On A, one has
(3.27) /00 et hg(t o gy ) dt = WS/l @+ @FPON ey 0t h),
0

where the symbol ¢ has an asymptotic expansion of the form

o0
c(z,n'sh) ~ ) er(z, ', Inh)hi/A
k=0

Here 0 = fig < fi1 < fiz < --- are the linear combinations over N of the set {1, —p1}52,

and in particular, co is independent of In h and given by

, S exp(£Zisgn ¢
(3.28) co(x,n')=T ()\—1> e}i(';/l(zjf;/\ll)ao o(z,n').

Remark.  The set {u}ren is a subset of {/ir}ren and they satisfy the additive
property:

(3.29) {trtren + {pntreny = {trtren,  {intren + {intren = {fk}ren
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The principal symbol cq(z, n’) satisfies the transport equation
(3.30) 20,04 - Ozco + (Apy —iz)co = 0.

This is an ordinary differential equation along Hamilton flows on A;. Let p = (z,&) be
a point on A, and

(x(t),£(8)) = exp(tH,)p.
Then on x = z(t), (3.30) becomes

4
dt

The solution is given by

[co (x(t),n')} + (Agy (2(t)) — iz) o = 0.

¢ (a:(t), 77/) _ eizt—fot A¢+(az(7'))d7'00 (, 77/).
This and (3.28) lead us to

co (x, 77/) :6—izt+f0t Apy (az(T))dTCO (a:(t), 77/)

o S\ exp (55isgn o)
31 _ izt A¢y (z(r))drp [ 2 21 .0,
(3.31) € ’ A )\1|¢1($(t))|s/>\1 ao’o(aj( )777)

On the other hand, using Proposition 2.1
z(t) = Xi(z)eM! + O(e(’”_‘s)t) as t— —oo,
and (3.20), we have
(332)  Biel) = ~MXa(@elr) - Xa(@)eM + O ) as ¢ —ox,
for any 6 > 0. Inserting this into (3.31) and taking the limit £ — —oo, we obtain

Proposition 3.10.  For x near xr, one has

S) exp(—QSTtia)

o oo (2) 0.1/
) M) X ool

(3.33) co(x,m') =T (

where
o = sgn (X~ (a.(n)) - X" (a)).

Microlocally on A, we can write u, using (3.12) and Proposition 3.9, as

hS/)\]_
(2rh)/2
hS/)\l

(334) :(27-‘_171)71/2 /R2d_2 ei(¢+(93)+1/’(77’)_y/.77’)/hc(x,77/; h)uo(y/) dﬁ/ dy/

u(z,h) = [Rd_l ei(¢+($)+¢(n/))/hc(x’ 'y h)ao(n') dy’
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§3.4. Stationary phase method with respect to 7’

We apply the stationary phase method for the integral (3.34) with respect to n’.
The phase function is

b)) =y ' =al) - (0 —y) — o (z(n)).
[sJo3

Since " = F>(z(n')), ¥' = z.(n') at the critical point " = 7'(y’), and the critical

value is —¢_(g,y’). Moreover, this critical point is non-degenerate. In fact, since

0% oxl.(n/ 0 10¢_ 0
Sz @e(n)) - 375, ) - 3—77,(%(%(?7’))) = gyéeln) =1d,
one has
827’; dz,(n') O?p_ ) L
(3.35) o o ( G2 (Leln )))
and by (2.4)
D?¢_ 1.
= Jding (s, Aa) + O(fa']).
Proposition 3.11.  We have
1 YO AN S —q ey’
(3:36) ey /R I e by dif = 0= My ),

where d(x,n'; h) is as in Theorem 2.5.

The asymptotic form (2.10) of the symbol d follows from (3.29) and the formula
(2.11) of the principal term dgy of d follows from (3.26), (3.33) and (3.35). Thus we get
Theorem 2.5.

§4. Appendix

§4.1. Microlocal solution and frequency set

We say that a distribution u(z; h) € L?(R?) depending on h with ||u|| < 1 is equal
to 0 at a point (zg, &) in the phase space T*R? if there exists an open neighborhood w
of (zo,&p) such that for all N,

Tu(x,&;h) = /ei(x_y)'f/h_(x_y)2/(Qh)u(y; hydy = On(hYN) as h—0

uniformly on w. The complement of the set of such points is called frequency set and
denoted by FS(u). FS(u) is a closed set, see [Ma].

For a pseudo-differential operator P = OpZV (p), u is said to be a microlocal solution
at (zg,&p) of the equation Pu = 0 if (z¢, &) ¢ FS (Pu).

Here are some fundamental properties of frequency set, for more details see [Ma].
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Proposition 4.1.  If u is independent of h, then
FS(u) = WF(u) U (Suppu x {0}),
where WEF (u) is the wave front set of u.

Proposition 4.2.  Let u(x, h) = a(z, h)e'®@)/" where ¢(x) is a real-valued C>
function in a domain Q in R? and a(x, h) is a C> symbol on Q, i.e. a(x,h) is bounded
in Q uniformly with respect to h with all its derivatives. Then

FS(u) C {(a;,g) e R, ¢ — %(,@)}.

Let now u € L?(R%), |jul[z2 < 1, satisfy Pu = 0 with a real-valued symbol p €
S2(1).

Theorem 4.3 (Propagation of singularities).  The frequency set of u is included
in the characteristic set

FS(u) C Char (P) := {(z,§) € R?4: p(x, &) = 0}.
Moreover, if exp(tH,)(zo,&o) exists for t € (Ty,Th), (To <0 < Th) for (z9,&0) € R??,

(x0,60) € FS(u) <<= Vte (Tp,Th), exp(tH,)(xo,&) € FS(u).

§4.2. Expandible solution
Let v(z, V) be a vector field of the form
(4.1) v(z,Vy) = Alx)x -V, A(0) = diag(A,. .., Aa),
where 0 < Ay < --- < Ay are positive constants, and consider the Cauchy problem

(4.2) { atu + l/(CC, Vm)u :’U(t, :l’:)

U= =w ().
We denote by exp(tv)(zo) the solution to the system of ordinary differential equations
#(t) = A(x(t))x(t
sy { (1) = A(®)a(®)
il'}|t:0 = XQ-
Then
d
7 [u(t, exp(tl/)(m))] =(0¢ + v(z, Va))u(t, exp(tv)(zo))
=v(t, exp(tv)(zo)).
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Hence

u(t, exp(tv)(zo)) = w(zo) +/O v(s, exp(sv)(zo)) ds.

Put now = = exp(tv)(zo). Since z¢ = exp(—tv)(x), exp(sv)(xg) = exp(—(t — s)v)(x),
we get

(4.4) u(t, z) = w(exp(—tv)(z)) + /0 v(t — s, exp(—sv)(z)) ds.

d
0
When v =1y = ]2 )\jxj%j’ in particular,
exp(—tv)(x) = (e_)‘lt:cl, e e_)‘dt:cd).

Let Q be a suitable neighborhood of 0 in R?.

Definition 4.4. We write u(t,z) € O®(e #|z|M) if for every ¢ > 0, k € N,
a e N¢,
Dy Dgu(t,x) = O(e~ 1= g (M=leD+),

in [0, 00) x €.
The map exp(—tv) :  — Q is well defined and
| exp(—tv)(x)] = O(e ™ |z]),  |Dy D exp(~tv)(z)| = O(e™™"),
for z € Q,t > 0 and for all kK € N,a € N?, It is easy to check the following lemmas.

Lemma 4.5.  Suppose w = 0. Ifv € O®(e M|z|N) with NA\; > ), then u €
OOO(G_M|CC|N).

Lemma 4.6. Ifw € O(|z|Y) and v =0, then u € O (e~ N 1t|z|V),

We will see that the solution u to the Cauchy problem (4.2) is expandible in the
following sense:

Definition 4.7. Let pu; < po < --- be the series of linear combinations over N
of A1,..., Aq- A function u(t, z) € C*([0, 00) x Q) is said to be expandible if there exist
ug (k=1,2,...) polynomials in ¢t with smooth coefficients in = € §2 such that, for any
N e N,

N
u(t,x) — Z e Prly(t, z) = O (Q—MNH??).
k=1
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First let us look for the homogeneous solution of the Cauchy problem

8tu—|—2)\ xja —e Mt Z

(4.5) la|=N
u|t=0 :Ov

where ¢, (t) are polynomials in ¢.
The function u; = e #* Z aq(t)z® satisfies
|la|=N

875’11,14-2)\ xjg _:“’t Z ( Z)\ o5 —

Hence if u;y satisfies the first equation of (4.5), an(t) should satisfy

(4.6) al (t) 4+ 0aaa(t) = calt Z Ajo —

The equation (4.6) has a polynomial solution a,(t) with
deg ¢, if 6o, 0
dega, =
degec, +1 if 0, =

Set ug := u — uy, the function us satisfies

Ous
8{&2 —|— Z )\ a:J O
= 0x
Usjmg = — Y aa(0)z%,

la=N

which leads to
Uy = — Z aoé(O)wo‘e_(Z;L1 Ajeg)t,

la|=N

Thus the solution to (4.5) is given by

g ))xo‘

u(t,x) = Z (e_“taa(t) e ’\jo‘j)taa(O)>:c°‘.

jal=N

Proposition 4.8.  Suppose v(t,x) is expandible and v =
Then the solution u(t,x) of the Cauchy problem

{ Ou+ v(x, Vy)u =v(t, x)

(@7)
Ujp=o =0

s also expandible.

O(|z|V) with N > 1.
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Proof. We set v ~ o) 4 oW+ .. where v™) is homogeneous of order M:
o
M) = Ze_’“‘kt Z c®(t)z?.
k=1 || =M

In the case where v = v, Proposition 4.8 holds by the preceeding argument.
In the general case, let v ~ (O + (1) 4 ... where v*) is homogeneous of order
k + 1. Expanding also u ~ v) 4 4(N+1) ... the equation becomes

[8t + WO 40 4 ..)] ( i u(M)) _ i (M)
M=N M=N

which leads to
atu(N) + y(o)u(N) — 'U(N),

atu(N+l) + ]/(O)u(N+1) — ’U(N+1) — y(l)u(N),
and in general for M > N,

B M) 4 O (M) (M) _ (1) (M=1) _ _ (M=N), (N),

Hence we can check inductively that

uM) = Ze‘“kt Z af (t)z?,
k=1

|e|=M

with

degaf (t) < max (deg (1), Igllai\% deg aj(t) (—I—l)),
<

where (+1) occurs only for a finite number of « for each k. Therefore, for each k, deg a®
is uniformly bounded with respect to M, since it is so for c¥(¢).
For each M, we have

o0
u™) ~ Ze‘“kt Z ak (t)z®.
k=1 || =M

There exists dj, independent of M such that dega® < dj, for all a.
We can construct a realization # such that

i~ u™ 4D g, =0

Letting u := u — u, it remains to show the existence of an expandible solution @ =
O(|z|°°) such that
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This is done by proving the following proposition by induction in INV:
U=1uN + 0N
with expandible and O(|z|>°) function iy and O (e #~!|z|*) function ox. We leave

this to the reader. O

Theorem 4.9.  Proposition 4.8 holds for time-dependent vector field

(4.8) v(t,x,Vy) =A(t,x)x -V, A(t,z) = A(z) + A(t, x),
where A(x) is as in (4.1) and A(t,z) is expandible.

Remark. If we add pp = 0 in the definition of expandibility, Theorem 4.9 holds
without the assumption N > 1.

Corollary 4.10.  Suppose that a function s(t,z) is expandible

o0

s(t,x) ~ Z e Frtsy (t, )

k=0
and that so(x) is independent of t. If v(t,x) is expandible in the form

o0

vt ) ~ Y e intoOly, (¢ ),
k=0

then the solution of the Cauchy problem
du+ (0(t,x,Vy) + s(t,z))u=v
{ Ult=0 = 0,
s also expandible in the same form
u(t, ) ~ i e~ (ntsolO)ty, (¢ a0y,
k=0
Remark.  The solution to the homogeneous equation
Ou+v(t,z,Vy)u=0
{ Ujt=0 = W,

is also expandible since u — x(t)w(z) =: @, where x(t) is a cutoff function near ¢t = 0,

satisfies
{ ou+v(t,z,Vy)u=—x(t)vw

'L_L|t:0 = 07
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which means by Theorem 4.9 that u is expandible.

Recall that u = w( exptv(z)) when the vector field is independent of ¢ (i.e. 7 = v).
Taking x; as the initial data w, we see that exptv(z) is expandible. This fact also
implies that the Hamilton flow (z(t),£(t)) = exp(tHp)(2°, &%) on the incoming stable
manifold A_ is expandible. In fact, z(t) satisfies

&(t) = Vep(x, Voo ()
z(0) = a°,

where Vep(x, Vi¢_) = —diag(Ag, ..., Aa)z + O(|z|?).

§4.3. The one-dimensional model
Eventually we come back to the one-dimensional model

d? )\
P = h2_ 2
dez 4"
and recover the results of §1 by using the constructions of §3. Here A > 0.
Recall that the Hamilton flow, the stable manifold and the generating function of

p(x,€) = &2 — aj are given by

cosh A\t 2 sinh M\t x
tH,)(z,€) = g :
exp(tHp)(z,€) (%sinh At cosh A\t ) (5)

AL = {(a:,&) cR? ¢ = :I:%x}, o+(z) = :I:%a;Q.

We construct a solution of the form

u(x, h) “‘D(t’m)/ha(t, x; h)dt,

\/_

where v(t, z; h) = e*?/"a(t, z; h), a(t, z; h) = Z a;(t,)h’, satisfies the time-dependent

j=0
Schrodinger equation
(4.9) ihdyw — h*02v + (V(z) + h2)v =
From (4.9) follow the eikonal equation

)\2
(4.10) @i+ 02 — sz =0

and the transport equation

(4.11) Ora; + 20,00 + (Quy —i2)a; = i03a;_1, §j >0, and a_; =0.
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Let us first solve (4.10). Take a point (¢, —5¢), € > 0, on A_ and a Lagrangian
manifold

A
Ao ={(.6) eRY £ = S(w—22)}
passing by the point transversely to A_. The evolution of Ay by the Hamilton flow is

At = exp(tHp)Ao = {(:13,5) cR? ¢ = %(aj — 266_)\t)}.

This is a Lagrangian manifold and the generating function is
A o At
(4.12) o(t,z) = yide Aexe M+ C(t),

where C(t) is arbitrary but independent of z. Substituting (4.12) to the eikonal equation
(4.10), we get

A A
(4.13) o(t,z) = Za;Q — dexe M+ 5626_2>\t.
Next we solve the transport equations. With ¢ given by (4.13), (4.11) becomes
—Xt A 2
(4.14) Ora; + Max —2ee” ")0ga, + (5 —iz)a; = 105a51.
This is an ordinary differential equation along the curve z(t) = ce~** 4 Je* for any 4.
Thus, a;(t) := a;(t, z(t)) satisfies
. A o
Ol + (5 —iz)a; = i02a;_1(t, z(t)).
Let j = 0. The initial condition ag(0,x) = C(x) gives
ao(t,z(t)) = Cle + §)e” W20,

namely
ap(t,z) =C(e + xe M — 36—2/\'5)6—0/2—%)1&'

Thus we obtain the following formula about the principal term:

%qu, h) N/OO ei(Ax2/4—A€xe_)‘t+)\€2e_2)‘t/2)/h
0

(4.15) x C(e + pe M 86—2)\t)e—(>\/2—iz)tdt‘

4.3.1. Asymptotic expansion on A_ When = < 0, there is no critical point. This
implies that

(4.16) A~ NFS(u) = 0.
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When z > 0, the critical point ¢ = t(z) of ¢ is

1 T
— —At(x) t E——— -
T ge ’ (aj) A og c )
and the critical value is )
so(t(aj)ax) = _Zan

Moreover A
5—iz)/A
eu(t(x),2) = X32% >0, ao(t(z),z) = C(e) (E) 2 '
Hence by the stationary phase method, one obtains

eﬂi/4

N2
(i, h) ~o—e e (t(z), )N (4R)
pre(t(2), )
67Ti/4 x % ira?
_ I el — /(4h)
(4.17) =C(e) 5372 (5> e ,
where S = 2 —iz.

2

4.3.2. Asymptotic expansion on A, Here we calculate the contribution from
t = +oo of the integral (4.15). It gives the asymptotic expansion of u on A .
Since

A
o(t,x) ~ Zx2 —dexze M, Cle+ze M —ce P ~ C(e),
as t — 400, we have

u(t, x) ~ %emm%) / > ixeme N by Sty
V 4T 0

By the change of variables Aicze ™ /h = s,

S/A
dt = ds e_St=<hS>/,

T As’ IAeT

we get

S/A
(418) u(x7 h) ~ 6—#8isgn(w)/(2k)ﬂl—\ (5) ( h ) 6i>\x2/(4h).
MW2rh \AJ) \ Xelz]

4.3.3. Transition operator Finally we compute v on AL when the initial data

ug is given on C C A_. In this one-dimensional setting, C is the set with two points
{(e, = Ae), (—&, Ae)}. We give an abritrary number ug € C at (¢, —\e), and we fix 0 at
(—e, Xe).
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Comparing the initial condition and the results (4.16), (4.17) in §4.3.1, the arbitrary
function C(e) is determined:

ol emi/t (f)S/A ) c emi/t ¢—iA* /().

g = C(e) —— =
0 A3/2¢ \¢

|x=€ (8) )\3/25

that is,
C(e) = )\3/26—7”:/4861')\82/(4]1),”0'

Substituting this into (4.18), we obtain

ftn

—mi/4

€ —iS S h A 2, .2
4.1 h) ~ —— e~ imSsan(x)/(2A) /) iNa"4e7)/(4h),, -
(4.19) u(x, h) 5 he Vel VAGEE e uo

In other words, the transition operator J is a multiplication by a function of x, ¢, 2, h,
and the principal term of its asymptotic expansion in h is given by

—mi/4

S
7 o—imS sEn(2)/(2N) \ /YT 5 h \7* ix@?+e?)/ah)
21h A ) \ Ae|z]

§4.4. Brief proofs of the propositions in §3

Proof of Proposition 3.2 : Differentiating the canonical equation

d o
_ t / / — 2_
ot yn) =252
rooo 2 1o
with respect to (¢,y’), one gets %8&:8(1(5;2,/;7) = 22;’5 3x8(1(5;,yy,/)77 ) Hence taking the
determinant,
d Oty n) 0%y . Ox(t,y',n')
— det —————= =2T det
at " ot y) Y022 N T ot y)
i.e.
t
(4.20) J(t,y'n") = J0,y, 1) - exp (2/ AY(z(r,y' 1), 1) d7'>.
0

O

Proof of Proposition 3.3 : The transport equation (3.4) is an ordinary differential
equation along the Hamilton flow and by (z(t,y',7'),n') = B(t) satisfies

d .
() + (A = i2)8(0) = 0.

The initial condition is 3(0) = bo(z(0,y’,n'),n’) = bo(y’,n’) = 1. Then

t
(4.21) bo(z(t,y',n'),n') = exp (izt —/O AY(z(r,y' 1), 1) dT),
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and (3.10) follows from (4.21) and (4.20). O

Proof of Proposition 3.5 : We first show that ¢ is expandible, see [He-Sj 2]. Let
us introduce new symplectic local coordinates (z,&) centered at (0,0) such that A_ is
given by x = 0 and A, is given by £ = 0. Then

p(xag) = A(QZ,S):E’ : 57
where the matrix A(0,0) has the eigenvalues Aq,..., \; and we may assume that
A(0,0) = diag(A1, ..., Ad).

The curve v now becomes (O, fo(t)), where &(t) = O(e—mt).
We check the following proposition by induction:
(H)x The function ¢ verifies ¢ = ¢x + 7y where 1y = O (e~ ?|z|) is expandible,

ry = 0% (e~ Nt Nt and TN|¢=0 = 0.
By Taylor expansion with respect to ry, we get
orn + TN = fN + O(e_QN)‘lt|a:|2N+1),
where

on =Vep(x, Vatbn) - Vo
Vep(x, Vabn) =A(x, 0)z + O (Jz]2e M)

is expandible, and

fN - _(at¢N +p(xvvm¢1\f))

is O (e~ NM1#|2|NF1) and expandible. Let pn be the solution to
{@PN +onpN = [,
PN|t=o = 0.

then, by Theorem 4.9 and Lemma 4.5, which holds also for t-dependent 7, py =
O (e Nt g NH1) is expandible. Now we put

o= (YN +pn)+ (rv —pn) = Yan + 2N
We see that ron = O (e 2N 18|22V 1) gince it satisfies

{ Oran + nran = O (e 2Nz 2N+

T2N|t=0 = 0.
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Hence (H)y implies (H)an .
It remains to prove (H);. We first see that
p(t,z) = OF (e ™)

uniformly in a neighborhood of z = 0 which means, in the original coordinates, ¢(t, x) =
¢4 (x) + O (e 1), see also [He-Sj 2]. This estimate implies

ot z) = @(t,0) + - Vup(t,0) + O (e M [z]?).
Differentiating the eikonal equation

Ovp+ Az, Vap)z - Vyp =0

with respect to x, and substituting x = 0, £(¢t) := V,p(t,0) satisfies

E(L) +PA(0,£())E(t) = 0.

Then £(t) is expandible by Remark 4.2 since A(0,0) = diag(\1, ..., \q). Hence (H);
holds.

It follows that ¢ is expandible also in the original coordinates.

Next we show (3.18). First, the limit of (3.18) on z = x.(¢,7’) is

D) = lim o(t,z.(t,n), 7).

t—-+oo

On the other hand, since (a:c(t, n'), &c(t, 77’)) € A, NA_, one has
d . .
Lot e(t,n)n)] =(0up) (b et ') ') - delt, ') = &elt, ) - Ee(t, )

0.0 (zo(t,)) el 1) = [0 (zelt. )]

This means that ¢ (¢, zc(t, 1), n") —¢— (z(t)) is independent of ¢. Recalling that ¢_(0) =
0, we have

d(n') = lim (@(t,xc(t,n’),n’)—¢—(wc(tﬂ7’)))

t—+o0
=¢(0,2(0,1"),7') — ¢ (2c(0,7))
=z (1) 0 — ¢ (ze(n))-
Finally we compute the asymptotic behavior (3.20) of ¢1(x,n’) as © — 0. With-
out loss of generality, we can change the canonical coordinates such that ¢ (z) =

2
:I:Z;lzl %x? We develop ¢(t,x,n') in Taylor series at © = z.(t). Recalling that

o(t,zc(t)) = d—(2(t)) and V(t, 2(t)) = Vé_(z(t)), we obtain
(t,x) =¢—(z(t) + Vo (2(t)) - (x — 2(t))
+ %<V2¢+(xc(t))(x —2c(t), 7 — 2(t)) + Oe Mz — 2.()?).
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Here we used (3.5) for the quadratic terms. The third term of the right hand side is

equal to ¢ (a: — a:c(t)). Thus by Proposition 2.1, we have

p(t,2) = oy (x ZA zj(t)a; + O(e M [zf?) + Oe7H2)

j=1

=01 (@) + (= MXa(@) - w+ O(e) e + O rt).

Proof of Proposition 3.6 : The transport equation (3.14) is of the form
(4.22) Opu+ Az - Opu + s(t, x)u = v(t, x)

with a; = u. Here s(t,2) = A,p — iz is expandible by Proposition 3.5:
o
x) ~ Z e Frls(t ), so(z) = Agp(x) —iz.
=0

Let r(t,x) be the solution to the Cauchy problem
{&r—l—Ax-@xr: —S
7ﬂ|t=0 = 07

and set

u=¢e¢u, v=2e.
Then the Oth order term of (4.22) vanishes:
ot + Az - 0,0 = v(t, x).

By Theorem 4.9, r(t, ) is expandible:
x) ~ Z e_'uk"trk(t, x),
k

and in particular we see that
ro(t, ) = ro(t,x) — so(0)t = ro(t, x) — St.
Then again by Theorem 4.9, eStu(t, z) is expandible, since so is e“*v(t, x).

Proof of Proposition 3.9 : By the change of variables e*

(3.18) implies

 ¢p(—logs,x) , _, \l/m
aws(l-l—ZkToi)Ms" ”)

~3(1+Zpk log s, x 3"’“)

O

=3, SO_QS—F_,JJ = ¢10"u17
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This form of expansion is invariant for the inverse, i.e. the variable s is solved in terms
of ¢ in the same form

s~ 0(1 + ifk(—loga, x)aﬂ’“).

k=1
By (3.21),

[es) - 1
/ e?'Pagdt :ei(¢++¢)/h/ eid’laul/hssZao,k(—logs,x)s“k_lds
0

0
_ al/p1
—ei(@++¥)/h / gibrot/h Z bi.(— log o, 33)05+’l’“_1d0,
0
where o = @(O,x)—(]itg:)—w(n% and putting furthermore o#t = T,

— (i($++9)/h /a gir/h Zﬁk(—log 7, )7 ST/ =1 g,
0

where fy(x), bo(z) are functions only of z and [Gy(z) = ibo(@ = iao,o(@-

The last integral is not well-defined for % € -N={0,-1,-2,...}, that is,

d
2= ZaN = —i(;(aj + %))\j - N)\l),
for some aq,...,aq, N € N. If oy > N, this z is excluded by (A1). On the contrary,
the other cases corresponding to a; < N never occur because we already know, by the
argument at the beginning of § 3.3, that our solution u is holomorphic outside —ih&j.
Finally, the proposition follows from formula (1.4) and the fact that

1 m 1
/ eid’”/hT“_l(log T)"dr = 3 / e/ hr =l
0 O 0
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