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Abstract

In this article, we investigate the Nevanlinna characteristic function of any transcendental
meromorphic solutions to some equations of the second Painlevé hierarchy derived by the
reduction from the higher order analogue of the Korteweg de Vries equation. Under a certain
condition, we give lower estimates of it.

§1. Introduction.

Consider the ordinary differential equations

(2Pr1(c)) N =207 + 1) + a,
(4Pr1(c)) AD 10022 + 10(N)2\ — 6)X° — th — a,
(6Pr1(a)) A6 =140 @N2 £ 560G N\ 4 42(\)2A
+ 70N (V)2 = TON' A% — 140(\)2A% 4+ 2007 + tA + a,
(sPu(a)) A® =18 OX2 1 108 GBI N A — 6(21A* — 35(\)2 — 38\ A)AW

+ 138(ABN)ZN — 252X\ (4X3 — 3N + 182(\)3
— 756(N")2N\3 4+ 84N A% (5T — 37(\)?)
— 798(N)* X + 1260(\)2A° — 70X — A — a.
Each of them is an equation of the second Painlevé hierarchy ([1]). The first one is

well-known as the second Painlevé equation Pi;. And, in this article, each of the others
is called the second Painlevé equation of higher order.
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Each equation of Pjp hierarchy is obtained from the higher order analogue of the
Korteweg de Vries equation ([7],[3, Section 22]):

(KdV) (20 — 1)% =X forl=1,2,....
where X is given by

(1.1a) X1u = Du = uy,

(1.1b) Xu=L,X;_qu forl=>2,

Ly = 2u+2DuD~'—D? D = 3/0z. By the change of variables z = ot =/~ \(z) =
t2/@=1y, (;KdV) is reduced to the ordinary differential equation X;\4+-2A+20\/0z = 0.
Replacing z by t, for [ = 2, we obtain the second Painlevé equation (2P(e)), and for
[ =3,4,5, we obtain (4Pi1(e)), (6Pi(a)), (sPir(a)), respectively.

A lower estimate for the growth of the second Painlevé transcendents is established

by Shimomura. Let us introduce some notations. The characteristic function T'(r, f) =
m(r, f)+ N(r, f) is defined by

Y N +
m(r,f)de—f.%/o log™ | f(re )|dg, log xd;f.max{logx,O},

N ) 5 [ (e £ =m0 1Y+ 00 ) tog,

where n(r, f) denotes the number of poles of f in {t||t| < r}; each counted according to
its multiplicity. And we define

. log T'(r,
o(f) djf.hmsup %.

These are ordinary notations of the Nevanlinna theory. For details, see [6].

Proposition 1.1.  ([9]) For every transcendental solution A(t) of Pi, we have
3 <o) <3

In this article, we will give lower estimates for the growth of transcendental mero-
morphic solutions of the equations of the second Painlevé hierarchy (4Pi1(«)), (6P(e))
and (gPr(«)), with a € Z. We can use similar methods for Pr, and the main theorem
in this article is

Theorem A. Let A be a transcendental meromorphic solution of (2 Pri()) (m =
2,3,4) with the parameter a€Z. Then we have o(\) = ay,, where ag = 5/4, az = 7/6,
ay = 9/8, respectively.

We want to make the following conjecture, however:
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Conjecture. Let \ be a transcendental meromorphic solution of (2mPr1(@)), o € Z
for an arbitrary positive integer m. Then we have o(A) > 1+ 1/2m.

The conjecture is valid for m = 1 by Proposition 1.1, and for m = 2,3,4 by
Theorem A.

§2. Proof of Theorem A.

Notation. g(r) < h(r) <= ger. 9(r) = O(h(r)) as r — 0.

Proposition 2.1.  If Theorem A is valid for o = 0, then the theorem is valid for
a €.

In order to prove this proposition, we remark two lemmas on the characteristic
functions in the general theory:

Lemma 2.2.  ([6, p.37]) If [ is a transcendental meromorphic function, then we
have

T(r, f®) < (p+1T(r, ) +o(T(r, f))

as r — 00, outside of an exceptional set of finite linear measure.

Lemma 2.3.  ([6, Proposition 2.1.11]) If f is a meromorphic function, then
T(r, f") =nT(r, f), n € N;
Tr, > OS>, T(r, f*) +logn forr > 1;
T(r,(af +b)/(cf+d)=T(r, )+ O(1) with ad —bec # 0 and f # —d/c.

We also remark a proposition which concerns the Backlund transformations:

Proposition 2.4.  ([2, Section 6]) Let A(t) be a solution of (2mPi1(x)), such that
t 4+ 2K,,(u) # 0. Then the following transformations, called Béicklund transformations,
derive a solution of (amPri(a£1)) from (amPrr(a)).

< 20 — 1

T A—=A=-)A— ———
- t+ Kp(r)’

- - 2a+1
Gt WG W G e o
t+ K (T)

where 7 = X2+ N, 7 = A2+ X, K,,(u) is a differential polynomial defined by Xu =
DK, (u) and (1.1).

After a simple calculation, we have

=10u® — 5(u/)? — 10w + u@,
= 35u* — T0u(u)? — 70uu” + 21(u")? + 280/ u® + 14uu™® — u(®).
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Then, for example, Bicklund transformations of (4Pr1(«)) are given concretely;

- a—1/2
T: A=-—
A=A e T s — v — i

(AZ4 M) —3(A24+N) —t/2

By use of Lemmas 2.2, 2.3 and Proporition 2.4, we can verify Proposition 2.1.
Suppose that there exists a solution A(t) of (2, Prr(e))(m = 1,2, 3, 4), satisfying o(\) <
ay, — €, which implies T'(r, A) < r%m~¢. By repeating Bécklund transformations finitely
many times, we can get a solution of (g,, Pir(0)) satisfying o(\) < a,, —&, which indicates
that Theorem A for a = 0 is not valid. Therefore, it is sufficient to prove Theorem A
only for the case where o = 0.

Now we prove Theorem A for the case where a = 0. In what follows, we fix a = 0.

In order to prove o(\) = a,, suppose the contrary:

(H) o(\) = limsup log T'(r, A) <

1 m
r—o0o ogr

for some transcendental meromorphic solution of (2, P11(0)) (m = 1,2,3,4), namely,
there exists € > 0 such that T'(r, \) < 7%~ which implies

2r
n(r,A) < / n(t, At tdt < N(2r, \) < r%m ¢,

Painlevé analysis tells us that

Proposition 2.5.  An arbitrary transcendental meromorphic solution \ of 2m-th
order Painlevé equation (amPri(a)) (m = 1,2,3,4) has only simple poles with residues
+1,---,+m.

Painlevé analysis is a procedure to get a solution which has Laurent series expansion
at t = 1.

Let {b;}52; be a sequence of poles of A arranged as |b1| < [ba] < ---. Denote by e;
the residue at ¢t = b;. Define

= 1 1
\If(t) = Zej{t—b' +b—}
j=1 J J

If by = 0, the first term of the sum is to be replaced by e;/t. By the Mittag-Leffler
theorem, there exists an entire function 1 (t) such that A\(¢) = () + ().
Define

1 1

t—bj+ i

()=

x(r,t) = Z
r<|b;|

and Ag(r) := {t||t| < r}. Then we obtain



LOWER ESTIMATES OF GROWTH ORDER FOR HIGHER ORDER Pr1 195

Lemma 2.6.  Under supposition (H), for every t € Ag(r) with r > 1, we have
X(2r,t) < ram=17e N (2r) < pam—iTE,

Proof. Since

’ L1 1t _ o
t—b; bl (B[Pl —t/bg T [bl?
for |t/b;| < 1/2, we have
1 dn(t, A o dt
X(QT, t) < 2r ﬁ = 27'/ n(tQ, ) < 4T/ n(t,)\)t—3
2oy 1% 2 2

Moreover
1 1 2Tdn(t, A
v(2r) = — = const. + — = const. +/ n(t, )
0<|b;|<2r |bj| 1<|bj|<2r |bj| 1 t
Jl= J
2r, A 2 dt
< const. + n( 27;’ ) —I—/l (t, )\)t—2 & rom—1-e
O
Define

. > 1 1
E* :=(0,b|+ 1)U U <|bj| — |b~|2’|b il + 5, |2>
j
Then we obtain

Lemma 2.7. Under supposition (H), E* is of finite linear measure. Moreover,
for every t satisfying |t| € (0,00)\E*,

1 1
> ‘t_b}rg < |t|omt2,
0<|b;| <o J J
Proof.
Qi 1 :2/00 dn(t, \) <2/°° n(t,)\)dt
=2 |bj|2 t>|b1| t2 t>|b1| t3

o0
< const./ tm =37 dt = const.|by [ 2 F,
|b1]

which implies

w(E*) < |b1|+1+22W<oo
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For t ¢ E* and 0 < |b;| < 2]¢t],

1
t—b; b

< 2Jt2.

And, supposition (H) gives us n(2[t|, \) < [t|*~~¢. Applying Lemma 2.6, we obtain

1 1
2.+ D ‘t—bj+b_j

0<[bj|<2lt]  2[¢[<]b]

< (20 + 1) n(2lt], N) + e T < e,

Now we prove
Lemma 2.8.  Under supposition (H), the entire part 1» = X\ — V¥ is a polynomial.
In order to verify this lemma, we recall several lemmas in general theory:

Lemma 2.9. ([6, Lemma 2.4.1]) Let f(z) be a meromorphic function. Suppose
that Qn(f) is a polynomial of a meromorphic function and its derivatives with degree at
most n, each coefficient of which is a meromorphic function. Let U(r) be the mazimum
of characteristics of those coefficient functions. Then

! / log™
21 Jif1>1 o

as r — 00, outside of an exceptional set of finite linear measure.

Qn(f) ‘ dd = O(logr +1ogT(r, f) + U(r))

Lemma 2.10. ([6, Lemma 2.1.3]) log™ (Z az> < logn + ZlogJr Q.
i=1
Lemma 2.11.  ([6, Lemma 1.1.1]) Let g,h : (0,400) — R be monotone increas-
ing functions such that g(r) < h(r) outside of an exceptional set E* of finite linear
measure. Then, for any K > 1, there exists ro > 0 such that g(r) < h(Kr) for all
r>nrg.

Proposition 2.12.  ([6, Theorem 2.2.3]) Suppose f be a meromorphic function.
Then f is a rational function if and only if T'(r, f) = O(logr).

Proof of Lemma 2.8. Each equation (2, P11(0)) (m = 1,2, 3,4) can be written in
the form A1 = Qg,,(\), where Q2,,()\) is a polynomial of A and its derivatives with
degree at most 2m, and each coefficient is constant or linear w.r.t. ¢. Applying Lemma
2.9, we have

1 1
Dy log™t |\|d6 = = log™
T JIx>1 T JIAI>1

)\279) ’ df = O(logr + logT(r,A\) + U(r))
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as r — 00, outside of an exceptional set of finite linear measure. Since U(r) = O(logr)

as r — 00, we have

1

— log® |\|d§ = O(logr) as r — oo.
21 Jia>1

Lemma 2.7 indicates |¥| < [¢|*=T2 for |¢t| ¢ E*, which implies

1 27

m(r, T) = —/ log* |W]d6 < O(1).
21 Jo

By Lemma 2.10, log™ [1| = log® |\ — ¥| < log2 + log™ |A| + log™ |¥|. Integrating this

inequality, we have m(r, ) < log2 + m(r,\) + m(r, ¥). On the other hand, since v is

entire, T'(r, 1) = m(r, ). Now we have

T(r,) =m(r,v) <log2+ m(r,\) + m(r,¥) = O(logr)

as r — 0o, r ¢ E*. And, the finiteness of p(FE*) and Lemma 2.11 tells us that T'(r, ) =
O(log ) for sufficiently large r. Therefore, by Proposition 2.12, v is a polynomial. This
completed the proof of Lemma 2.8.

Next, we give estimates of the logarithmic derivatives of A\. To do so, we use three
lemmas; Lemma 2.13, 2.14 and 2.15.

Lemma 2.13.  ([10]) Suppose that k > 1. Let g(t) be a meromorphic function,
and let {¢;}32, be poles and zeros of g(t) such that |¢1| < |[é2| < ---, where each zero
or pole is counted according to its multiplicity. Then there exists a positive number
C = C(p, k) such that for all p € Nsg, for all t satisfying |t| > 1,

()

Proof. For the case where g(0) # 0,00, the lemma is derived from the Poisson-

T'(x[t], 9) 1
<Ol —=+ > |t—éj|p+1

|25 1<wl|t]

Jensen formula ([4, 5, 8]). The other case, i.e. g(0) =0 or oo, is reduced to the former

case by putting h(t) = tg(t), d € Z, h(0) # 0, cc. O
Lemma 2.14.  Take an arbitrary k > 1. Let {c;}32, be a sequence which satis-
fies |c1| < |ea| < -+, and let v(r) denote the number of points c; consisted in Ao(r).

If v(r) = O(r™)(A > 0), then for all v > ro(k) with a sufficiently large positive number
ro(k), there exists a point t, € Ao(r)\Ao(r/v/2) with the properties:

So({c;}. 1) < 32(s +1) ”(:”),
|
Si({cj}, kr,ty) < 6Aoy(mr)%,
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and,
l/(lﬁ:T)27+[n/2]Mn_1
Sn({cj}a'%ratr) < 7"25”_1 fOTn=2,...,7,
where [n] is the largest integer which does not exceed n, Ay := max{l,A/2}, § is a

sufficiently small positive number, and M := max{1, |c;|* "0},

Proof. Let As(r) and Ds be the sets as follows:

As(r) == Do(r\Ds, D5 := | J{tllt — ¢ < dw(le])},

j=1
with a positive number § < 1, and w(s) := min{1, s'™*0}(s > 1). Define

v(kr) 1

r

F? = {t € Aog(r)|So({c;}, kr,t) = 32(k + 1)

Rl = {1 € 8181 ({es), mr, ) > GAou(sr) 5}

and

v(kr) 272 1

F={teAs(r)|Sn({c;}, ki t) > oy forn=2,3,...,2m — 1.

By [10, Lemma 2.1 and its proof], we may choose § so small that u(DsNAg(r)) < 712 /32,
and we have p(F?) < 7r?/16 and u(F!) < 37r?/8 for all r > r¢(x) with a sufficiently
large positive number 7o(x). Here u(-) denotes the area of the set.

Put [t — ¢j| = p, t = £+ /—1n. We have

1 1
2 Sl S 2 mm(e) SVenM,

lej|<wr lejl<wr
and hence
dédn
// ({cj}, kr, t)dédn = Z // P
As(r) les | <RIN (r)

<2 // dgfe > 2”{<6w<|c1|>>n—1‘<<m+11>r>n—1}

lejl<wr sw(lej)<p< (rt1)r lej|<wr
0<0<2n

n—1

< Z Gl |CJ QWV(HT)W.
|c]|<m"

Then
l/(lﬁ:?")27+[n/2]Mn 1 /ﬁ??“ 27—|—[n/2 Mn—1
r2gn—1 // r2gn—1 d&dn

// ({cj}, kr, t)dédn < // ({cj}, ke, t)dEdn < 27w(m°)]\(;[

As ()
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which implies that pu(F?) < wr2/26+7/2] are satisfied for all 7 > ro(x) with a sufficiently
large positive number 7o(k).
Gathering the sets above, we get

2m—1

H,:=(DsNAo(r) U | Fi.
j=0

Since
2m—1 .
u(Hy) < p(Ds N Do (r)) + > u(FY)

§=0

w2 wr?  3mr? L 2

<33 "1 T s T2 Z; 261572
j:
2
2 )

there exists a point ¢,.€ (Ag(r)\Ao(r/v2))\H, with the desired properties, provided
that 7 > ro(k). O

Lemma 2.15.  Under supposition (H), defining as n*(r) := n(r,\) +n(r, 1/\),
we obtain n*(r) < rom=¢.

Proof. By supposition (H), n(r, A) < 7%=, On the other hand,
n(r, 1/\) < N(2r, 1/X\) < T(2r,1/A) = T(2r,\) + O(1) < rm ¢,
Therefore,
n*(r) =n(r,A) +n(r,1/\) < rém=F.
O

Now we give the estimates of logarithmic derivatives. Let {b’;}52; be poles and
zeros of A(t) s.t.|b'1] < |b/2] < ---, each repeated according to its multiplicity, and put

L) := N (1) /A\®).

Lemma 2.16.  Under supposition (H), for sufficiently large r, there exists t, €
Ao(r)\Ao(r/V2) such that |U(t,)] < rom—1=¢ |L(t,)| < r%~17¢, and |L®) (t,)| < 1
forp=1,2,--- 7.

Proof. Estimate of |¥(¢,)|. In Lemma 2.13 and Lemma 2.14, put k = 2. Take
v(2r) = n(2r) when we apply Lemma 2.14 to {b;}32,, and v(2r) = n*(2r) when
{b'5}32,. Note that, if we apply Lemma 2.14 to 2, P1(0) (m = 1,2,3,4), we can take
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A = a,, — € because of n(2r) < ro¢m=¢ n*(2r) K r%m"°. a; = 3/2, ag =5/4, a3 = 7/6,
as = 9/8, Ap = max{1,A/2} = 1 in each cases. Then M = max{l,|c;|*7?} = 1.
Each residue e; of (2., Pr1(c)) (m = 1,2,3,4) satisfies |e;| < m. Lemma 2.15 implies
n*(r) < r*~¢. Apply Lemma 2.14, then for a sufficiently large r, there exists a point
tr € Ao(r)\Ag(r/V/2), such that

SO({b/j7 2|t7’|7 t’r}) < SO({b/j, 2T, t'r}) < n*(QT)T_l < ,,,am—l—57
Sl({b/j7 2|t7’|7 t’l’}) << Sl({b/j, 2T, tr}) << n*(27‘)']"_2 logtr << 1,
Sn({b/ja 2/t.],t,}) < Sn({b/j, 2r,t,}) < n*(27’)7°_2 <1 form=2---,7.

Moreover, these results imply So({b;, 27, t,}) < So({V;,2r,t,}) < r®=~17¢. Because of
these estimates and results of Lemma 2.6, namely, x(2r) < r@ 175 ~(2r) < r¢=17¢,
the function W(t) := Z;’;l ej{(t —b;)~' +b; '} is estimated as follows:

|V (t,)| = E €;j -+ =
, t, —b; b
Jj=1
1 1 1 1
<m —+m Y m —
b, " |tr — by " tr —b; +bj
0<|b;|<2r 0<|bs|<2r 2r<|b;|

= my(2r) + mSo({b;},2r,t,) + mx(2r,t,)
< 7aam—l—s _l_ram—l—s _l_ram—l—e

< 7aam—l—s'

Estimate of |[L(P)(t,)|. By supposition (H), T(2|t.|,\) < T(2r,\) < r%~¢. And
also we have the estimates obtained in the above, Lemma 2.13 indicates

T2t ], A 1
L e RV
" b 5] <2t | J
T(2lt, ], A
% - So({¥ 20t tr}) + 1
< Tam—l—e +Tam—1—e 4 1

< Tam—l—e
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and
T(|t], \) 1
L(n) t < Sl e LA _ 1
| ( 7’)| C |tr|2 + Z |t _ b/j|n—|—1 +
b5 1<2]t, |
T, A
% S 20t 6)) 1

<1+1+1
<1 forn=1,---,7.

O

Under supposition (H), we show that the above results depending (H) are reduced
to a contradiction.
Note that

Lemma 2.17.  ([6, p.10]) Put
P(z) = apz" + a2 Y a1z +an, ag #0,

then all of the roots of P(z) lie in the disk {r <1+ max lai/ao|}.
<ign
Lemma 2.18.  Under supposition (H), ¥(t) = \(t) — ¥(t) is a constant.

Proof. Each equation (2, P11(0)) (m = 1,2,3,4) can be written as
azm,2m(A)" + Y asmam—py(X*)" 7 + 1 =0.
j=1

Here, azm 2m is a constant and each g, 2(m—j5)(j = 1,...,m) is a polynomial of L
and its derivatives with degree at most 2j and constant coefficients. By Lemma 2.17,
N < 1+t + maxigicm |a9m,2(m—i)|- And, considering it together with the results of
the estimates of [U(¢,)| and |L(P)(t,)|, we can estimate the coefficients as,, 2(m—j)-

For (2P11(0)), 2A%(t,.) + (£ + azo(t,)) = 0. Since a,, — 1 = 1/2 and

laso(ty)| < |L(t,)|? < r2am—D=e « oy

we have |A(t,)|? < r, which implies [1)(t,)| < |¥(t,)| + |A(t)| < /2.
For (4P11(0)), 6A*(t,) + asz(t)A2(t,) + (t, + aso(t,)) = 0. Since a,,, — 1 = 1/4 and

laga(t,)| < |L()|? < r2lom=Y=¢ « .,
laao(t,)] < [L(1)|* < rHom=D7e <,
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we have |A(t,)|> < r, which implies [1(t,)| < |¥(t,)| + |A(t)| < /2.
For (¢P1(0)), 20A%(¢,.) + aga(t, )N (t,) + asa(t-)A2(t) + (t + aeo(t,)) = 0. Since
am —1=1/6 and

laga(tr)| < |L(1)])? < r2am=b=¢ « o
|a’62(t'r)| < |L(t)|4 < 7=4(am—1)—5 <
|a’60(t'r)| < |L(t)|6 < r6(am—l)—e < r,

we have |A(t,)|> < r, which implies [1(t,)| < |¥(t,)| + |A(t)| < /2.
For (sP11(0)), TON8(t,.)+ase (£ ) A8 () +aga(t-) N4 (t,) +asa () A2 (L) +(t+asgo(t,)) =
0. Since a,, —1 =1/8 and

we have |A(t,)|> < r, which implies [1(t,)| < |¥(t,)| + |A(t)| < /2.
Therefore, for each (2, P1(0)) (m = 1,2,3,4), [4(t,)| < r'/2. And, since (t,) is
a polynomial, it must not be anything but a constant. O

Completion of the proof of Theorem A. Under supposition (H), the estimates
mentioned above imply a contrary estimate r/ V2 < rie,

Because of |\(t,)] < |¥(t,)] < r@m=D=¢ using t = Z;'n:o aom,2;A%, we can
estimate as follows:

For (3P1(0)), 7/v2 < |t.] < |L(t)|> + |\(t,)]? < r2(@=1D=¢ which is a contradic-
tion. Therefore, a; > 3/2.

For (4P11(0)), 7/V2 < [tr| < [L(t)|* + [L(E)PAE) P + M (E)]* < rtlozmDe,
which is a contradiction. Therefore, as > 5/4.

For (6Pi1(0)), /v2 < [te| < [L(t) [+ L) [*AE) P+ L) PIAE) M) <
r6(as—1)—¢ "which is a contradiction. Therefore, ag > 7/6.

For (sP11(0)),

r/V2 < fto| < |L(t) P+ L) CIAE) [P 4 (L) A+ L) P E) + (A
< 7,8((14—1)—57

which is a contradiction. Therefore, a4 > 9/8.
This is the completion of Theorem A for the case where o = 0.
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