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Construction of the fundamental solution and
curvature of manifolds

By

Chisato IWASAKTI*

Abstract

We obtain a generalization of a local version of the Gauss-Bonnet-Chen theorem for man-
ifolds with boundary. The above theorem is proved by only calculating the main term of the
fundamental solution, if we introduce a new weight of symbols of pseudo-differential operators.

§1. Introduction

In this paper we give, by means of symbolic calculus of pseudo-differential operators,
an extension theorem of a local version of the Gauss-Bonnet-Chern theorem on manifolds
with boundary given in C.Iwasaki [11].

Let M be a Riemannian manifold and let x(M) be the Euler characteristic of M.
Let dv and do be a volume element of M and a surface element of its boundary oM
respectively. The Gauss-Bonnet-Chern theorem which was proved by S.Chern [2] , [3]
is stated as follows: This theorem means that topological quantity can be represented
by the geometric quantities.

The Gauss-Bonnet-Chern Theorem
Let M be a Riemannian manifold of dimension n.
(1) For M without boundary we have

X(M) = /M Ch(z, M)dv.
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(2) If M has boundary, then
anz/CM%MWw Dy 1 (2)do.
M oM

The precise definitions of Cy,(z, M) and D,,_1(x) are given in Section 3 and Section 5

respectively. We note that if n is odd, then
1
Dn_l(a:) = §Cn_1($, 8M)

holds.

Analytical proofs are based on the following formula (cf.V.K.Patodi [15]):
(11) O = [ Y17 ey )i
M550

where e,(t, z,y) denotes the kernel of the fundamental solution E,(t) for the heat equa-
tion for A, on differential p-forms AP(M) = I'(APT*(M)) and tre,(t, z, ) means the
trace of operator e,(t,z,z) on NPT (M).

If M has no boundary, E,(t) is the fundamental solution for the Cauchy problem,
that is,

B, (t)f(x) = /M ot 2, y)p(y)dvy, @ € AP(M)

satisfies for 0 < T < 0o

d

(2 + ) Ep(t) =0 in (0.7) x M,

E,(0)=1 in M.

If M has boundary OM, E,(t) satisfies the following equations instead of the above

equations
d .
(% +A,)E,(t)=0 in (0,T) x M,
By,E,(t)=0 on (0,T) x OM,
E,(0)=1 in M,

with some boundary operator B), (See Section 4 ).
So, we may say that a local version of the Gauss-Bonnet-Chern theorem holds, if
we have

(1.2) i(—l)p tre,(t, x, ) = Cp(x, M) + 0(Vt)

p=0
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as t tends to 0.
The author has proved (1.2) for x € M\OM and has also shown for z € M
n
(1.3) Z(—l)p tre,(t, z, x) = 2Dn_1(:13)i +0(1) ast—0
Vi

p=0

in [11]. The author has shown a way to constructing the fundamental solution of which
the main term is enough to show (1.2) and (1.3). It is constructed by technique of
pseudodifferential operators of new weights on symbols.

In this paper, a genaralization of a local version of the Gauss-Bonnet-Chern theorem
on manifolds with boundary is obtained. Before stating our theorems, we introduce some
notations.

We denote 7 and Zy the set of index
T =AI=(i1,i2, " ,ip): 0<7r<n,1<iy <---<i, <n},

To =4I = (i1,02, - ,ip): 0<r<n—-1,1<i <---<i, <n—1}

(Z)infa<b,orb<0, (8)2

In the rest of this paper fix an integer ¢ such that 0 < ¢ < n.

and

Theorem 1.1 (Main Theorem).  Let M be a Riemannian manifold of dimension
n with boundary and let E,(t) be the fundamental solution on T'(APT*(M)). Suppose
that f, are constants with arbitrary constants {k;}j=¢11,... n as follows:

wg = cor{(00h)+ ie }kj(";jfj)} 0<p<n).
j=max{p,f+1

(1) If x € M\OM, we have

n

[MEN

fptrep(t,z, x) = C’g(a:)t_%Jr% +0(t" =" Jr%) ast — 0,
0

p=

where Cy(x) is given in Definition 3.3.
(2) If x € OM , we have

n
Z fotrep(t,z, ) = 2Dy (z)t7 2272 4 O(t_%+%) as t — 0,
p=0
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where Dy_1(x) is given in Definition 5.1.

(3) We have
/ pr tre, (t, z, ) (x)dv
M5

B (/M Celer, M) (w)dv + Dﬁ—l(x)¢(x)d0> EEE LB

oM

ast — 0 for any Y(x) € C°(M).

Remark.  Assume ¢ = n. Then f, = (—1)? for all p of (1.4). So statements (1)
and (2) of Main Theorem are a local version of the Gauss-Bonnet-Chern theorem which
was proved in [11]. The statement (3) is the Gauss-Bonnet-Chern theorem.

Remark.  If M has no boundary, Dy_; vanishes. So (1) of Main Theorem has
been obtained in C.Iwasaki [12].

Remark.  Assume kj = 0 for all j. Then f, = (-1)P("70) (0 < p < ¥), f, =
0(¢+1 < p < n). In this case, under the assumption M has no boundary, (1) of the
Main theorem coincides with the result given in [5].

Since B, is a coercive boundary operator for A, it is well-known that e, (¢, z,y) is
regular for either z # y or ¢ > 0. On the diagonal set, e, (¢, z,y) has singularity with
respect to t as follows:

N

ep(t, 2, x) ~co(x)t™2 fep(a)t 2 2 44 L 0.

In [11] it is proved that the singularity of Z;’:O(—l)ptr ep(t,x,x) at any point z in
M\OM vanishes by an algebraic theorem on linear spaces stated in H.L.Cycon-R.G.Froese-
W .Kirsch-B.Simon [4]. This theorem of the form suitable for our discussion is given in
Section 2 in this paper.

Our point is that one can prove Main Theorem by only calculating the main term
of the symbol of the fundamental solution, introducing a new weight of symbols of
pseudodifferential operators.

The plan of this papaer is as follows. In section 2 we review some algebraic theo-
rems, which are proved in [12]. In section 3 the asymptotic expansion of the fundamental
solution for the Cauchy problem is discussed. This argument is similar to one of [12].
Our boundary operator B, will be explained in section 4. See [11] for the detailed
argument. Section 5 is devoted to the sketch of a proof of (2) and (3) of Main Theorem.
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§ 2. Algebraic properties for the calculation of the trace

Let V' be a vector space of dimension n with an inner product and let AP(V') be
its anti-symmetric p tensors. Set A*(V) = ZZ:O AP(V). Fix an orthonormal basis
{v1, - ,vp} of V. Let a} be a linear transformation on A*(V') defined by ajv = v; Av
and let a; be the adjoint operator of a} on A*(V).

We note that {a},a;}i1<; j<n satisfy the following relations.

aaj +aja; =0, aja; +aja; =0, a;a; +aja; = ;.
Definition 2.1.  Set
By =1,8; = aja; —ajaj for 1 <j<n
and
Br = B, - Py for I = (iy,--- i) € L.

Let W, be the projection of A*(V)) on AP(V) and let o =1, I'y = 3" 7c7 41—k Br-

The following assertion is essentially due to [15].

Proposition 2.2.  We have for any I = (i1, -+ ,ir) € I the following asser-
tions:

(1)If p < k, then

trlfraj,aj, - - aj,ap, ay, - ap, ] = 0.

(2)Suppose p =k and {j1,j2, -, je} 7# {1,192, ,ix} or {h1,ha, -, hi}
7£ {il,ig,"' ,’Lk} Then

tr[Braj,aj, -+ - aj,ap, ap, - ap ] = 0.
(3) Let w, o be elements of the permutation group of degree k. Then we have

tr[ﬁfa;:(naio(na;:(z)aio@) a 'a;'kw(maio(k)] = 2""Fsign(m)sign(o).

The following theorem is the key algebraic argument of this paper.
Theorem 2.3.  Let f, (0 <p <n) be constants of the form

e 5 B ()

j=max({+1,p)
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with any constants k; ((+1 < j <n). Then the following equation holds

quly = 2£ "Ty + Z apl’y

p=~0+1

with o, (L +1 < p <n) defined by

Especially
(1) If £ = n, then

> fo¥=(-1)'T
q=0

holds if and only if
fp = (=1)? for any p.

(2) If a, = (=1)P25 (D) ({+1 < p < n), then

(—1)P(2h), (0<p<o);

fp: n—~2)’ =
0, ({+1<p<n).
(3) If oy = (=1)27(}) (£+1<p<n), then
0, (0<p<n—L—1);

S (TR A P

n—

§3. The proof of statement (1) of Main Theorem

We give a rough review of a proof of the statement of (1) of Main Theorem. This

argument is similar to that of [12].

Let M be a smooth Riemannian manifold of dimension n with a Riemannian metric
g. Let X1, Xo, -, X,, be alocal orthonormal frame of T'(M) in a local patch U. And let
wl w?, --+  w"beits dual frame. The differential d and its dual 9 acting on T(APT*(M))
are written as follows,using the Levi-Civita connection V (See Appendix A of [14] ):

n

d= Z (W)Vx,, ¥=-> 1X;)Vx,,

j=1
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where we use the following notations.
Notations.

e(ww =w! Aw, X))w(Y1, -, Yp 1) =w(X;, Y1, , Yy 1).

The Laplacian A = d¥ 4+ ¥d on ZZ:O L'(APT*(M)) has Weitzenbock’s formula;

=—{va Vx, —ZV<VXX>+Z )R(X;, X;)}.

1,5=1

Let c and R,1ij be the coefficients of the connection and the curvature transfor-

mation

VxX;=> i Xp, R(X;, X)Xp=Y RokijXm 1<i,j,k,m<n.
k=1 m=1

We use the following notations in the rest of this paper:

% _
a; = e(wx), ar = L(Xk).
* * *
Ay = Q3 Qg+ * - Gy ar = @iy, =" Gy s
wI:w’u/\w’Q/\.../\w?’Z’ fOI‘I:(ilai%'”’ip)EI'

We note that the coefficients cﬁ ; satisty

n

Fy=—c . [Xi X = (c; - )X

Y Y 75t
k=1

because of the fact that our connection is the Riemannian connection. By the above
notations we have for pjw’ € A*(M)

Vx, (psw’) = (Xjo0)w! — 0 G (w7),
where
G = Z g am.
k,m=1

We have also .

R(X;, X;)(psw”) == Y @sRmkijapam(w?).

k,m=1

Then we have the representation of A in a local chart U

(3.1) = —{Z (X;1 - Gy) Z cl (X1 - Gy) Z Ronkijalajasam}

1,5=1 t,9,k,m=1
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on A*(M). Here I is the identity operator on A*(T™(M)).

Take a local coordinate {x1,---,z,} of U. Let {&1,- -+, &, } be its dual coordinate.
A = (A;;) denotes a matrix whose elements are A;; = a;a; 1<i,j<n.

Definition 3.1. A subset K™ of ST, is given by K™ = {p(z,¢ : A); polynomials
with respect to £ and A, j, (4,7 = 1,2,---,n) of order m with coefficients in B(R")}.
We define a pseudo-differential operator P = p(z, D : A) acting on A*(M) of a symbol
o(P)=p(,§: A) =3 ;pr.s(x,§ajay; € K™ as follows.

p(a, D A)(pxw™) =Y prs(e, D)pxatas(w™).
1,7
In our case, by (3.1) the symbol of A is of the form o(A) = ry + ry, where

n

ro = — Z(ajl ~G;)* +R,
j=1
with .
R = Z Ry kijajajapa, and ri€ K!
i,j,k,m=1
It is clear that ry belongs to K2.

If we review the results in [11], we see the following facts. The above representation
of A signifies that the fundamental solutionE,(t)(e,(t,x,y)) have a common represen-
tation for any p. So we use E(t)(e(t,z,y)). In our notation, E,(t) = V,E(t). It
is sufficient to construct an asymptotic solution for the fundamental solution locally
because we can reduce constructing the fundamental solution to solving an integral
equation on the manifold M of Volterra type. Our fundamental solution is of the form

E(t)=U@t)+ V),

where U (t) is the fundamental solution for the Cauchy problem and V' (¢) is smooth with
respect t off the boundary. See details in Section 5 .

We will give a sketch of the argument for U(¢) in [12]. Now consider the following
Cauchy problem:

EEUNT in (0,7) x R",

=0
dt
lmU()=I mR"

The fundamental solution U (t) constructed in [11] is an integral operator

U(t)p(z) = /M u(t, 2, y)p(y)dvy, @ € A*(M)
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and U (t) has the following expansion:
(32) U ~ 3 s, D),
§=0
where u;(t, z, D) are pseudodifferential operators with parameter ¢t. The following fact

is obtained in p.255 of [11]. The main part of U(t) is obtained as a pseudo-differential
operator with symbol ug(t, z, &) := e~ "2!. So we have

(3.3) Uo(t,z,x) := (27r)_”/ uo(t, z,£)dE

"

o 1 n —tR
= (Qﬁt) V/detge (1 + O(ﬁ))
We shall calculate

(3.4) tr (Bruo(t, x, z))dx = ( ) tr (5Ie_tR)dv(1 + O(\/E)),

1
2/t
for I € Z,4(1) =

Using e "% =572 { (_g)k t*}, we have by Proposition 2.2

tr(ﬁ;(—R)m)% +0(t™mTY), if r =2m ;

(35) tr (5Ie_tR) = r41
O(t%), if r is odd.

We have the following proposition for the terms of the right hand side of the above
equation.

Proposition 3.2.  For [ = (iy,i9, -+ ,i,) €Z (r = 2m)
tr(Br(—R)™) =2""""m Z sign(m)sign(o)
T,0€S,

X R R

7:77(1)7:77(2)7:0‘(1)7:0(2) ' 7:77(7’—1)7:71'(1‘)7:0'(7’—1)7:0‘(1‘) °

By Theorem 2.3 we obtain

tr (Z foUu(t,z,2)) = (—1)2¢" Z tr (Bru(t,z, x))
p=0

IET 4(I)=¢

n
+ Z aptr (Tpu(t, z, x)).
p=£+1

So we have by (3.4)~ (3.5) and Proposition 3.2

[MEN

+ reM

N|=
~—

p=0

with Cy(z, M) given by
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Definition 3.3.
(1-1) If ¢ is odd, then Cy(z, M) =0
(1-ii)If £ is even (£ = 2m), then

Colw, M)= > Ci(x,M),

IeZ 4(I)=¢
where
Crla, M) = (5=)" 1 (5)" 3 sign(n)sign(o)
1\, = sign(7)sign(o
2\/_ T,0ESy
XR‘ . . e R

T (1) tr(2) Lo (1) bo(2) L (6—1) b (£) %0 (£—1) %0 (£)

for I = (’il,’ig,"' ,ig) S

§4. The construction of the fundamental solution with boundary

The main part of the construction of the fundamental solution or its asymptotics
lies in constructing that in a local chart (cf.C.Iwasaki [10]). So it is enough to show
a method of construction of the fundamental solution in R’. The study in [10] is
applicable for the construction of the fundamental solution for our initial-boundary
value problem . In this case we introduce the symbol class Js according to [11], as we
used K™ instead of ST, in Section 3.

First of all, we write down the boundary operator B, for AP(M) in a local chart.
Take a local patch © near 9M such that OM is defined by {p = 0} in Q and MNQ C {p >
0}. Assume that w” = cdp with some function ¢ on M. Note that X; (1 <j<n—1)
are tangential to OM.

Choose local coordinates {x1,---,z,} in Q such that M N Q = {(a/,z,);2" €
U ,zy >0} T =0MNQ={(2/,0);2" €U} and X,|r = 75
The boundary condition is as follows:

¢ € Dom(v),  d¢ € Dom(9),

where
Dom(¥) = {¢ = Zgojw c@slr=0if n e J}.

Note that Dom(¥) is the set of all b of A*(M) which satisfy

[ e.vito= [ (p.w)de, for any o € 4°(0)
M M
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We can write our boundary condition in the following form:
wslr=0if n e J, B(Z owl)|r =0,
n¢J
where

d
B=——
dr. v+b

with the following b and ~.

Definition 4.1. (1) Set

(4.1) y=r(" t A) =Galr = Y (c)4lr)atay,
1<4,k<n
(4.2) b=b(z : A)=— > (ulr)aja+ D (c,Ir)akay

1<5,k<n—1 j=n or k=n

(2) Set P =alan, Q=anal, =1—"P.

Definition 4.2.  For a pair (j, k) of integer j and nonpositive integer k we define
a function

i1 (ty Ty Yns 0,y) = €V E 7Y 4 (E, 0 + Y3 D),

with b and v given in Definition 4.1, where {0, 1} are symbols defined in Definition 7
of [10] as follow:

w

1 .
Bo(t.) = <= (52 () 1 520
~ L1 [ e )
b= [T 0
Wj,0(t,w) ~(57) o oo i is
For £ < —1
1 ]_ . o0 _ w2 (_a-)—k—l
Dot wb) = — g+k+1/ (04+52=) +2bVto
w],k( y W5 ) \/%(2# ; e 2 —(—k_l)'
x hy(o + QL\/E)dU, if j > 0;
- 1 1 . 00 (_T)—j—l
Wik(t,w;b)=—=(——= J+k+1/ ——dr
J,k( ) ﬁ(2ﬂ) 0 (_]_1)'
00 _\—k—1
x/ elotr g e aie (ZO) T g e s oy
0 (—k—1)!

where hj(o) = {(%)j6_02}602.
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Set ro|p = (&, +1i7)% + B(2', & : A). Then we have

n—1
B=p>G"E A=~ Z((%’lr)f - Gj|r)2 + Rlr.

j=1

Definition 4.3. 7, is the set of all finite sums of the functions of the following

form

gt Ty Y, @', &0 A) =Y (@n)Pq(s2’, €+ AT k(t, T, yns (3 1 A),v(2 1 A))
< e—ﬁ(azl,f':A)t

(d,p,j,k€Z,d>0,p>0,k<0,g€ K™"(R" ') with m =s+2d+p—j— k).

For a symbol g(t, z,,yn,2’, £, A) € Js we define an integral-pseudo-differential
operator G as follows:

(GSO)(ta l./vxn : A) - /0 g(t7 T, ynaxla D A)SD(, yn)dyn

So the kernel g of operator G is given by

gt 2 oy yn - A) = (2m) 7Y / T (4, g, ! € A
Rn—

By the argument of page 276 of [11] an asymptotic En(t) of the fundamental
solution for the mixed problem is obtained of the form for any integer N

EN(t)=U0+U1+"'+UN+V1+V0+"'+V_N,

where U; = u;(t; x, D) are pseudo-differential operators given in (3.2) and V; are integral
operators whose symbols v (t, Ty, Yn, ', £ : A) € Jj.

Especially the symbol of operator V; which is the main part of operator V() is
obtained as follows:

(43) U1 (ta Tns Yn, xla 5/ : A) = QQ{}L—I (t7 Tns Yn; ba ’Y)e_ﬁ(xl’g/:A)t.

In the rest of this paper 0;(t, 2", 2y, y’, yn : A) denotes the kernel of the integral
operator Vj, that is,

0i(t, 2 xn, Y yn + A) = (277)_("_1)/ ei(m/_y/)'élvj(t, T, Yn, ', &0 A)dE'.
Rn—l
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§5. The sketch of a proof of statement (2),(3) of Main Theorem

145

We will calculate tr (ZZZO [p¥,Vi(t,z,z))(j < 1). We prepare some lemmas and

the definition of Dy_;(z).

Let R(W’, Z,X,Y) be the Riemannnian curvature tensors induced on OM.

We give the definition of Dy_;(z) on x € OM.

Definition 5.1. For z € OM D;y_1(z) is defined as follows:

Dii(z)= > D),

IeZy 4(I)=t—-1

(i) If £ is odd (¢ = 2m + 1), then

1 1 1 1
Di(z) = (5—=)""=(5)™ >_ sign(r)sign(o)
|
22/ m! 2 oo
XRiﬂu)iw(z)iou)ia(z) """ Riﬂ'(@—2)7:71'(2—1)7:0‘(2—2)7:0(2—1)
for I = (’il,’ig, SR ,ig_l) € 1.

(i))If £ is even (¢ = 2m), then

Di(x) = 55 N 12 I k1 2y ST sian(m)sien(o)

T,0ESe_1
XRiﬂ(l)iﬂ'(2)io(1)io‘(2) e ’ .Ri‘n(2k—1)iw(2k)io(2k—1)io(2k)
x el n . A
Cr(2k+1),0(2k+1) O (2k+2),0(2k+2) Cr(t—1),0(4—1)
for T = (i1, 9, ,ig_1) € To with djy =
Elk+35)VT

Now the calculation of tr (ﬁfﬁl (t, 2, O)) is obtained as follows.

Lemma 5.2.  Let § be the Riemannain metric induced on OM .
(1) Let I = (il,ig,"' ,il_l,n) €T and Iy = (7:1,7:2,"' ,il_l) €1y
(1-i) We have

tr (Bron (¢, ', 0,2',0)) = (—1)/2" 14~ 2+5-3 Dy (2')/det g(a/, 0) + O(¢
(1-ii) We have for any ¥(x',x,) € C°(R™) and for any positive constant e
/8 tr(Bro1(t, ', w2, ) )0 (2, 2y ) day,
0
= (=1)f2n Y3 54(2’,0)Dy, (a')y/det g(a') + 0(t 2 H313).



146 CHISATO IWASAKI

(2) Let I € To,4(I) =L or I € Z,4(I) > ¢+ 1
(2-i) We have

tr (8r01(t,2,0,27,0)) = 0(t~ 2 %)

(2-ii) We have for any (2’ x,) € C°(R") and for any positive constant
€
/ tr (Bro1(t, 2/, 2, 2! 20) ) (2, ) dry, = Ot EF5TE),
0

The proof is omitted. Proposition 2.2, (4.2) and (4.3) are essential to give the proof.

Corollary 5.3.  For any integer N we have
mn
Z fptr(¥pt1) (L, 2, x)
p=0

_joeM, if T, > 0;

2681575 D, (o) \/det §(a’,0) + 0(t"¥7%),if 2, = 0.

We have for any (z', z,) € C°(R™) and for any positive constant e

/ prtr U,01) (8, @', Ty @'y )0 (2, 24 dy

=t ¥T5D,_ (¢)\/det §(a’, 0)¢p(a’,0) + 0(t E+5H3),

Proof. By Theorem 2.3 and Lemma 5.2 we have the assertion. O

In order to calculate the trace of ZZ:O Y,V (j=0,—-1,-2---,—N) we have
the following lemma which is obtained by the similar method to the above corollary.

Lemma 5.4.  For any integer j < 0 we have for any N

" : 0(tY), if 2 > 0;
prtr(‘llpvj)(t,x,x) = Cmat g ‘
- 0t 2t272), if T, = 0.

We have for any (z', z,) € C°(R™) and for any positive constant e

Nl

_.2i+

(S

/ Z Fott (0, 0,)(t, @y 2, @y 200 (2, 2 )dwy, = O(t 2T

0 »=0

).
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Proof of (2) and (3) of Main Theorem. If we study the asymptotic behavior of
the fundamental solution, it is sufficient to consider the fundamental solution locally by
an argument similar to that employed for the case M is closed, which was proved in
[11], for example. In a local patch we have

e(t,z,x)dv = u(t, z, x)dx + 0(t, z, x)dx,

u(t,z,y) = v/det g(x)u(t, z,y),

where u(t, x,y) is obtained in Section 3.

By Corollary 5.3 and Lemma 5.4 we obtain

Lemma 5.5.  For any integer N we have
mn
Z fptr(¥,0)(t, 2, )
p=0

o(tV), if T, > 0;

20751273 Dy 4 (2')\/det g(z,0) + 0(t~2+2), if z, = 0.

We have for any (2, z,) € C°(R™) and for any positive constant €
e n
/ Z Fptr(Up0)(t, &' 2, 'y )0 (2 2 )y,
0 =
p=0

=t~ V5D, (a')y/det g(a’, 04 (2, 0) + O(t EFEFE),

From the above lemma and

1
det

ep(t,z,z) =Vy(a(t,z,x) + 0(t,x, x))

:

it is easy to show for any IV
prtr ep(t,z, )= Z fotr(,a)(t, x, ) + 0(tY) = € M\OM,
—0 \/det =

= Z fptr(\I'pu)(t, x, aj) + O(tN) YRS M\aM’
p=0

= Cy(x)t 22 40t 5T2T3) z e M\OM,

£ 1

n
S fotrey(t,z,x) =2Dp 1 (2)t 27575 40t ETE) 2 € OM.
p=0
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and
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/ Zn: fotrep(t, x, 2)¢(x)dv
LY

- ( /M Co(x)b(x)dv +

[SIEN
+
]

—~
i

SIS
+
s
+
=
~—

Dy (a'yi(a'ydo )t =54
oM

So the proof is complete.
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