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The Elliptic Quantum Group U(M,(;[Q)

By

Hitoshi KONNO*

Abstract

We survey recent results on a formulation of the elliptic quantum group Uy ,(sl2) as an
H-Hopf algebroid and its representation theory. We put emphasis on a connection of Uq7p(;[2)
with the quantum affine algebra U, (sl2) and a constructive derivation of both finite and infinite-
dimensional representations from those of U, (5A[2) Included is an announcement of a new result
on a criterion for the finiteness of irreducible pseudo-highest weight representations stated in
terms of an elliptic analogue of the Drinfeld polynomials. A derivation of the type I and II
vertex operators of Uq7p(;[2) and its implication in the algebraic analysis of elliptic solvable
lattice models are also explained.

§1. Introduction

Theory of elliptic quantum groups has been developed in the two different ap-
proaches, the one based on H-Hopf algebroids [10] and the other on quasi-Hopf algebras
8].

The H-Hopf algebroid was introduced by Etingof and Varchenko [10], motivated by
the work of Felder and Varchenko [12, 13]. There are some structures added by Koelink
and Rosengren[19, 31]. See also a survey by van Norden [34]. A similar coalgebra
structure was introduced by Lu [30] and Xu [35]. As an H-Hopf algebroid, Felder’s
elliptic quantum group E;, (slz) was formulated in terms of the L operator satisfying
the RLL relation associated with the elliptic dynamical R matrices[12, 13, 10, 20].

The quasi-Hopf algebra formulation was carried out by Jimbo, Konno, Odake and
Shiraishi [17] motivated by the works of Drinfeld[8], Babelon, Bernard and Billey [2] and
Fronsdal [15]. There are two types of elliptic quantum groups (quasi-Hopf algebras),
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the vertex type Aq,p(glN) and the face type By x(g), where g is an affine Lie algebra. p
is a complex parameter giving the nome of the related elliptic functions. A denotes a
Cartan subalgebra valued parameter which provides the elliptic nome and the dynamical
parameters. Both A, , (;[ ~) and By »(g) are isomorphic to the corresponding quantum
affine algebras U, (g) as associative algebras, but their coalgebra structures are deformed
from U,(g) by the twistors E(r) and F'(\), respectively[2, 15, 17]. Here r is related to
p by p = ¢*". Felder’s elliptic quantum group also has a formulation as a quasi-Hopf
algebra[9].

The classification of the vertex and the face types is based on the fact that the
vector representation of the universal dynamical R matrix of Aq,p(s/-\lg) yields Baxter’s
elliptic R matrix for the eight-vertex model[3], whereas the one of B, (g) [17, 21, 22, 25]
yields the face type elliptic Boltzmann weight of the SOS face model associated with
g [1, 16]. Since the latter Boltzmann weights are nothing but the elliptic dynamical R
matrices used in Felder’s elliptic quantum groups, we classify Felder’s ones as the face
type. See also [4] for a universal formulation of the vertex-face correspondence in the
quasi-Hopf algebra scheme.

FEach approach has advantages and disadvantages. An advantage of the quasi-Hopf
algebra is that each of A, ) (;[N) and By x(g) has an apparent connection to U,(g) by
the twist procedure. In particular, we can formulate both algebraic and representation
theoretical objects of the quasi-Hopf algebra, such as the comultiplication, the universal
dynamical R matrices and the vertex operators, from the corresponding objects of
Uq(9)[17]. However a disadvantage is a complication of the coalgebra structure due to
the twist procedure mentioned above, so that it is not suitable for a practical calculation.

In contrast, the coalgebra structure of the known H-Hopf algebroid is simple
enough for practical use. In fact it was already applied to a study of tensor prod-
uct representations[13] and of co-representations[19, 20]. In particular, by studying
the co-representation, Koelink, van Norden and Rosengren have succeeded to derive
the terminating very-well-poised balanced elliptic hypergeometric series 12V1; and their
biorthogonality relations, which were introduced by Frenkel-Turaev|14] and developed
by Spiridonov and Zhedanov([32, 33]. However a disadvantage is a lack of direct con-
nection to U,(g) even as an associative algebra. This defect seems to be an obstacle
to extend the known H-Hopf algebroids associated with finite-dimensional simple Lie
algebras to those associated with affine Lie algebras and to develop their representation
theory in systematic way.

In this paper, we explain a new realization of the face type elliptic quantum group
given by the elliptic algebra Uq,p(;[g)[%, 27]. Tt is a realization by the Drinfeld gener-
ators of the quantum affine algebra U, (;[2) and has an H-Hopf algebroid structure, so
that it provides a complement to the above two approaches.
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The elliptic algebra Uq,p(s/-\lg) was introduced in [24] as an elliptic analogue of the
algebra of the Drinfeld currents for Uq(g[g). As an associative algebra, Uq,p(g[g) is
isomorphic to the tensor product of U, (sly) and the Heisenberg algebra {P,e@}[18]. A
similar algebra was studied in [35]. The generators of Uy ), (;[2) are treated through the
generating functions called the elliptic currents. In terms of the elliptic currents, we
can construct the L operator and derive the RLL relation for Uq,p(glg)[18]. It turns
out that the resultant RLL relation is nothing but the one for Felder’s elliptic quantum
group with a central extension. We hence formulate the H-Hopf algebroid structure on
Uq,p(glg) in a way similar to [10, 20], but with a modification due to the existence of
the non-zero central element.

Due to a direct connection to U, (sly), we can derive all representations of Ugp (sly)
constructively from those of U, (sly). This yields quite a parallel structure to Uq(f/u\[g)
for both finite and infinite -dimensional representations. In particular, we can state a
criterion for the finiteness of irreducible pseudo-highest weight representations in terms
of an elliptic analogue of the Drinfeld polynomials. This provides an elliptic analogue of
the works by Drinfeld[7] and by Chari and Pressley[5]. As an example of the application
of infinite-dimensional representations, we also report on a formulation and derivation
of the type I and II vertex operators of Uy, (;[2) studied in [26].

This paper is organized as follows. In the next section, we review the elliptic al-
gebra Uq,p(g[g). The L operator and the RLL relation are also introduced. In Sect.3,
we describe an H-Hopf algebroid structure of Uq,p(g[g) following [26, 27]. In Sect.4 we
summarize some basic facts on the dynamical representations. Theorem 4.2 is funda-
mental in a constructive derivation of the dynamical representations of Uy, (;[2) Sect.b
is devoted to a study of finite-dimensional irreducible pseudo-highest weight represen-
tations and includes an announcement of new results. In Sect.6, we report a result on
the vertex operators of Uq’p(f/u\[g) following [26].

In the forthcoming paper [27], we plan to provide proofs of the statements in
Sect. 3, 4, 5 and also report on a structure of the finite-dimensional tensor product
representations as well as an alternative derivation of the 15V7;.

§2. The Elliptic Algebra U, ,(sly)

In this section we review a definition of the elliptic algebra Uq,p(g[g) and its RLL
relation following [18, 26, 27].
§2.1. Definition of U, ,(sl,)
Let us fix a complex number ¢ such that ¢ # 0, |¢| < 1.

Definition 2.1.  [8] For a field K(D C), the quantum affine algebra K[Uq(g[g)]
in the Drinfeld realization is an associative algebra over K generated by the standard
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Drinfeld generators a, (n € Zo), = (n € Z), h, ¢,d. The defining relations are given

n

as follows.

c: central ,
[h,d] =0, [d an]=na,, [dzF]=nzt,
[h,a,] =0, [h, xE ()] = :I:Qxi(z),

2n|,len
[anaam] = %q_clnlén—l—m,m

20g _cin|n
an, o (2)] = Ea el g (o),
a2 ()] = —28em- (o),
n

(2 = ¢FPw)a* (2)a™ (w) = (¢%22 — w)a™ (w)a™(2),

o @™ )] = — o= (6072wl Tu) = 6(a° ol w))

n —n

where we use [n]g = =1+, 6(z) = }_, ¢z 2" and the Drinfeld currents defined by
¥ (2) = Zwﬁz‘”,
nez
b(q?2) = ¢" exp ((q —qH anz‘”> . olg 2) = q Mexp (—(q —q > a_nz”> .
n>0 n>0

We also denote by K[U;(glz)] the subalgebra of K[Uq(s/-\lg)] generated by the same gen-
erators as K[Ugy(sl2)] except d.

Remark. We follows the conventions in [18]. In particular, we occasionally treat c as a
complex number on the understanding that we make a specialization each time.

Let 7 be a generic complex number. We set 7* = r — ¢, p = ¢*" and p* = ¢*" . We
define the Jacobi theta functions [u] and [u]* by

2 2

- @p(q

u . g "
), [u]* = ———0p+(¢°"),

g
u) = (p*; p*)3,

(p;p)3,
Op(2) = (2;0) 0 (P/ %5 P) o (D5 P) o

where

o0

(zp1p2 o Pm)oe = | (A —2piiph? - pl).

n1,Mn2, 7nm:O

_ 2w

Setting p = e~ 7, [u] satisfies the quasi-periodicity [u+r] = —[u], [u+r7] = —e W[y,
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Let {P,e?} be a Heisenberg algebra commuting with C[U, (sly)] and satisfying
(2.1) [P,e?] = —e@.

We take the realization @ = 5. Weset H = CP @ Cr* and H* = CQ @ C% with
the pairing <, >.

0
<Q,P>=1=< LT >,
or*

the others are zero. We also consider the abelian group H* = ZQ. We denote by C[H*]
the group algebra over C of H*. We denote by e® the element of C[H*] corresponding
to o € H*. These e* satisfy e®e” = e**# and (e*)™! = e~®. In particular, e® = 1 is
the identity element.

Let Myz+ be the field of meromorphic functions on H*. We regard a meromorphic
function f = f(P,r*) of P and r* as an element of My« by f(,u) = f(< u, P >
, < p, Tt > ) pe HE.

Now we take the field F = Mpy- as K and consider the semi-direct product C-
algebra Uq,p(g[g) = F[Uq(g[g)] ®c C[H*] of F[Uq(g[z)] and C[H*], whose multiplication
is defined by

(f(Pr*)a®e) - (9(Pri)b@el) = f(Pr)g(P+ < a, P >,1%)ab@ 7,
a,b € ClU,(sk)], f(P,77), g(P,r*) € F,, 3 € H*.

The following automorphism ¢, of C[U, (5/'\[2)] is the key to our “elliptic deformation”
[18].

c—c¢, hw—h, d—d,

a7 (z) = ut(z,p)a"(2), 27 (2) =2 (2)u”(2,p),
Y(z) = ut (g2, p)(2)u” (g2, p),

p(2) = ut (a2, p)p(2)u” (%2, p).

Here we set

u* (2,p) = exp (Z ﬁ(g)) L u () = exp (— > i%(q—%r") .

n>0

Definition 2.2.  We define the elliptic currents E(u), F(u), K (u) € Uy, (1) [[u]
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and d by
E(u) = ¢p(a*(2))e? Q™7
Flu)=¢p(a=(2)2 7,

u) = ex La )" lexp | — oy z "
R p(,;) [2n]q[r*n]q —n(4°7) ) p( ;[Qn]q[rn]q " )
XGQZ—#(zp—l)Jr%h,
J:d—ﬁi@hdﬂP+U+£ﬂP+h—le+h+m

where we set z = ¢%.

From Definition 2.1 and (2.1), we can derive the following relations.
Proposition 2.3.

c: central,
[haan] =0, [haE(u)] = QE(’U,), [h,F(’U,)] = _QF(U)a
[d,h) =0, [d,an) = nan,

B = (=4 - ) B, 4P = (=5~ 1) Flu)

oz r*

2njq4len)q _oin
Prlerl i,

[an, am] = m,0

lan, B(w)] = 28 gelnln gy,

an. F(u)] = - 2210 pu),
B()E() = Tz ) E(w),
[u—v—1]
PO)F() = o FO)F ()
[B(u), Flv)] = - _1q_1 (5 (f%) HY(¢?w) -4 (q g) H‘(q‘c/zw)) ,

where z = ¢**, w = ¢*?,
1 1 1 1
Hi(z) =rK (u:I:E(r—§)+§>K(ui§(r—§)_§> ,
I €17 ) (%20, 4 oc (PG? 2,0, ¢*) 0o
k= lim >——"—"* 7l 7 7} .
z—q=2 §(2;p,q) (%250, ¢*) oo (P71, 4*) o

, £(zip,q) =
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Definition 2.4. We call a pair ( IF[Uq(s/-\lg)] ®c C[H*], ¢,) the elliptic algebra

U, .p(sl2). We also denote by Ué,p(g[g) the subalgebra F[Ué(g[z)] ®¢ C[H*] of U, ,(sly).

The following relations are crucial in the formulation of the H-Hopf algebroid struc-

ture on Uq,p(s/-\[g). See Sect.3.2.

Proposition 2.5.

(K (u), P] = K(u), [E(u), Pl =2E(u), [F(u),P] =0,
[K(u),P+h] =K(u), [E(u),P+h]=0, [F(u),P+h]=2F(u).

§2.2. The RLL-relation for U, (sl)

In order to define the L operator, we need the half currents defined by the following

formulae.

Definition 2.6.

K™ (u)

[u—u +c¢/2]*[P —1]* 2miz"’
[u—u +P+h—1][1] d7
[u—v|[P+h—1] 2miz"

;2 [u—u +c/2—P+1]"[1]* d
B

2u_ The contours C* and C are chosen in such a way that

Here 2/ = ¢** and z = ¢
(n > 1) but not

C* encircles zgp™™ (n > 1) but not z¢°p™ (n < 0), C encircles zp™
a*all]"xk _ 1.

zp™ (n < 0), respectively. The constants a,a”™ are chosen to satisfy =

Then we define the operator Lt (u) € EndcV @ Uy p (;[2) with V = C? as follows.

Definition 2.7.

~ [ 1F*(u) K*(u—1) 0 1 0
L+(u)_<0 | )( 0 K+(u)—1> <E+(u)1>'

From the relations in Proposition 2.3, we obtain the RLL relation for U, (;[2)

Proposition 2.8.  The operator EJF(U) satisfies the following RLL relation.

RTO2 (uy —ug, P+ R)LTW (uy) L3 (ug)

(22) = L @ (up) LYW (u) ) RT*OD (uy — iy, P),
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where RY (u, P+ h) denotes the elliptic dynamical R matrices given by

1
2.3 R ) = () | B
1
with
R e e L
b(u, 5) = [”g][j_” [ﬁ]u], (u,5) = %Eiﬂ
E(u,s)z%ﬁlﬂ, E(U,s):%,

and R™*(u, P) denotes the R matrix obtained from R™(u, P) by the replacements r —
rp—ptand[ ][]

It is also worth while noting the following proposition immediately obtained from
Proposition 2.8, which indicates a connection between U, ,(slz) and the quasi-Hopf
algebra By x(sl2).

0-1
Lt (u, P) is independent of Q and satisfies the following dynamical RLL relation.

~ 10
Proposition 2.9.  [18] Let us set Lt (u, P) = Lt (u)e 9@, h = ( ) . Then

R (uy —ug, P4+ h) LW (uy, PYLT® (ug, P 4+ 1Y)
(2.4) = LT (ug, PYLTW (ug, P+ hP) R (4 — uy, P).

This is the same dynamical RLL relation that characterizes the quasi-Hopf algebra
Bq,)\(g[g) with the parametrization A = (r* 4+ 2)Ag + (P + 1)A;[18]. In fact, under this
parametrization, the vector representation of the universal dynamical R matrix R(A) of
By, A(sly) coincides with RT*(u, P) in (2.3). Recalling also that by definition B,, A(5l2)
with the usual parameter A\ € b is isomorphic to C[U, (,;\[2)] as an associative algebra,
we have the isomorphism from Bq)\(g[g) with A = (r* 4+ 2)Ag + (P + 1)A; to F[U, (sl2)].
Combining these facts, we have the isomorphism U, ,(sly) 2 By (sly) ® C[H*] with
A= (r*+2)Ag + (P +1)A; as a semi-direct product algebra.

Note also that the ¢ = 0 case of (2.4) is the dynamical RLL relation studied by
Felder [12, 9], whereas the ¢ = 0 case of (2.2) is the RLL relation studied in [10, 11, 19]
for the trigonometric R, and in [20] for the elliptic R.
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§3. H-Hopf Algebroid Structure

This section is an exposition of the H-Hopf algebroid structure on U, ), (s12)[26, 27].
Our H-Hopf algebroid is an extension of the one studied in [10, 11] and [19, 20] to the
one with the central element c.

§3.1. Definition of the H-Hopf Algebroid[10, 11, 19]

Let A be a complex associative algebra, H be a finite dimensional commutative

subalgebra of A, and M~ be the field of meromorphic functions on H* the dual space
of H.

Definition 3.1. An H-algebra is a complex associative algebra A with 1, which

is bigraded over H*, A= @ A,p3, and equipped with two algebra embeddings
o,BEH*
Wiy oy = M= — Agp (the left and right moment maps), such that

~ ~ ~ ~

:ul(f)a’:a:ul(Taf)) /J“I’(f)a’:au'r(Tﬁf)7 CLEAaﬁ, fGMH*a

~ ~

where T, denotes the automorphism (T, f)(\) = f(A + a) of Mp~.

Definition 3.2. An H-algebra homomorphism is an algebra homomorphism 7 :
A — B between two H-algebras A and B preserving the bigrading and the moment

maps, i.e. m(Aag) C B, for all &, € H* and W(uf‘(f)) = ulB(f),w(uf(f)) = ,uf(f)

Let A and B be two H-algebras. The tensor product AQB is the H*-bigraded
vector space with

(AéB)aﬁ = @ (Aory QM Bvﬁ)a
yEH*

where ®pr,,. denotes the usual tensor product modulo the following relation.
(3.1) pA(Hawb=axuf (b, acAbeB, fe My

The tensor product A®B is again an H-algebra with the multiplication (a ®b)(c®d) =
ac ® bd and the moment maps

WP = pft @1, pf®P =1 ub.
Let D be the algebra of automorphisms My« — M«

D={ Zﬁ‘Tﬁi | fi € My, Bie H* }.
i
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Equipped with the bigrading Do = { fT_a | J/‘\E Mg+, a € H* }, Do =0 (a # )
and the moment maps uP, u? : Mg~ — Dog defined by uP (f) = pP(f) = fTo, D is an
H-algebra. For any H-algebra A, we have the canonical isomorphism as an H-algebra

(3.2) A~ AQRD =~ DRA

by a = a@T_B ~ T ,Qa for all a € A,p. Hence D plays the role of unit object in the
category of H-algebras.

Definition 3.3. An H-bialgebroid is an H-algebra A equipped with two H-
algebra homomorphisms A : A — A®A (the comultiplication) and € : A — D (the
counit) such that

(ARid) o A = (id®A) o A,
(e®id) 0 A = id = (id®e) 0 A,

under the identification (3.2).

Definition 3.4. An H-Hopf algebroid is an H-bialgebroid A equipped with a
C-linear map S : A — A (the antipode), such that

~ ~ ~ ~

S(ur(Ha) = S(@m(F).  Sam(F) = pr(F)S(a), Ya €A, feMy-.
m o (id®S) o A(a) = (e(a)l), Va € A,
m o (S®id) o A(a) = u(Tale(a)l)), Va € Ang,

where m : A® A — A denotes the multiplication and £(a)1 is the result of applying the
difference operator €(a) to the constant function 1 € Mpy«.

~

§3.2. H-Hopf Algebroid Structure on U, ,(sl3)

Now let us consider the elliptic algebra U, (E/u\[g) The commutative subalgebra H
is given in §2.1. Let h = Ch be the Cartan subalgebra, a; the simple root and A,
the fundamental weight of s[(2,C). We set Q = Za; and h* = CA;. Let <,> be the
standard paring of h and h*. Using the isomorphism ¢ : Q@ — H* by na; — nQ, we
define the H*-bigrading of U, , = Uq,p(g[g) by

Ugp = @ (Ug,p)as;

o,BEH*

quq—P _ q<ﬁ,P>$

1
(33) (Uq,p)aﬁ — { = Uq,p qh’xq_h = q<¢ (a—ﬁ)’h>$, } ‘

Noting < ¢~1(a), h >=< a, P >, we have ¢ Thzq=(P+h) = ¢<aP>g for x € (U, p)ap-
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Let My« be the field of meromorphic functions given in §2.1. We define two moment
maps (i, fbr : M+ — (Ugp)oo as follows

~ ~

(3'4) ﬂl(f):f(P—'—har*"i_C): /Jr(f):f(P7r*)'

From (3.3), one finds for € (Uyp)ap

w(f)z = f(P+hr*+ o)z =af(P+ht <a,P>1"+c) = zm(Taf),

~ ~

pr(fle=f(P,r*)e=xf(P+ < B,P >,1%) =xu,(Tsf),

where T, = e® denotes a shift operator Mg+ — My« defined by

~

(Tof) =€e"f(P,rF)e* = f(P+ < a, P >,r").

Equipped with the bigrading structure (3.3) and the two moment maps (3.4), the
elliptic algebra U, ,(sl2) is an H-algebra.
We also have the H-algebra D of the shift operators on My~

ﬁGMH*,Oéi EFI*}

D:{ZﬁTai

whose bigrading structure and moment maps are given as in §3.1.

The tensor product among the H-algebras U,, and D is defined as in §3.1. In
particular, we have the H-algebra isomorphism Uq’p(%D =2U;p = DéUq,p by QT 3=
r=T @z for x € (Uyp)ap-

Now let us consider the coalgebra structure of U, ,. Let Lt (u) be the L operator
introduced in Sect.2.2. We write the entries of LT (u) as

From Proposition 2.5 and Definition 2.7, one finds
Lg_leg (u) € (Uq,p)—€1Q,—€2Q'
It is also easy to check the relations

€2 (U) = Eg_leg (U)f(P + h — €1, T* + C)a
o) =LI (W) f(P —e,17).

Definition 3.5. We define H-algebra homomorphisms, ¢ : U, — D and A :
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Ugp — Uq,péUq,p by

6(6Q) = 6Q, e(u(f)) = elpe(F)) = F(P,r)Ty,
8162 Z Lele’ ®L2_52( )

A(e?) = eQééeQ,
AGu(f) = m(HBL Al (f) = 1&p(f).

We also define an H-algebra anti-homomorphism S : U, , — U, , by

ST =T (1), ST (u)= %ﬁ (1),
~ B [P]* =~ ~ [P+ h+1][P]*
S(Li——l-(u)) - _WL_—'_—F(U_ 1)7 S(Li——(u)) [P+h][P+ ] Li—l—( 1)7

~

S(e?)=e 9 S(u () = m(f), S(u(f) = p(f).

One can check that A and S preserve the RLL relation (2.2). Furthermore one
finds that €, A and S are the counit, the comultiplication and the antipode satisfying
the following relations.

Proposition 3.6.  [27] The maps e, A and S satisfy

(A®id)o A= (id® A)o A,
(e®id)oA=id=(id®e)o A.

mo (id®S)oA(z) = w(e(x)l), Ve Uy,

mo (S®id) o A(z) = pr(Ta(e(z)1)), Vo e (Ugp)as-

Equipped with (A, ¢, S), the H-algebra Uq,p(g[g) is an H-Hopf algebroid.

Definition 3.7.  We call the H-Hopf algebroid (U, , (s/-\lg), H, My, pr, A, S)
the elliptic quantum group Uy, (;[2)

8§4. Representations

In this section, we summarize some basic facts on the dynamical representations of
H-algebras [10, 19] and their apphcatlon to U ,(slz).
Let us consider a vector space V over F, Wthh is h-diagonalizable,

‘7:@17“, VM:{UEV|qhv:q’“‘v (h €h)}.

peh*
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Let us define the H-algebra Dy, ¢ of the C-linear operators on 1% by

DH,XA/: @ (DH,V)Oéﬁa
a,fEH*

X € EndcV
FPr) €F, X(V,) CViip1(ap)

X(f(P,r*)v) = f(P— < B, P >,1")X(v), v e 17,}

9
=
<0
Q
@
—N—

Do, D
r

w V(o= fP+p, "+, H’V(f)v = f(P,r*)v, fe My, ve 17'“,

Note that the subspace (D, ¢)ap consists of the C-linear operators on V of the form
r®e~#, where z is a C-linear operator carrying the weight ¢~!(a — ).

Definition 4.1.  [10, 19] A dynamical representation of Ué’p(g[g) on V is an H-
algebra homomorphism 7 : U, ;’p (sle) = Dy o

Let (Fv, V), Gw, W) be two dynamical representations of Uy ,, (sl3). We define the
tensor product Vew by

VaWw = P VEW),, (VaW),= P Vo @y Woes,
peh* vep*

where ®ys,,. denotes the usual tensor product modulo the relation
(4.1) fPrywvew=v® f(P+v,r"+cw
for w € /WV. The action of scalars f(P,r*) € IF on the tensor space VEW is defined by

FP,r).(v8w) = A () (vEw) = 0® (P, )w

Then one finds a natural H-algebra embedding 0 - DH V@DHW — D
X"}@XW S ('DH’V)a'y@(IDH,W)’Yﬁ = X‘7®XW € (D
(Tv @ Tw) o A U, ,(sla) — D
Vew.

Now let us consider a construction of dynamical representations of Uy ,(sla). Let

nyew oY
H V@W) p- Hence the map g ©

. . /
.Uew gives a dynamical representation of Uq,p(ﬁ[g) on

V be an h*-diagonalizable vector space over F. Let Vg be a vector space over C, and
assume that an action of e% on Vg is defined appropriately. Two important examples

of Vg are Vo = C1 and Vj = @Ce”Q, where 1 denotes the vacuum state satisfying
nez
e?.1 = 1. We then consider the vector space V =V ®¢ Vg over I, where the actions of

F(P,r*) € F and €9 on V are defined by

f(Pr)(v®€) = f(Pr)v®E,
C(f(Pr*w®E) = f(P+ 1,70 ©e%
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foro@eV e V.
Then the following theorem is fundamental in our construction of dynamical rep-

resentations.

Theorem 4.2.  [27] Let V be as above and wy : F[Ué(;[g)] — EndpV be an
algebra homomorphism. Define a map Ty = my ®id : Ué’p(g[z) = F[U, (sly)]@cC[H*] —
EndcV by

Ay (B(u) = v (¢ (a7 (2))e?@z 7,
P47y (h)—1

Ry (Fw) = mv (6, (2~ ()2 =522,
Py (K (1)) = exp (2 %w(a—n)(q%)”> exp (— 3 %m%)z—”)

= [2n]q[r*n

XeQz—ﬁ@P—l)"‘%”V(h)'

Then (T, 17) s a dynamical representation of Ué’p(g[g) onV.

Through this paper we consider dynamical representations obtained in this way.
Let us also state the Poincaré-Birkhoff-Witt theorem for U, ,(sl2).

Definition 4.3.  Let H (resp. N1) be the subalgebras of F[Ué’p(g[g)] generated
by ¢, h and ay, (k € Zg) (resp. by i (n € Z)).

Theorem 4.4.  [27]
Ul (sls) = (V- @ H®Ny) © C[H"].

Here the last @ should be understood as a semi-direct product.

§ 5. Finite-Dimensional Representations

This section is an announcement of some new results on the finite-dimensional
dynamical representations of U, ,(sl2). Detailed discussion will be published elsewhere
[27].

§5.1. Pseudo-highest Weight Representations

We begin by stating a characteristic feature of the finite-dimensional irreducible

dynamical representations.

Theorem 5.1.  Every finite-dimensional irreducible dynamical representation (v, V=
V ®c Vg) of U(;,p(ﬁ[g) contains a non-zero vector of the form Q2 = Q® 1,Q € V such
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that
NztQ=0 Vnez,
N P Q=dtQ,  ¢_,Q=d",Q VneZs,
3) 2.0 =0
) V=0,,0.

with some complex numbers d=,,, didy = 1. Furthermore ¢¢ acts as 1 or —1 on V.

Definition 5.2. We define a pseudo-highest weight representation, a pseudo-
highest weight vector and a pseudo-highest weight to be a dynamical representation
(not necessarily irreducible) (Fy, V), a vector Q € V and a set of complex numbers
d= {din}nezzo satisfying the conditions 1) — 4) in Theorem 5.1, respectively.

The following theorem is useful.

Theorem 5.3.  For a vector Q@ € V satisfying Q.0 = ﬁ, the conditions 1) and
2) in Definition 5.2 are equivalent to the following.
i) LT ()0 =0 Wu,
i1) qh.ﬁ = q>‘§ A e C,
L, (w).Q=Aw, LT (u).Q= D)
with some meromorphic functions A(u) and D(u) satisfying D(u —1)"1 = A(u) and
(5.1) A(u) = P Z Ap 2 p" Amn €Cz=¢*"p=¢q"".

mEZ,nEZZO

U é’p (;[2) admits the universal pseudo-highest weight representation defined as fol-
lows.

Definition 5.4. Let d= {din}nezgo be any sequence of complex numbers. The
Verma module M (d) is the quotient of Uy ,, (sly) by the two sided ideal generated by ¢°—1
and the left ideal generated by {z} (k € Z), 1 —d,} 1,0, —d_,,-1 (n € Zx>¢), e?—1}.

Proposition 5.5.  The Verma module M (d) is pseudo-highest weight with pseudo-
highest weight d. Every pseudo-highest weight representation with pseudo-highest weight
d is isomorphic to a quotient of M (d). Moreover M(d) has a unique irreducible pseudo-
highest weight module.

§5.2. Elliptic Analogue of the Drinfeld Polynomials

We state a necessary and sufficient condition for an irreducible dynamical represen-
tations of U, ,(sl2) to be finite-dimensional. We introduce a natural elliptic analogue of
the Drinfeld polynomials.
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A~

Theorem 5.6.  The irreducible pseudo-highest weight representation (wv,V) of
Uqgp(sla) is finite-dimensional if and only if there exists an entire and quasi-periodic
function Py (u) such that

~ Pv(u—l-l)
Hi(u)ﬂ = CVT(U)

Py (u + 7“) = (—)degPPV (u),
gP  2(u—ay)

Py (u+r7) = (—)de8Pem 50 (C=247) p (),

)

_ 2ms

Toap The symbol cy

Here Q denotes the pseudo-highest weight vector in ‘7, and T =
denotes a constant given by

degP L

r—1 iy

cy=q+ degP H ar,
j=1

<

where degP is the number of zeros of Py(u) in the period parallelogram (1,7) (= the
degree of the Drinfeld polynomial P(z) = lim, oo Py (u), z = ¢**), and a; = ¢** with
a; being a zero of Py (u) in the period parallelogram. The function Py (u) is unique up

to a scalar multiple.

Remark. We can take cy = 1 by the gauge transformation given by (2.11) in [18]. An
example is given in Theorem5.8.

The following Proposition is a direct consequence of the comultiplication formula
for E+(u) and Definition 2.7.

Proposition 5.7.  Let V and W be finite dimensional dynamical representations
of Ué,p(g[g) and assume that the tensor product V&W is irreducible. I;e\t Py (u), Py (u)
and Py gy (u) be the entire quasi-periodic function associated to V,W and VaW in
Theorem 5.6. Then

Py gw(u) = Py (u) Py (u).

§5.3. Evaluation Representations

An important example of finite-dimensional irreducible dynamical representations
of Ué’p(g[g) is the evaluation representation. We here give a summary on the [ + 1-
dimensional evaluation representation obtained from the one of F[U,(sl2)].

Let VW = @l _ Fol | P =v0 g Clw,w™1], and consider the operators h, ST
on V) defined by

hol = (1 —2m)v! S*ol = vﬁnqﬂ, vl =0 form<0, m>I.

m
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In terms of the Drinfeld generators, the [ 4+ 1-dimensional evaluation representation
(710, (i )) of F[U/(slg)] is given by

ﬂ-law(qc) - ]‘7
w" 1 o . 3 .
(5.2) Tiw(an) = — — ((¢" +q ™)q h _ (q(l+1) +gq (1+1) ),
n.qg—q
+h+1+2 w
+ _ gt | T e ht1 W
Tw(@t(2) = § [ ' La(q %)

Now let us consider the vector space V(l)(w) = VU (w) ® C1 and the map 7y, =
T ® id on Ué,p(g[g) = IF[U(;(E:\[Q)] ®c C[H*]. Applying (5.2) to Theorem 4.2 and
noting Definitions 2.2 and 2.6, we can derive the evaluation representation of U, ,(sl2)
as follows.

Theorem 5 8.  (TLw, VO (w)) is the I+1-dimensional irreducible dynamical rep-
resentation of U (5[2) with the pseudo-highest weight vector vl ® 1. In particular, the
images of the matmx elements of L+( ) by the map 7. are given, up to fractional
powers of z,w and q, by

P [u— v+ MA[P — SMP + 42
Wl,w(Li-l-(u)):_ SOI(U—U)[P][P—l-h—I—l] GQa
u—vt "+ PSR
o1(u —v)[P+h—1] ’

- - P[RR

Frw(LT_(u)=—S~

(LT, (1)) = S* e

aw—op
N ~ [u_v h21] 0
ﬂ-la’w(L——(u)) = SOZ(U — 1)) e 9

where z = ¢**, w = ¢*¥, and

1 [+1
oi(u)=—z"2pii(z,p) u+ —]

ot (zp) = g L 2P ) () 2 )
. {pgktit22 {pg=k—1+22} {gh—1+2 /2 {qkH1+2 /)"

Corollary 5.9.  The elliptic analogue of the Drinfeld polynomial associated to
VO (g2v) is given by

Pro(u) = [u—v—l_Tl][u—v—l_Tl—l—l] [u—v—l—l_Tl].

Obviously the zeros of P, ,(u) modulo Zr + Zrt coincide with those of the Drinfeld
polynomial corresponding to the evaluation representation V¥ (¢?¥) of U, 4 (802).
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The following Proposition indicates a consistency of our construction of 7, and
the standard fusion construction of the dynamical R matrices (=face type Boltzmann
weights).

Proposition 5.10.  Let us define the matriz elements of %\l,w(ijlm (u)) by

!
o~ - l -
7rl’w(L;"1€2 (u))vy, = Z (Lg_1€2 (U))Mm/ /J/m,U’Il’TL/7

m/'=0

where iy, =1 —2m. Then we have

(leez (u)),um/um = Rii_l (u—wv, P)ifﬁ:/

Here Rf,(u—wv, P) is the R matriz from (C.17) in [18]. In the casel =1, Rf;(u—v, P)
coincides with the image (71 , @1 4) of the universal R matriz R (X)/[17] given in (2.3).
In the case l > 1, Rfl (u — v, P) coincides with the R matriz obtained by the standard
fusion procedure from R, (u— v, P). In particular the matriz element R}, (u — v, P)g;ﬂ/
is gauge equivalent to the fusion face weight Wi (P+¢',P+¢&'+ ', P+ pu, Plu—v) from

(4) in [6]

§6. Infinite-dimensional Representations and Vertex Operators

Theorem 4.2 is valid also for infinite-dimensional representations. Let (m, V(\;))
be the level-k (¢ = k) irreducible highest weight representation of F[U, (;[2)] with the
highest weight A\, = (kK — )Ag +1A1 (0 < I < k). Here A; (i = 0,1) denote the
fundamental weights of s[(2,C). Then (7 = 7 ®id, V(\,) = B,z V(N) @ Cem™?) is
the level-£ highest weight irreducible dynamical representation of Uy, (s/-\lg)

A realization of ‘7()\1) in terms of the Drinfeld generators a, (n € Zo) and the
g-deformed Zj-parafermion algebra was given in [23, 26]. In [24, 18], we also studied
the Wakimoto representation of Uq’p(g[g) labeled by an integer J (0 < J < k), which is
nothing but the dynamical representation V(X ;).

The H-Hopf algebroid structure allows us to define the vertex operators of Uy, (E/u\[g)
as follows.

Definition 6.1. The type I and II vertex operators of spin n/2 are the inter-
twiners of the U, ,-modules of the form

Bu) : V) = VRV (v), ¥ ) : V)RV - V(v),

where z = ¢2*, and V(\) and V(v) denote the level-k highest weight Uy p-modules
of highest weights A and v, respectively. They satisfy the intertwining relations with
respect to the comultiplication A in Definition 3.5.

(6.1) Ax)®(u) = B(uw)z, z0*(u) = U (w)A(z)  Va € Uyy.
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The physically interesting cases are n = k,A\ = A\;,v = A\;_; for the type I and
n=1,A=X\,v = N4 for the type II vertex operators. See for example [23].
Let us define the components of the vertex operators as follows.

N @) = )

(6.2) B(v— %) =3 @), -
m=0

By using the comultiplication formula for L+ (u) in Definition 3.5 and Proposition 5.10,
we obtain the following theorem.

Theorem 6.2.  [26] The vertex operators satisfy the following linear equations.
(6.3) d(u) Lt (v) = BRI (v —u, P+ h)LT (0)®(u),
(6.4) L) 0* (u) = T* ()Lt ()R} (v — u, P — BY — ),

The relation (6.3) should be understood on 17151)@‘7()\), whereas (6.4) on le)(gﬁ(A)@Vz(n).

Equations (6.3) and (6.4) coincide with (5.3) and (5.4) in [18], respectively. In [18],
those equations were derived by using the quasi-Hopf algebra structure on By, )\(;\[2) and
the isomorphism Uy, (sly) = B,, A(sly) ® C[H*] as a semi-direct product algebra. Under
certain analyticity conditions, these equations determine the vertex operators uniquely
up to normalization. Combining the results obtained here and those in [29, 24, 18, 28,
23], we have established the algebraic analysis scheme for the fusion RSOS models as
well as for the fusion eight-vertex models on the basis of the elliptic quantum group

UQap (;[2 ) ‘

Acknowledgments

The author would like to thank the organizers Susumu Ariki and Masato Okado
for a kind invitation to the workshop. This work is supported by the Grant-in-Aid for
Scientific Research (C)19540033, JSPS Japan.

References

[1] G. E. Andrews, R. J. Baxter and P. J. Forrester, Eight-vertex SOS Model and Generalized
Rogers-Ramanujan-type Identities, J. Stat. Phys., 35, 1984, 193-266.

[2] O. Babelon, D. Bernard, and E. Billey. A Quasi-Hopf Algebra Interpretation of Quantum
3j- and 6j-symbols and Difference Equations. Phys. Lett. B, 375, 1996, 89-97.

[3] R. J. Baxter. Partition Function of the Eight-vertex Lattice Model. Ann. of Phys., 70,
1972, 193-228.

[4] E. Buffenoir, Ph. Roche and V. Terras, Quantum Dynamical coBoundary Equation for
Finite Dimensional Simple Lie Algebras. Adwv.in Math., 214, 2007, 181-229; Universal
Vertex-IRF Transformation for Quantum Affine Algebras. arXiv:0707.0955.



72

[5]
[6]
[7]

(8]
[9]

[10]
[11]

[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

23]

[24]
[25]

[26]

[27]

HiTosur KONNO

V. Chari and A. Pressley, Quantum Affine Algebras, Comm. Math. Phys., 142, 1991,
261-283

E.Date, M.Jimbo, T.Miwa and M.Okado, Fusion of the Eight-Vertex SOS Model |,
Lett. Math. Phys., 12, 1986, 209-215.

V.G.Drinfeld, A New Realization of Yangians and Quantized Afline Algebras, Soviet Math.
Dokl., 36, 1988, 212-216.

V.G.Drinfeld, Quasi-Hopf Algebras, Leningrad Math. J., 1, 1990, 1419-1457.

B. Enriquez and G. Felder, Elliptic Quantum Groups E; ,(sl2) and Quasi-Hopf Algebra ,
Comm.Math.Phys., 195, 1998, 651-689.

P.Etingof and A.Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation
and Dynamical Quantum Groups, Comm.Math.Phys., 196, 1998, 591-640.

P.Etingof and A.Varchenko, Exchange Dynamical Quantum Groups, Comm.Math.Phys.,
205, 1999, 19-52.

G. Felder, Elliptic Quantum Groups, Proc. ICMP Paris-1994, 1995, 211-218.

G. Felder and A. Varchenko, On Representations of the Elliptic Quantum Groups
E; ,(sly), Comm.Math.Phys., 181, 1996, 741-761.

I.B.Frenkel and V.G.Turaev, Elliptic Solutions of the Yang-Baxter Equation and Modular
Hypergeometric Functions, in V.I.Arnold et.al.(eds.), The Arnold-Gelfand Mathematical
Seminars, 171-204, Birkhauser, Boston, 1997.

C. Frgnsdal. Quasi-Hopf deformation of quantum groups. Lett. Math. Phys., 40, 1997,
117-134.

M. Jimbo, T. Miwa and M. Okado, Solvable Lattice Models Related to the Vector Repre-
sentation of Classical Simple Lie Algebras, Comm. Math. Phys., 116, 1988, 507-525.

M. Jimbo, H. Konno, S. Odake and J. Shiraishi, Quasi-Hopf T'wistors for Elliptic Quantum
Groups, Transformation Groups, 4, 1999, 303-327.

M. Jimbo, H. Konno, S. Odake and J. Shiraishi, Elliptic algebra Uq,p(;[g): Drinfeld cur-
rents and vertex operators, Comm. Math. Phys. , 199, 1999, 605-647

E.Koelink and H.Rosengren, Harmonic Analysis on the SU(2) Dynamical Quantum
Group, Acta.Appl.Math., 69, 2001, 163-220.

E.Koelink, Y.van Norden and H.Rosengren, Elliptic U(2) Quantum Group and Elliptic
Hypergeometric Series, Comm.Math.Phys., 245, 2004, 519-537.

T. Kojima and H. Konno, The Elliptic Algebra Uy (;[N) and the Drinfeld Realization of
the Elliptic Quantum Group Bq,x(;[N), Comm. Math. Phys., 239, 2003, 405-447.

T. Kojima and H. Konno, The Drinfeld Realization of the Elliptic Quantum Group
Bq,A(AgQ)), J. Math. Phys., 45, 2004, 3146-3179.

T. Kojima, H. Konno and R. Weston, The Vertex-Face Correspondence and Correlation
Functions of the Fusion Eight-Vertex Models I: The General Formalism, Nucl. Phys.,
B720, 2005, 348-398.

H. Konno, An Elliptic Algebra U, ,(slz) and the Fusion RSOS Models, Comm. Math.
Phys., 195, 1998, 373—403.

H. Konno, Dynamical R Matrices of Elliptic Quantum Groups and Connection Matrices
for the ¢-KZ Equations, SIGMA, 2, 2006, Paper 091, 25 pages.

H. Konno, Elliptic Quantum Group Uq,p(s/a\[g) and Vertex Operators, J.Phys.A:Math.and
Theor., 41, 194012 (12 pages), 2008. Special issue on Recent Developments in Infinite
Dimensional Algebras and Their Applications to Quantum Integrable Systems 2007.

H. Konno, Elliptic Quantum Group Uy, (;[2), Hopf Algebroid Structure and Elliptic Hy-
pergeometric Series, arXiv:0803.2292.



THE ELLIPTIC QUANTUM GROUP U p(sl2) 73

[28] M. Lashkevich and Y. Pugai. Free Field Construction for Correlation Functions of the
Eight-Vertex Model. Nucl. Phys.,B516,1998, 623-651.

[29] S. Lukyanov and Y. Pugai, Multi-point Local Height Probabilities in the Integrable RSOS
Models. Nucl. Phys.,B473,1996, 631-658.

[30] J.-H. Lu, Hopf Algebroids and Quantum Groupoids, Int. J. Math., 7, 1996, 47-70.

[31] H.Rosengren, Duality and Self-duality for Dynamical Quantum Groups, Algebr. Repre-
sent. Theory, 7, 2004, 363-393.

[32] V.P.Spiridonov, and A.Zhedanov, Spectral Transformation Chains and Some New
Biorthogonal Rational Functions, Comm. Math. Phys. 210, 2000, 49-83; Generalized
Figenvalue Problem and a New Family of Rational Functions Biorthogonal on Elliptic
Grids, in J.Bustoz et al. (eds.), Special Functions 2000: Current Perspective and Future
Directions, 365-388, Kluwer Acad. Publ., Dordrecht 2001.

[33] V.P.Spiridonov, An Elliptic Incarnation of the Bailey Chain, Int. Math. Res. Notices 37,
2002, 1945-1977.

[34] Y. van Norden, Dynamical Quantum Groups, Duality and Special Functions, PhD thesis,
2005.

[35] P. Xu, Quantum Groupoids, Comm.Math.Phys., 216, 2001, 539-581.



