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Finding Rigged Configurations From Paths

By

Reiho SAKAMOTO *

Abstract

We review reformulation of the map from tensor product of crystals to the rigged con‐

figurations in terms of the energy function of affine crystals. Especially, we give intuitive

picture of the inverse scattering formalism for the periodic box‐ball systems formulated by
KunibaTakagiTakenouchi.

§1. Introduction

In this lecture note, we review reformulation of the bijection of KerovKirillov‐

Reshetikhin [KKR] (and extension due to [KR], see also [KSS])

 $\phi$ : Paths \ovalbox{\tt\small REJECT} Rigged Configurations

in terms of the crystal bases theory [K] and its application to the periodic box‐ball

systems following [S2] and [KS3].
The bijection  $\phi$ was originally introduced in order to show the so‐called  X=

M formula (see [\mathrm{O} , S4] for reviews) by using its statistic preserving property. Re‐

cently, another application of the bijection  $\phi$ to the box‐ball systems [TS, \mathrm{T} ] was found

[KOSTY]. In this context, the bijection  $\phi$ plays the role of the inverse scattering for‐

malism [GGKM, AC] for the box‐ball systems.
The original definition of the bijection  $\phi$ is described by purely combinatorial lan‐

guage such as box adding or removing procedures. Purpose of this note is to clarify
what the representation theoretic origin of the bijection  $\phi$ is. Motivated by the con‐

nection with the box‐ball systems, consider the following isomorphism under the affine

combinatorial  R :

(1.1) u_{l}[0]\otimes b_{1}[0]\otimes\cdots\otimes b_{L}[0] \simeq b_{1}'[-E_{l,1}]\otimes\cdots\otimes b_{L}'[-E_{l,L}]\otimes u_{l}'[E_{l}],
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where u_{l}\in B_{l} is the highest element and u\'{i}\in B_{l}, b_{k}, b_{k}'\in B_{$\lambda$_{k}} . This is nothing but time

evolution of the box‐ball systems [HHIKTT, FOY]. Then, E_{l} here is related to shape of

the rigged configuration (see \mathrm{E}\mathrm{q}.(4.2) ) and it is the conserved quantity of the box‐ball

systems introduced in [FOY]. By using this property, we introduce a table containing

purely algebraic data (local energy distribution) from which we can read off which

letter 2 of path belongs to which row of the rigged configuration. As the result, we can

reconstruct the map  $\phi$ by using purely representation theoretic procedure. Recently, the

formalism is extended to general elements of tensor products of the KirillovReshetikhin

crystals of \mathfrak{s}\mathfrak{l}_{n} type [S3]. Again, this is achieved by extension of Eq.(4.2). This shows

that the formalism here is quite natural.

The plan of this note is as follows. In Section 2, we prepare minimal foundations

of crystal theory. In Section 3, we define the local energy distribution. In Section

4, we present our main result. In Section 5, we explain some of applications of our

formalism for the box‐ball system with periodic boundary condition [YT, YYT] along
with review of the inverse scattering formalism for the periodic box‐ball system [KTT].
In Section 6 (Appendix), we consider tensor product of highest paths in terms of the

rigged configurations.

§2. Combinatorial \mathrm{R} and energy function

Crystal. Let B_{k} be the crystal of k‐fold symmetric powers of the vector (or natural)
representation of U_{q}(sl) . As the set, it is

(2.1) B_{k}=\{(x_{1}, x_{2})\in \mathbb{Z}_{\geq 0}^{2}|x_{1}+x_{2}=k\}.

We usually identify elements of B_{k} as the semi‐standard Young tableaux

\wedge\wedge x_{1}x_{2}
(2.2) (x_{1}, x_{2})=1\cdots 12\cdots 2 ,

i.e., the number of letters i contained in a tableau is x_{i} . For example, the highest
element u_{l}\in B_{l} is u_{l}=(l, 0)= .

For two crystals B_{k} and B_{l} of U_{q}(sl) ,
one can define the tensor product B_{k}\otimes B_{l}=

\{b\otimes b'|b\in B_{k}, b'\in B_{l}\} . Then we have a unique isomorphism R : B_{k}\otimes B_{l}\rightarrow\sim B_{l}\otimes B_{k},
i.e. a unique map which commutes with actions of the Kashiwara operators ẽ, \tilde{f}_{i}.
We call this map combinatorial R and usually write the map R simply by \simeq . We call

elements of tensor product of crystals paths.
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Affinization. Consider the affinization of the crystal  B [KMN]. As the set, it is

(2.3) \mathrm{A}\mathrm{f}\mathrm{f}(B)=\{b[d]|b\in B, d\in \mathbb{Z}\}.

Integers d of b[d] are called modes. For the tensor product  b_{1}[d_{1}]\otimes b_{2}[d_{2}]\in \mathrm{A}\mathrm{f}\mathrm{f}(B_{k})\otimes
Aff(B), we can lift the above definition of the combinatorial  R as follows:

(2.4) b_{1}[d_{1}]\otimes b_{2}[d_{2}]\simeq Rb_{2}'[d_{2}-H(b_{1}\otimes b_{2})]\otimes b_{1}'[d_{1}+H(b_{1}\otimes b_{2})],
where b_{1}\otimes b_{2}\simeq b_{2}'\otimes b\'{i} is the combinatorial R defined in the above.

Explicit expressions. There is piecewise linear formula to obtain the combinatorial

R and the energy function [HHIKTT]. This is suitable for computer programming. For

the affine combinatorial R:x[d]\otimes y[e] \simeq ỹ[e—H(x \otimes y)] \otimes\tilde{} [d + H(x \otimes y)], we have

\tilde{x}_{i}=x_{i}+Q_{i}(x, y)-Q_{i-1}(x, y) , \ovalbox{\tt\small REJECT} i=y_{i}+Q_{i-1}(x, y)-Q_{i}(x, y) ,

H(x\otimes y)=Q_{0}(x, y) ,

(2.5) Q_{i}(x, y)=\displaystyle \min(x_{i+1}, y_{i}) ,

where we have expressed x=(x_{1}, x_{2}) , y=(y_{1}, y_{2}) , \tilde{x}=(\tilde{x}_{1},\tilde{x}_{2}) and ỹ = ( \ovalbox{\tt\small REJECT}, ỹ). All

indices i should be considered as i\in \mathbb{Z}/2\mathbb{Z} . There is another graphical method due to

NakayashikiYamada [NY] (see [S5] for generalizations). It is useful when we are going
to prove mathematical statements.

§3. Local energy distribution

We express the isomorphism a\otimes b_{1}\simeq b\'{i} \otimes a' (with the energy function e_{1}:=

H(a\otimes b)) by the following vertex diagram:

bí

Definition 3.1. (1) For a given path b=b_{1}\otimes b_{2}\otimes\cdots\otimes b_{L} ,
we define local energy

E_{l,j} by E_{l,j}:=H(u_{l}^{(j-1)}\otimes b_{j}) . Here u_{l}^{(j-1)} are defined in the following diagram (we set

(0)
u_{l} :=u_{l}) :

(1) (2) (\mathrm{L} 1) 1,\mathrm{L}

bí b_{2}' b_{L}'
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We define E_{0,j}=0 for all 1\leq j\leq L . We also use the notation E_{l}:=\displaystyle \sum_{j=1}^{L}E_{l,j} which

coincides with the conserved quantity in [FOY].
(2) We define operator T_{l} by T_{l}(b)=b_{1}'\otimes b_{2}'\otimes\cdots\otimes b_{L}' (see the above diagram). \square 

Lemma 3.2. For a given path b=b_{1}\otimes b_{2}\otimes\cdots\otimes b_{L} ,
we have E_{l,j}-E_{l-1,j}=0

or 1, for all l>0 and for all 1\leq j\leq L. \square 

Definition 3.3. The local energy distribution is a table containing (E_{l,j}-E_{l-1,j}=
0 , 1) at the position (l, j) , i.e., at the l th row and the j th column. \square 

§4. Results

§4.1. Statement

Theorem 4.1. Let b=b_{1}\otimes b_{2}\otimes\cdots\otimes b_{L}\in B_{$\lambda$_{1}}\otimes B_{$\lambda$_{2}}\otimes\cdots\otimes B_{$\lambda$_{L}} be an arbitrary

path. b can be highest weight or non‐highest weight. Set N=E_{1}(b) . We determine

the pair of numbers (, r_{1}) , (, r_{2}) , \cdots, ($\mu$_{N}, r_{N}) by the following procedure fr om

Step 1 to Step 4. Then the resulting ( $\lambda$, (, r)) coincides with the (unrestricted) rigged

configuration  $\phi$(b) .

1. Draw the local energy distribution for b.

2. Starting from the rightmost 1 in the l=1 st row, pick one 1 from each successive

row. The one in the (l+1) th row must be weakly right of the one selected in the l

th row. If there is no such 1 in the (l+1) th row, the position of the lastly picked
1 is called (, j_{1}) . Change all selected 1 into 0.

3. Repeat Step 2 for (N-1) times to further determine (, j_{2}) , \cdots, ($\mu$_{N}, j_{N}) thereby

making all 1 into 0.

4. Determine r_{1}, \cdots, r_{N} by

(4.1) r_{k}=\displaystyle \sum_{i=1}^{j_{k}-1}\min($\mu$_{k}, $\lambda$_{i})+E_{$\mu$_{k},j_{k}}-2\sum_{i=1}^{j_{k}}E_{$\mu$_{k},i}.
Sketch of proof. The key formula is

(4.2) E_{l}=\displaystyle \sum_{i=1}^{N}\min($\mu$_{i}, l) .

The rest is combinatorial arguments whose details we left to [S2]. \square 
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In order to depict the rigged configurations, we usually use Young diagrammatic

expression whose rows have lengths $\mu$_{1}, \cdots, $\mu$_{N} ,
and we put integers r_{1}, \cdots, r_{N} on the

right of rows $\mu$_{1}, \cdots, $\mu$_{N} , respectively. Integers r_{k} are called riggings corresponding
to $\mu$_{k} . The letters 1 in the local energy distribution precisely records combinatorial

procedure of  $\phi$ , i.e., letter 1 at  l th row, k th column of the local energy distribution

corresponds to box addition to l th column of some row of rigged configuration.
The groups $\mu$_{i} obtained here represent solitons (moving at velocity $\mu$_{i} with respect

to T_{\infty}) contained in a path. In fact, we have the following property [KOSTY].

Proposition 4.2. Given the (unrestricted) rigged configuration corresponding to

b :

(4.3) b\rightarrow $\phi$( $\lambda$, ($\mu$_{j}, r_{j})_{j=1}^{N}) .

Then, corresponding to T_{l}(b) ,
we have

(4.4) T_{l}(b)\displaystyle \rightarrow $\phi$( $\lambda$, (, r_{j}+\min($\mu$_{j}, l))_{j=1}^{N}) .

\square 

For the proof, see Proposition 2.6 of [KOSTY] (see also Proposition 2.3 of [S2]).

Remark. A crystal interpretation of the inverse map $\phi$^{-1} is known [S1] for the

cases B^{1,s_{1}}\otimes\cdots\otimes B^{1,s_{L}} . This formalism gives recursive description of $\phi$^{-1} with respect

to rank of \mathfrak{s}\mathfrak{l}_{n} and, owing to this property, it is substantially used in [KSY]. However,
our formalism seems to have different origin from [S1], since it can be generalized [S3] to

wider class of representations B^{r_{1},s_{1}}\otimes\cdots\otimes B^{r_{L},s_{L}} . In this generalization, the procedure
is done almost separately with respect to the rank. \square 

§4.2. Example

Consider the following path:

(4.5) b=
Corresponding to Step 1, the local energy distribution is given by the following table (j
stands for column coordinate of the table).

1111 1122 1222 12211

1,\mathrm{j} 0,\mathrm{j}

2,\mathrm{j} 1,\mathrm{j}

3,\mathrm{j} 2,\mathrm{j}

4,\mathrm{j} 3,\mathrm{j}

5,\mathrm{j} 4,\mathrm{j}

6,\mathrm{j} 5,\mathrm{j}

7,\mathrm{j} 6,\mathrm{j}
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Following Step 2 and Step 3, letters 1 contained in the above table are found to be

classified into 3 groups, as indicated in the following table.

1111 1122 12211

1,\mathrm{j} 0,\mathrm{j}

2,\mathrm{j} 1,\mathrm{j}

3,\mathrm{j} 2,\mathrm{j}

4,\mathrm{j} 3,\mathrm{j}

5,\mathrm{j} 4,\mathrm{j}

6,\mathrm{j} 5,\mathrm{j}

7,\mathrm{j} 6,\mathrm{j}

From the above table, we see that the cardinalities of groups 1, 2 and 3 are 2, 1 and

6, respectively. Also, in the above table, positions of (, j_{1}) , (, j_{2}) and (, j_{3}) are

indicated by asterisks. Their explicit locations are (, j_{1})=(2,8) , (, j_{2})=(1,5) and

($\mu$_{3}, j_{3})=(6,8) .

Now we evaluate riggings r_{i} according to Eq.(4.1).

r_{1}=\displaystyle \sum_{i=1}^{8-1}\min(2, $\lambda$_{i})+E_{2,8}-2\sum_{i=1}^{8}E_{2,i}
=(2+2+1+2+2+1+1)+1-2(0+0+1+1+1+0+1+1)

=2,

r_{2}=\displaystyle \sum_{i=1}^{5-1}\min(1, $\lambda$_{i})+E_{1,5}-2\sum_{i=1}^{5}E_{1,i}
=(1+1+1+1)+1-2(0+0+1+0+1)

=1,

r_{3}=\displaystyle \sum_{i=1}^{8-1}\min(6, $\lambda$_{i})+E_{6,8}-2\sum_{i=1}^{8}E_{6,i}
=(4+2+1+4+4+1+1)+2-2(0+0+1+2+3+0+1+2)
=1.

Therefore we obtain (, r_{1})=(2,2) , (, r_{2})=(1,1) and (, r3) =(6,1) . This

coincides with the calculation based on the original combinatorial definition of the map

 $\phi$.

§5. Application to periodic box‐ball system

§5.1. Definition

In this section, we consider application of Theorem 4.1 to the periodic box‐ball

system (pBBS) . Many part of this section is contained in [KTT, KS1]. We exclusively
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treat \mathfrak{s}\mathfrak{l}_{2} type path b of the form b\in B_{1}^{\otimes L} . The pBBS is the BBS with periodic boundary
condition and its definition rely on the following fact.

Proposition 5.1. Define v_{l}\in B_{l} by

(5.1) u_{l}\otimes b^{R}\simeq T_{l}(b)\otimes v_{l}.
Then we have

(5.2) v_{l}\otimes b^{R}\simeq b^{*}\otimes v_{l},

where b^{*}\in B_{1}^{\otimes L} \square 

For the proof, see Proposition 2.1 of [KTT] and the comment following it.

Definition 5.2. We define operator of pBBS\overline{T}_{l} by \overline{T}_{l}(b)=b^{*}\in B_{1}^{\otimes L} ,
where b^{*}

is obtained in the right hand side of Eq. (5.2). \square 

Note that \overline{T}_{1} is merely the cyclic shift operator on a path.

Example 5.3. The time evolutions b, \overline{T}_{l}(b) ,
. . .

, \overline{T}_{l}^{9}(b) of the state b on the top

line are listed downward forl=2 and 3. The system size is L=14 . We omit the

symbol \otimes and frames of tableaux.

evolution under \overline{T}_{2}
11211221111222

22121112211112

12212211122111

11121222111221

21112112221112

12211211122211

11122121111222

22111212211112

12221121122111

11122212111221

evolution under \overline{T}_{3}
11211221111222

22122112211111

11211221122211

21121112211122

12212211122111

11121122211221

22112111122112

11221221111221

21112112221112

12211211112221

There are three solitons with amplitudes 3, 2 and 1 traveling to the right. \square 

§5.2. Basic procedures

In the rest of the note, we exclusively consider the path b\in B_{1}^{\otimes L} where number of

2 is equal to or less than that of 1. The other case follows from this case by virtue

of Proposition 2.3 of [KTT]. In order to analyze the pBBS by using Theorem 4.1, we

follow the following procedures.
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1. Instead of using u_{l} ,
use v_{l} of Eq.(5.1) to calculate the local energy distribution. We

express energy function appearing here as \overline{E}_{l,j} and \displaystyle \overline{E}_{l}=\sum_{j}\overline{E}_{l,j} . See the following

diagram:

(1) (2) (\mathrm{L} 1) 1,\mathrm{L}

bí b_{2}' b_{L}'

2. Pick one of the lowest 1. Pick 1 in lth row which is weakly left of the already
selected 1 in (l+1)\mathrm{t}\mathrm{h} row. If there is no such 1, return to the rightmost column

and search 1.

3. Find a vertical line such that no soliton cross the line. We call the line seam. By

using cyclic shift \overline{T}_{1} ,
move the seam to the left end of the path. Write this procedure

as b_{+}=\overline{T}_{1}^{d}(b) .

4. Apply Theorem 4.1 to  b+\cdot (In order to obtain the local energy distribution here,
we only have to rotate periodic version of the local energy distribution obtained in

Step 1 according to \overline{T}_{1}^{d} ).

We can always find seam of a path due to the following simple property and Propo‐
sition 6.2.

Lemma 5.4. For arbitrary element b\in B_{1}^{\otimes L} ,
there exists integer d such that

b+=\overline{T}_{1}^{d}(b) is highest weight. \square 

This assertion is proved by elementary argument. See Example 3.2 of [KTT].

The b+\mathrm{i}\mathrm{n} this lemma can be used in Step 3 of the above procedure. Consider

the path b_{+}^{\otimes n} and calculate the local energy distribution using u_{l} (not v_{l} ). Combining

Eq.(5.2) and the argument used in Proposition 6.2, we can show that the local energy

distribution is n times repetition of that of  b+\cdot

§5.3. Action variables

Definition 5.5. Given  b\in B_{1}^{\otimes L} ,
choose the highest element b_{+} such that there

exists integer d such that b=\overline{T}_{1}(b_{+}) . Apply the bijection  $\phi$ and obtain  $\phi$(b_{+})=
((1^{L}), (, J)) . Then  $\mu$ is called action variable of  b. \square 

Proposition 5.6. For any l\in \mathbb{Z}_{\geq 1} ,
the action variable of \overline{T}_{l}(b) is equal to that

of b.
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Sketch of proof. Follows from the relation \overline{E}_{k}(\overline{T}_{l}(b))=E(b) which is the conse‐

quence of the YangBaxter relation for the affine crystals. See Theorem 2.2 of [KTT]
for more details. \square 

§5.4. Definition of the angle variables

Thanks to Proposition 5.1, our basic strategy is to embed suitably cut periodic path
b into the usual infinite system as b\otimes b\otimes\cdots\otimes b . For this purpose, it is convenient to use

the highest path obtained by b+=\overline{T}_{1}^{d}(b) with suitable d . However, this correspondence
between b and (d, b_{+}) is not unique in general. In the following, we give prescriptions
to cope with this ambiguity.

5.4.1. Notations We fix some notations used in the following arguments. Let b+\mathrm{b}\mathrm{e}
a highest element of B_{1}^{\otimes L} and the corresponding rigged configuration be

(5.3) b+\rightarrow $\phi$((1^{L}), ($\mu$_{i}, J_{i})_{i=1}^{N}) .

Denote the multiplicity of k in ($\mu$_{i})_{i=1}^{N} by m_{k} ,
and the riggings corresponding to length

k rows by J_{1}^{(k)}\leq J_{2}^{(k)}\leq\cdots\leq J_{m_{k}}^{(k)} . Let the distinct lengths of rows of () be k_{1}<

k_{2}<\cdots<k_{s} . We denote the set of distinct lengths of rows of () as H=\{k_{1}, . . . , k_{S}\}.
Finally, we define the set of all possible riggings as follows:

(5.4)

Rig ()=\{(J_{i}^{(k)})_{1\leq i\leq m_{k},k\in H}\in \mathbb{Z}^{m_{k_{1}}}\times\cdots\times \mathbb{Z}^{m_{k_{\mathrm{S}}}} 0\leq J_{1}^{(k)}\leq\cdots\leq J_{m_{k}}^{(k)}\leq p_{k}\}
We sometimes omit L of Rig () such as Rig() . Here integer p_{k} is called the vacancy

number defined by

(5.5) p_{k}=L-2\displaystyle \sum_{i=1}^{N}\min(k, $\mu$_{i}) .

In the present setting, we have 0\leq p_{k_{\mathrm{s}}}<p_{k_{\mathrm{s}-1}}<\cdots<p_{k_{1}} (positivity 0\leq p_{k_{i}} follows

from the fact that b+\mathrm{i}\mathrm{s} highest weight, and other inequalities < follow from the shape
of the quantum space (1^{L}) ).
5.4.2. Extension of riggings First we give motivations for extension of riggings.
From Proposition 6.2, the rigged configuration corresponding to b_{+}^{\otimes n} have n\times m_{k} rows

of length k
,

and the associated riggings takes the form

J_{1}^{(k)}\leq J_{2}^{(k)}\leq\cdots\leq J_{m_{k}}^{(k)}
\leq J_{1}^{(k)}+p_{k}\leq J_{2}^{(k)}+p_{k}\leq\cdots\leq J_{m_{k}}^{(k)}+p_{k}
\leq\cdots

(5.6) \leq J_{1}^{(k)}+(n-1)p_{k}\leq J_{2}^{(k)}+(n-1)p_{k}\leq\cdots\leq J_{m_{k}}^{(k)}+(n-1)p_{k}.
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In view of this observation, we define extension of riggings

(5.7)  $\iota$:(J_{i}^{(k)})_{1\leq i\leq m_{k}}\ovalbox{\tt\small REJECT}(J_{i}^{(k)})_{i\in \mathbb{Z}}
by the relation

(5.8) J_{i+m_{k}}^{(k)}=J_{i}^{(k)}+p_{k}.
This  $\iota$(J) can be considered as an element of the following set

(5.9) \overline{\mathcal{J}}_{k}=\{(J_{i}^{(k)})_{i\in \mathbb{Z}}|J_{i}^{(k)}\in \mathbb{Z}, J_{i}^{(k)}\leq J_{i+1}^{(k)}, J_{i+m_{k}}^{(k)}=J_{i}^{(k)}+p_{k}, \forall i\}
We also define

(5.10) \overline{\mathcal{J}}=\overline{\mathcal{J}}( $\mu$)=\overline{\mathcal{J}}_{k_{1}}\times\overline{\mathcal{J}}_{k_{2}}\times\cdots\times\overline{\mathcal{J}}_{k_{\mathrm{s}}}.

5.4.3. Slide $\sigma$_{l} and equivalence relation On the extended riggings, we define the

following important operations.
Definition 5.7. For l\in \mathbb{Z}_{\geq 1} ,

we define $\sigma$_{l} : \overline{\mathcal{J}}_{k}\mapsto\overline{\mathcal{J}}_{k} by

(5.11) $\sigma$_{l} : (J_{i}^{(k)})_{i\in \mathbb{Z}}\displaystyle \ovalbox{\tt\small REJECT}(J_{i+$\delta$_{l,k}}^{(k)}+2\min(l, k))_{i\in \mathbb{Z}}.
We define abelian group \mathcal{A} by

(5.12) \mathcal{A}=\{$\sigma$_{k_{1}}^{n_{1}}$\sigma$_{k_{2}}^{n_{2}}\cdots$\sigma$_{k_{\mathrm{s}}}^{n_{\mathrm{s}}}|n_{1}, n_{2}, . . . , n_{s}\in \mathbb{Z}\}.

We call an element of \mathcal{A} slide. \square 

We naturally define $\sigma$_{l} on \overline{\mathcal{J}} by $\sigma$_{l}(\overline{\mathcal{J}})=$\sigma$_{l}(\overline{\mathcal{J}}_{k_{1}})\times$\sigma$_{l}(\overline{\mathcal{J}}_{k_{2}})\times\cdots\times$\sigma$_{l}(\overline{\mathcal{J}}_{k_{\mathrm{s}}}) .

Definition 5.8. We define equivalence relation \simeq between  J, K\in\overline{\mathcal{J}} by the fol‐

lowing condition: J\simeq K if \exists $\sigma$\in \mathcal{A} such that J= $\sigma$(K) . \square 

We have the following standard form with respect to the above \simeq.

Proposition 5.9. For any \overline{J}\in\overline{\mathcal{J}}( $\mu$) , there exist d\in \mathbb{Z} and  J\in Rig() such

that \overline{J}\simeq $\iota$(J)+d.

Sketch of proof. There is a general algorithm to derive the standard form. Basis

of the algorithm is the relation p_{k_{i}}>0(2\leq i\leq s) . See Lemma 3.9 of [KTT] for more

details. \square 
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5.4.4. Interpretation of $\sigma$_{l} By using Theorem 4.1, we can give interpretation of

slide $\sigma$_{l} in terms of the bijection  $\phi$ . Suppose we have two expressions  p=\overline{T}_{1}^{d}(p) and

p=\overline{T}_{1}^{d'}(p_{+}') with highest paths p+ and p_{+}' . Let the rigged configuration corresponding
to p+(resp. p_{+}') be (, J) (resp. (, J . Draw local energy distribution of p.

If the difference between p+ and p_{+}' is solitons of lengths l_{1} ,
. . .

, l_{s} ,
then we have

(5.13)  $\iota$(J')+d'=\displaystyle \prod_{i=1}^{S}$\sigma$_{l_{i}} $\iota$(J)+d.
Hence  $\iota$(J')+d'\simeq $\iota$(J)+d . This follows from direct calculation using Eq.(4.1).

Example 5.10. Consider the paths

p=221221112221111 and p'=111222111122122.

Here we have omitted \otimes and fr ames of tableaux, and  p=\overline{T}_{1}^{5}(p') . Then the local energy

distribution takes the following form (all letters 0 are suppressed):

1,\mathrm{j} 0,\mathrm{j}

2,\mathrm{j} 1,\mathrm{j}

3,\mathrm{j} 2,\mathrm{j}

We are setting d=0, d'=5, l_{1}=3 and l_{2}=1 (vacancy numbers are p_{3}=1 and

p_{1}=9) . The rigged configurations are

p p'

Calculation goes as follows:
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\rightarrow^{$\sigma$_{1}} \rightarrow^{$\sigma$_{3}} = 5+

11 13

This coincides with Eq. (5.13). \square 

5.4.5. Angle variables and inverse scattering formalism

Definition 5.11. Given arbitrary element b\in B_{1}^{\otimes L} where number of 2 in b is

equal to or less than that of 1. Then the angle variable [ $\iota$(J)+d]\in \mathcal{J}( $\mu$) corresponding
to b is defined by the following procedure.

1. Find integer d and highest path b+ such that b=\overline{T}_{1}^{d}(b_{+}) .

2. Apply the bijection  $\phi$ and obtain  $\phi$(b_{+})=((1^{L}), (, J)) .

3. Extend the rigging to obtain  $\iota$(J)+d\in\overline{\mathcal{J}}( $\mu$) .

4. Ta ke equivalent class with respect to\simeq and obtain [ $\iota$(J)+d]\in \mathcal{J}( $\mu$) . \square 

Remark. The procedure in Definition 5.11 uniquely determines the angle variable,

despite the non‐uniqueness of (d, b_{+}) in Step 1. \square 

The following is the main theorem of [KTT].

Theorem 5.12. Let the angle variable corresponding to b be (J_{i}^{(k)})_{i\in \mathbb{Z},k\in H}.
Then the angle variable corresponding to \overline{T}_{l}(b) is (J_{i}^{(k)}+\displaystyle \min(k, l))_{i\in \mathbb{Z},k\in H}. \square 

§5.5. Ultradiscrete Riemann theta function

In this section, we assume that all solitons have distinct lengths $\mu$_{1}<$\mu$_{2}<\cdots<$\mu$_{g}.
More general case including solitons with same length can be treated similarly (see
[KS2]). Define ultradiscrete Riemann theta function as follows:

(5.14)  $\Theta$(\displaystyle \mathrm{z})=\lim_{ $\epsilon$\rightarrow+0} $\epsilon$\log(\sum_{\mathrm{n}\in \mathbb{Z}^{g}}\exp(-\frac{{}^{t}\mathrm{n}A\mathrm{n}/2+{}^{t}\mathrm{n}\mathrm{z}}{ $\epsilon$}))
=-\displaystyle \min_{\mathrm{n}\in \mathbb{Z}g} { {}^{t}\mathrm{n}A\mathrm{n}/2+t nz}.

Here A is the symmetric positive definite g\times g integer matrix appearing in the string
center equation [KN]:

(5.15) (A)_{i,j}=$\delta$_{i,j}p_{$\mu$_{i}}+2\displaystyle \min($\mu$_{i}, $\mu$_{j}) .
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Here p_{i} is the vacancy number.

We introduce the vectors

(5.16) \displaystyle \mathrm{h}_{l}=(\min($\mu$_{i}, l))_{i=1}^{g}\in \mathbb{Z}^{g},

(5.17) \mathrm{p}=(p_{$\mu$_{i}})_{i=1}^{g}\in \mathbb{Z}^{g}.

Again, consider the highest path b+ obtained by b=\overline{T}_{1}^{d}(b_{+}) . Let the rigging corre‐

sponding to b+\mathrm{b}\mathrm{e}\mathrm{J}=(J_{i})_{i=1}^{g} . Then we define \mathrm{I}=(J_{i}+d)_{i=1}^{g}.

Definition 5.13. For 1\leq k\leq L and r=0 , 1, we define the ultradiscrete tau

function as follows:

(5.18) $\tau$_{r}(k)= $\Theta$(\displaystyle \mathrm{I}-\frac{\mathrm{p}}{2}-k\mathrm{h}_{1}+r\mathrm{h}_{\infty})
\square 

Theorem 5.14. Under the above settings, the state p is expressed as p=(1-
x(1) , x(1))\otimes\cdots\otimes(1-x(L), x(L)) ,

where

(5.19) x(k)=$\tau$_{0}(k)-$\tau$_{0}(k-1)-$\tau$_{1}(k)+$\tau$_{1}(k-1) .

\square 

Proof of this assertion uses Proposition 6.2 and the main result of [KSY]. See [KS1].
Note that this result itself is independent to Theorem 5.12.

Combining this and Theorem 5.12, we solve the initial value problem of the pBBS.

§6. Appendix: Tensor product of highest paths

In the appendix, we clarify special property of tensor product of highest paths
which gives the basis for the inverse scattering formalism of pBBS. To begin with, we

recall famous characterization of highest paths.

Lemma 6.1. The highest elements b (\ovalbox{\tt\small REJECT} b=0) of the form b_{1}\otimes\cdots\otimes b_{L}\in B_{1}^{\otimes L}
are characterized by the following Ya manouchi condition:

(6.1) \#\{1\leq i\leq k|b_{i}=1\}\geq\#\{1\leq i\leq k|b_{i}=2\}
for all 1\leq k\leq L. \square 

In order to prove the following assertion, we need to look at the original combi‐

natorial description of the map  $\phi$ in addition to Theorem 4.1. For description of the

combinatorial algorithm of  $\phi$ , see, e.g., Appendix A of [KTT] or Appendix \mathrm{C} of [KSY].
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Here we summarize basic definitions which will be used in the proof. Consider the rigged

configuration (($\lambda$_{i})_{i=1}^{L}, (l_{j}, I_{j})_{j=1}^{N}) . We call  $\lambda$ quantum space and (l, I) configuration.
Then the vacancy number p_{k} for k>0 is defined by

(6.2) p_{k} :=\displaystyle \sum_{i=1}^{L}\min(k, $\lambda$_{i})-2\sum_{j=1}^{N}\min(k, l_{j}) .

The row l_{j} is called singular if the corresponding rigging I_{j} is equal to the vacancy

number p_{l_{j}} for the row l_{j} , i.e., p_{l_{j}}=I_{j} . Finally, we call quantity p_{l_{j}}-I_{j} corigging. It

is known that p_{l_{j}}\geq I_{j} for all (l_{j}, I_{j}) .

In the following, we have to consider paths of the form q\otimes r where q is arbitrary

highest path and r is highest path of the form r\in B_{1}^{\otimes M} . The basic points of the

combinatorial procedure of  $\phi$ in this setting are the following. First of all, recall that

the combinatorial procedure proceeds recursively from the left of path to the right.
So we assume that we have done the procedure on  q and we exclusively consider the

combinatorial procedure on r . To be more precise, suppose that we have constructed

the rigged configuration corresponding to q\otimes r_{[k]} where r_{[k]} is the first k components of

r . Then we are going to construct the rigged configuration corresponding to q\otimes r1 ]

according to 1 or 2 of (k+1)\mathrm{t}\mathrm{h} factor of r . In both cases, we add one row of length
one to the quantum space of the rigged configuration corresponding to q\otimes r_{[k]} . For 2,
we add one box to the longest singular row of configuration or, if there is no singular

row, we add one row of length one to the configuration. The riggings for q\otimes r1 ] are

the same as those for q\otimes r_{[k]} except the rigging of row of configuration that is different

from q\otimes r_{[k]} . We set the latter rigging equal to the vacancy number (computed with

the data of the rigged configuration for q\otimes r1 ]) for the corresponding row.

Proposition 6.2. Given two highest paths q and r as follows:

(6.3) q\in B_{$\lambda$_{1}}\otimes B_{$\lambda$_{2}}\otimes\cdots\otimes B_{$\lambda$_{L}},

(6.4) r\in B_{$\mu$_{1}}\otimes B_{$\mu$_{2}}\otimes\cdots\otimes B_{$\mu$_{M}}.

Suppose that their rigged configurations are  $\phi$(q)=( $\lambda$, (l, I)) and  $\phi$(r)= (, (m, K)) .

Then the rigged configuration of the highest path q\otimes r is given by  $\phi$(q\otimes r)=( $\lambda$\cup $\mu$, (l\cup
 m, I\cup K where K'=(K_{i}'(j)) is given by

(6.5) K_{i}^{(j)}=K_{i}^{(j)}+\displaystyle \tilde{p}_{j}\prime, \tilde{p}_{j}:=\sum_{k_{1}}\min(j, $\lambda$_{k_{1}})-2\sum_{k_{2}}\min(j, l_{k_{2}}) ,

and (l\cup m, I\cup K') means the union of (l, I) and (m, K') as multi‐sets of rows assigned
with rigging. \tilde{p}_{j} is the vacancy number for ( $\lambda$, (l, I)) .
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Proof. Special version ( $\lambda$_{i}=1 and $\mu$_{i}=1 for all i) of this claim is proved in Lemma

C.1 of [KTT], omitting some of details. We include here an alternative proof intended

to clarify why the highest weight \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\otimes $\Lambda$ is necessary for this result.

Consider the path  q\otimes r\otimes 1 with  $\Lambda$\gg| $\mu$| . Recall the property of the energy

function  H(b\otimes u_{l})=0\mathrm{f}\mathrm{o}\mathrm{r}\otimes $\Lambda$ arbitrary  b\in B_{k} . This means that entries of the local energy

distribution under 1 are all 0 . Therefore the rigged configuration obtained by
Theorem 4.1 is the same as that for the path q\otimes r except the extra (1^{ $\Lambda$})\otimes $\Lambda$ of the quantum

space. So we can always think about paths of the form  q\otimes r\otimes 1 by putting the
\otimes $\Lambda$ \otimes $\Lambda$

tail 1 on the right of a given path. Consider the isomorphism  q\otimes r\otimes 1 \simeq

 q\otimes p^{*}\otimes(\otimes_{i}u_{$\mu$_{i}}) ,
where p^{*}\in B_{1}^{\otimes $\Lambda$} and p^{*} is highest. From Lemma 8.5 of [KSS], these

two isomorphic paths correspond to the same rigged configuration. Therefore we can

assume r\in B_{1}^{\otimes M} without loss of generality.
Recall the Yamanouchi condition on r and consider the combinatorial procedure of

 $\phi$ . Assume that we have finished  $\phi$ on  q part and we are going to apply  $\phi$ to  r . Since

we are assuming r\in B_{1}^{\otimes M} ,
all letters 1 contained in r correspond to length 1 row of

the quantum space. Fix a row of length l that was constructed from q ,
and consider

the change of corrigings induced by r . During the procedure  $\phi$ ,
if the chosen row does

not obtain new box, then the corresponding rigging does not change. In such situation,
we only need to keep track of change of the vacancy numbers by using Eq.(6.2). Then

letters 1 of  r increase its corigging by 1, on the other hand, letters 2 of r decrease the

coriggings at most 1. Therefore the Yamanouchi condition means that, after creating
rows corresponding to q ,

those rows never become singular during r.

Hence we can assume that rows corresponding to r are independent to that of q,

thus we have (l\cup m) as a configuration. In terms of the local energy distribution, this

means that no solitons cross the boundary between q and r . As to the riggings, those

corresponding to m are larger than K by \tilde{p}_{j} . This follows from direct calculation using

Eq.(4.1). \square 
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