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A Product formula for decomposition numbers of the
cyclotomic ¢g-Schur algebra and its analogue for the
Fock space

By

Kentaro Wada*

Abstract

Let . be the cyclotomic ¢-Schur algebra associated to the Ariki-Koike algebra. We
describe a certain product formula for v-decomposition numbers of .. Moreover, we also
describe a product formula for entries of the transition matrix between two bases, the canonical
basis and the standard basis, in the v-deformed Fock space. The formula for the Fock space
is regarded as a counter part for the formula on v-decomposition numbers of . through the
Yvonne’s conjecture. This paper is a survey of the results in [SW1], [W] and [SW2].

§0. Introduction

Let 7, , be the Ariki-Koike algebra associated to &,, x (Z/rZ)", and . be the
cyclotomic g-Schur algebra associated to 7, , introduced by Dipper-James-Mathas
[DJM]. In [DJM], it was shown that .7 is a cellular algebra in the sense of Graham-
Lehrer [GL]. Thus, one of the fundamental problems is determining decomposition
numbers, namely multiplicities of a simple .#-module in the composition factors of a
Weyl (cell or standard) module.

In the case of r = 1 (namely . is the ¢-Schur algebra of type A,,_1), where the
base field is C and ¢ is a root of unity in C, Varagnolo-Vasserot [VV] proved that
decomposition numbers of . can be described by the transition matrix between the
canonical basis and the standard basis of the v-deformed Fock space of level 1. One of
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the points of their proof is the Schur-Weyl duality between the Iwahori-Hecke algebra
H(6,,) of type A,,—1 and the quantum group Uy(gl,,) ([Du]). As a consequence of the
Schur-Weyl duality, . (in the case of type A,,_1) turns out to be a quotient of U,(gl,,).
In the case of r > 2, Yvonne [Y] conjectured that decomposition numbers of . can be
described by the transition matrix between the canonical basis and the standard basis of
a v-deformed Fock space of level r (see the section 5 for more details). This conjecture
is a generalization of the result of [VV], and still open.

On the other hand, in [SakS], Sakamoto-Shoji proved the Schur-Weyl duality, over
Q(q) with an indeterminate g, between the Ariki-Koike algebra .7, , and the quantum
group U,(g), where g is a certain Levi subalgebra of gl,,. In [SawS], Sawada-Shoji
constructed the modified cyclotomic g-Schur algebra 7° which is a quotient of Uy(g),
where ¢ is an element of a ground ring and U,(g) is the specialized algebra obtained from
Kostant-Lusztig’s integral form by specializing the parameters at q. They studied the
relationship with the original cyclotomic g-Schur algebra .#, and Sawada [Saw]| proved
the product formula for decomposition numbers of .¥ by using such relationships and
the structure of 7 . Sawada also showed that the relation between . and 7" can be
obtained from the cellular structure of . without using Sawada and Shoji’s Schur-Weyl
duality.

Fix p = (r1,--- ,rg) € 2% such that ry +--- +r, = r. In [SW1], we constructed
a subalgebra .#P of .¥ and its quotient - associated with p by using the cellular
structure of .. Moreover we proved that 7P is isomorphic to a direct sum of tensor
products of various cyclotomic ¢-Schur algebras with smaller rank than the original .&.
Then we obtained a product formula for decomposition numbers of . by using the
relation between . and %" via .#P and using the structure of P In the case of
p=(1,---,1), 7® coincides with 7" in [Saw], and the structure theorem for 7° has
been obtained in [SawS]. Thus these results are generalization of results in [SawS] and
[Saw]. Note that the structure theorem of 7" in [SawS] needs certain conditions on the
parameters, but our structure theorem of 7 does not require such conditions. In §2
and §3, we shall review these results in [SW1].

In [W], the author proved a similar product formula for v-decomposition numbers
of .. A wv-decomposition number is a v-analogue of the decomposition number de-
fined by using Jantzen filtrations of a Weyl module of .. The product formula for
v-decomposition numbers is obtained by showing that the arguments in [SW1] are com-
patible with a Jantzen filtration of the Weyl module for each algebra. In §4, we shall
review these results in [W].

In [SW2], we obtained a product formula for entries of the transition matrix between
the canonical basis and the standard basis of the v-deformed Fock space. This formula
is regarded as a counter-part for the formula for v-decomposition numbers of . under
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the Yvonne’s conjecture. After giving a brief review on the Fock space and Yvonne’s
conjecture in §5, we shall explain our results [SW2] in §6.

In the body of the paper, we survey results in [SW1], [W] and [SW2]. The first and
the third are joint work with T. Shoji.

§1. Cyclotomic ¢g-Schur algebra associated to the Ariki-Koike algebra

1.1. Let 2 = 57, , be the Ariki-Koike algebra over an integral domain R associated to
the complex reflection group &,, X (Z/rZ)"™ with parameters ¢, Q1, - -+ , Q, € R such that
q is invertible in R, namely 7 is an associative algebra with generators Top, T1,- -+ , Ty, 1
and relations

(To = Q1) (To — Q) =0,

(i —¢)(Ti +1)=0 (i>1),

TyhToTy = ThToTh 1o,

;T = T51T; (Ji —j] >2),
LT =TinaTiTiva (1<i<n-2).

The subalgebra J#(&,,) of S generated by Ti,---,T,,_1 is isomporphic to the
Iwahori-Hecke algebra associated to the symmeteic group &,,. Let s; = (i,7+ 1) for
1 =1,--- ,n—1 be adjacent transpositions, then sy, --- ,s,_1 are the Coxeter generators
of &,. For w € G, let w = s;, ---s;, be a reduced expression of w, and set T, =

T;, -+ T;, . Then T, is determined independent of the choice of reduced expressions. It
is known that {T\, |w € &,} is a basis of #(S,,).

1.2. A composition g = (u1, p2,- -+ ) is a finite sequence of non-negative integers, the
length of the sequence is called the number of parts of i, and || = >, p; is called the size
of p. If a composition A is a weakly decreasing sequence, A is called a partition. An -
tuple pn = (u, -+, (") of compositions is called an r-composition, and the size || of u
is defined by >"_, | pD|. In particular, if all () are partitions, p is called an r-partition.
Fix an r-tuple m = (my,--- ,m,) € Z{, such that m; > n for any i = 1,--- ,r. We
denote by A = A, .(m) the set of r-compositions = (uV),---, (") such that |u| = n
and that pu®) has my, parts for k = 1,--- , 7. We define A = A} .(m) as the subset
of A consisting of r-partitions . By the condition m; > n for any ¢ = 1,--- ,r, AT is
the set of all r-partitions of size n. We define a partial order, so-called the “dominance
order”, on A by u > v if and only if

-1 k -1 k

] l ] l
SUCED WIED SRS 97
i=1 =1 =1 Jj=1
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for 1<I<r,1<k<m If > v and p# v, we write it as u>v.
For p € A, the diagram of p is the set

A standard tableau t of shape A (A € A1) is a bijection t : [A\] — {1,--- ,n} such that
t(i1, j1, k) < t(ia, jo, k) for any i3 < iy, j1 < jo, 1 < k < r. For A € AT, we denote by
Std(A) the set of standard tableaux of shape A. A semistandard A-tableau T of type u
AeAt ueA)yisamap T : [A\] - Nx{1,---,r} such that 4{(4, 5, k) € [\ | T(i,5,k) =
(a,l)} = ugl), kE<1if T(,j,k) = (al) for (i,7,k) € [N, T(i1,4,k) < T(ig,j, k) for
any i1 < i9, j, k and T'(3,71,k) < T(i, j2, k) for any i, j; < ja, k, where the order on
N x {1,---,r} is defined by (a,l) < (a/,I') ifl <" orifa < a’ and | =1". For A € AT
and pu € A, we denote by 7o(\, i) the set of semistandard A-tableau of type p. One can
see that A > p if 7o(\, 1) # 0 from the definition. Set To(A) = UpeaZo(A, p).

1.3. Set Ly =1y and L; = q_lTi_lLi_lTi_l for 1 = 2, m. For n e A, set

'8 ak

Ty = Z Twa ’U,: = H H(Lz - Qk)7

wes, k=11i=1

where &, is the Young subgroup of &,, corresponding to i, a1 = 0 and a, = 25;11 9]
Then u:[ commute with z,. Put m, = u:j:cu, and define a right 7-module M* by

MH =m, 7. The cyclotomic g-Schur algebra .# is defined by

S = 7(A) =Endp (P M*").

neA

By [DJM], it is known that .¥ is a cellular algebra in the sense of [GL] with a
cellular basis

C(A) = {psT|S,T € Ty(\) for some A € AT},

where pgr is a certain homomorphism of s#-modules from M to M* if S € To(\, 1), T €
To(A\,v) and is zero on M7 for 7 € A such that 7 # v. In particular, for A € A", ppapa
is the identity map on M?, where T is the unique element of 7o(A, \). For pu € A, we
denote by ¢, € . the identity on M* and zero on M" for 7 € A such that 7 # pu.
Then we have @y = @papa for A € AT,

1.4. By a general theory of the cellular algebra, we have the following. For S, T € 7y()\)
and ¢ € ., we have

(1.1) osT P = Z rg’@)gogp mod .V,
T'€To(N)
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where r,f,,T,’“”) € R does not depend on S € To()\), and .#V* is an R-submodule of .¥

spanned by {¢yy |U,V € T(X) for some N € AT such that X' > A\}. It is known that
VX is a two-sided ideal of ..

For A € At let W* be a free R-module with a basis {p7 |T € To(A)}, and define
a right action of . on W* by

or-o= > 5P 0r (TeT(N), pes),
T'e€To(N)

where rg’@) € R are as in (1.1). We can define the bilinear form (, ) on W* by

(ps, or)ouy = vusery mod PV

Set rad W = {z € W*|(z,y) = 0 for any y € W*}, then rad W? is an .#-submodule
of W*. Thus we can define the quotient .#-module L* = W*/rad W*. Since one can
easily see that (orx,pa) = 1, we have L* # 0 for any A € AT. Thus we have the
followimg theorem.

Theorem 1.5 ([DJM, Theorem 6.16)). Suppose that R is a field. Then {L* |\ €
A1} is a complete set of non-isomorphic (right) simple . -modules.

§2. A parabolic type subalgebra of . and its quotient algebra

In this section, we shall construct a parabolic type subalgebra .#P of . and its
quotient algebra 7. These constructions are carried out by using cellular structures
of . only. We shall show that Z decomposes into a direct sum of tensor products of
various cyclotomic g-Schur algebras with smaller rank than the original .. The details
of the results in this and next section are given in [SW1].

2.1. We fix p = (rq,--- ,rg) € Z%, such that ry +--- +ry = r. Set py = Zfz_ll r; for
k=1,---,g9 with py = 0. For g = (u,--- ,uM) € A, we define g-tuples ap(u) =
(n1,+++ ,ng) and ap(p) = (ar, -+ ,ag) by ng = 3%, [u®+9] and a, = Y17 n; for
k=1,---,g with a; = 0. We define a partial order on ZZ, by a = (a1, -+ ,a5) > b =
(b1,--- ,bg) if a, > by for k=1,---,g. One can easily see that

(i). ap(p) = ap(v) if and only if ap(p) = ap(v) (u,v € A).

(ii). If p > v then ap(p) > ap(v) (u,v € A). In particular, If Zo(\, 1) # 0 then A > p,
so that ap(A) > ap(u) (A€ AT, ue A).

For A € AT, we set
PN = U T

pneEA
‘lpo\):ap(#)
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Moreover, for (\,e) € AT x {0,1} set

TP (A if e = 0
P()\) if e =0, TP(\) ife=0,

I(\¢e) = J(\e) =
<) U To(\p) ife=1, *e)

HEA
ap (X)) >ap(p)

To(A) ife=1.

Let XP = (AT x {0,1}) \ {(\,1)|I(\,1) = @}, then I(\,e) and J(\, &) are not
empty for any (), &) € XP. (Note that T* € To(A\, \) C TP (\) C To()) for any A € AT))
We define a partial order > on XP by (A1,e1) > (A2,e2) if Ay > A9 or if Ay = A9 and
€1 > 9. We set

CP(A) ={psr € C(A)|(S,T) € I(\,e) x J(A,¢e) for some (A, e) € XP}.

Let P be the R-submodule of . spanned by CP(A). Then we have the following
theorem.

Theorem 2.2 ([SW1, Theorem 2.6]). P is a subalgebra of ¥ containing the
unit element 1. of .. Moreover, P is a standardly based algebra with standard basis
CP(A) in the sense of [DR].

2.3. A standardly based algebra has a standard basis which has a similar property as a
cellular basis, but is different from a cellular algebra in the following points. A cellular
algebra has the canonical algebra anti-automorphism. Then the left standard module is
obtained from the right standard module by applying the algebra anti-automorphism.
But a standardly based algebra does not have such an algebra anti-automorphism. Thus,
in the case of standardly based algebras, we need to consider the left standard modules
in addition to the right standard modules.

By general theory of standardly based algebras, for each (A, &) € XP, one can define
the right standard .#P-module ZM¢) with an R-free basis {gogi\’e) |T € J(A¢e)}, and
the left standard module ®Z*¢) with an R-free basis { Ogofg’\’g) | S € I(\e)}. There ex-
ists a canonical bilinear form . : °ozNe) x Z8) R, Set rad ZM®) = {z €
Z\e) | Biae)(y,2) = 0foranyy € °ZXe)1 ) then rad Z*9) is a .#P-submodule of
ZMe) and L) = Z(Me) /rad Z(Me) is an absolutely irreducible .#P-module or zero.
Note that LM £ 0 for any A € AT since T» € TP (\) by a similar reason as in the
case of W*. But we can not see whether LMV is zero or not. By a general theory of
standardly based algebras, we have the following corollary.

Corollary 2.4.  Suppose that R is a field. Then {L*) £ 0] (), &) € XP} is a
complete set of pairwise non-isomorphic (right) simple /P-modules.
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2.5. We now construct a quotient algebra 7P of FP. Let
CP = {psr | (S,T) € I(\, 1) x J(\, 1) for some (A, 1) € ZP},

and let .#P be the R-submodule of .#P spanned by CP. One can see that 7P is a
two-sided ideal of .P. Thus we can define a quotient algebra P = P /P, Clealy,
7" has a free R-basis

C(A) = {@gr|S, T € TP (N) for some A € AT},

where Pgp is the image of pgr € P under the natural surjection /P — 7. More-
over, we have the following theorem.

Theorem 2.6 ([SW1, Theorem 2.13]). 7% is a cellular algebra with the cel-
lular basis C(A).

2.7. By a general theory of cellular algebras, for each A € AT, we can define the right
standard (cell) 7" -module 7" with a free R-basis {@r|T € TP (N)}. There exists
a canonical bilinear form (, )p : 7' xZ' — R. Set 1adZ = e Z7|(x,y) =
0 for any 7 € 7)\}, then rad Z" is a 7" -submodule of 7/\, and " =2 / rad 7" is an
absolutely irreducible #P_module or zero. Note that % # 0 for any A € AT since
O € 7 for any A € AT. Thus, we have the following corollary.

Corollary 2.8.  Suppose that R is a field. Then {ZA |\ € AT} is a complete set
of pairwise non-isomorphic (right) simple Z modules.

2.9. In the next section, we shall discuss the relationship between . and 7 via
P, One of the merits for considering P is a decomposition of 7 to a direct sum
of tensor products of smaller rank cyclotomic ¢-Schur algebras than the original .7.
Here, in order to describe this decomposition, we prepare some notations. Recall that
Pr = Zf;llm with pj = 0 for k = 1,---,¢9. For p = (u, -, u") € A, we set

plFl = (pestD) oo ertre)) - Then we can write g = (pl, -+, pl9)). Similarly, for
a semistandard tableau T = (TW ... T € To(\, ), we write T = (T, ... Tl
with T = (Te+D) ... Testre)),

For a = (ny, -+ ,ngy) € Zéo such that n; +---+ny = n, we set

Ank = {(N(pk+1)a e 7:u(pk+rk)) | n= (u(l)a e nu(r)) c A such that Oép(/J) = Oé}

for k = 1,---,r. Set m* = (m,, 11, ,my, 1r.). Then A,, = A, . (ml¥l) is the
set of rp-compositions with size nj and a length determined by m*!. Let A,J{k_ =
AL (m[*) be the set of rj-partitions contained in A, . The following lemma, is easily
varified.
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Lemma 2.10. Leta = (ni, - -,ng) € Zéo be such that ny+---+ng =n. Then

(i). The map p +— (i, -+ pl9) gives a bijection between {u € Alap(p) = a} and
Apy X oo X Ay,

(ii). The map A — (A ... \l9)) gives a bijection between {\ € AT |ap(N) = a} and
A X X AT

(iii). For each A\ € At and p € A such that ap(\) = ap(u), the map T — (TH ... Tl

gives a bijection between To(\, 1) and To(AY, pl1) x - x TNl pulol).

For o = (ny,---,ng) € ZL, such that ny +--- +n, = n, let #(A4,,) be the
cyclotomic ¢g-Schur algebra with respect to A,,, which is associated to the Ariki-Koike

algebra J7,,, ,, with parameters ¢, Qp, 11, - , @py+r,- Then .#(A,,) has a cellular basis
{ogmirm | Skl Tk ¢ 76()\[’“]) for some \F e Aj{k} We have the following theorem for

the structure of .7 .

Theorem 2.11 ([SW1, Theorem 4.15]).  There exists an isomorphism of R-algebras

(21) yp = @ y(An1)®"'®y(Ang)a
(nl,---,ng)EZ%O
ni+-+ng=n

where Do 1s mapped to pguin @ -+ Q Pglg Il -

For A\Fl e Aﬁk, let WA be the Weyl module, and "= WA[k]/rad WA with
respect to .(A,,). Then we have the following corollary.

Corollary 2.12.  Let A € AT. Then under the isomorphism in (2.1), we have

the following isomorphisms.

(). 27 =w\" g ... g WA,
(i) T =21 ..o I\,

8§3. Relations among ., .¥P and 7

In this section, we study the relationship among .#, .¥P and 7°. We shall prove a
product formula for the decomposition numbers of . by using those relations and the

decomposition of ® in Theorem 2.11.

3.1. Summarizing the previous results, we have the following diagram.
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SPes P (A)

L

I B S (Un)@0.S (A,

(n1,ing)
nit+-tng=n

We consider the decomposition numbers for .7, . P 7" and . (A, ) respectively,

(%]

[W)\ . Lﬂ]y’ [Z()\,O) . L(Nao)]yp, [7>\ : ZM]?p, [W)\[k] - L# ]y(Ank)

First note, by Corollary 2.12, that

Lemma 3.2.  Suppose that R is a field. Then, for A\, € AT, we have

[&]

(k] .
[7)\ :ZM]_p — izl[WA S LK ]y(Ank) Zf Ofp()\) = O‘p(u) - (n17 T 7”9)7
7 otherwise.

Next we compare .#P and P Here .#P and .#* are constructed by using the
cellular basis of ., and the cellular structure of . induces the standardly based algebra
structure on P and the cellular structure on .°. We regard P _modules as .#P-
modules through the natural surjection 7 : %P — #®. Then we have the following

lemma.

Lemma 3.3.  For each A € AT, we have following isomorphisms of?p-modules.
(i). ZA0) =5 EA, where gogp’\’o) is mapped to By for T € TP (N).
(ii). L0 =T,

This lemma implies that a composition series of Z~ as a . ®_module coincides with
a composition series of ZM9) as a #P-module through the map = when R is a field.
Then we have the following corollary.

Corollary 3.4.  Suppose that R is a field. Then, for \,u € AT, we have
-\ =
[Z(A’O); L(‘u’o)]yp = [Z : L‘u}]yp.

Finally, we compare P with .. Since .#P is a subalgebra of ., we can regard
-modules as .¥P-modules by the restriction. On the other hand, we can induce up
an .P-module M to the .¥-module M ® o»» .. We have the following results ([SW1,
Lemma 3.5, Proposition 3.6, Lemma 3.9, Lemma 3.10]).

Proposition 3.5. For each A\ € AT, we have the following.
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(i). There exists an injective /P-homomorphism ZXM0) — ZAD such that gogf"o) —
Al
PP (T € TP(N)).
(ii). There exists an isomorphism of /P-modules ZMY = W such that gogi\’l) = o

(T € To(N).
(iii). There exists an isomorphism of /-modules Z*°) @ oo &/ = WA,
(iv). Suppose that R is a field. Then L* contains LA g5 o FP-submodule.

(v). Suppose that R is a field. Then LAY ® oo 7 has the unique mazimal 7 -submodule
N0 sych that LAY @ gp /N 22 LA a5 -modules.

This proposition implies some relations for decomposition numbers between . and
P ([SW1, Prposition 3.11, 3.12]). As a consequence, we have the following proposition.

Proposition 3.6.  Suppose that R is a field. For \,u € A" such that ap(\) =
ap(p), we have
[WA LMy = [Z(A,O) . L(“’O)]yp.

Combining the proposition with Lemma 3.2 and Corollary 3.4, we have the following
product formula for decomposition numbers of .7 .

Theorem 3.7 ([SW1, Theorem 4.17]).  Suppose that R is a field. For \,p € AT

such that ap(N) = ap(p) = (n1,- -+ ,ng), we have
A u g ALF] “[k]
W LMy = [[WA 27 s,
k=1

§4. Decomposition numbers with Jantzen filtration

In [W], we obtained a product formula for the v-decomposition numbers which
are v-analogue of decomposition numbers with respect to a Jantzen filtration. In this
section, we define v-decomposition numbers and explain the product formula. Note that
Jantzen filtrations, thus v-decomposition numbers also, depend on a choice of discrete
valuation ring R and parameters in R (see below). However, our results in this section
hold for any choice of discrete valuation ring R and parameters in R.

4.1. Let R be a discrete valuation ring with the unique maximal ideal p and F = R/p
be the residue field. Fix ¢, @1, e ,@T € R such that ¢ is invertible in R and let
¢=q+0,Q1=Q1+p, -+ ,Q, = Q,+p be their canonical image in F. Let .%g = Sr(A)
be the cyclotomic g-Schur algebra over R with parameters g, @1, e Q\T and . = . (A)
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be the cyclotomic ¢g-Schur algebra over F' with parameters q, @1, -+ , Q. Then we have
S 2 SRQr F = /0 SR

We consider the subalgebra ./F (resp. /P) of S (resp. ) and its quotient ?%
(resp. ?p) as in the previous section. We also use various notations in the previous
section with subscripts R for objects over R if we need the distinction.

4.2. For A € AT and i € Z>¢, we set
WAG) = (2 € WA| (2,4) € o' for any y € W),

and define
WA(i) = (Wa(i) + pWg) /oW

Then W™ (4) is an .#-submodule of W* and we have a filtration of W*
WA =WA0) > Wr1) D WA?2)---.

We call this filtration the Jantzen filtration associated with R and (g, Q- ,@T).
Similarly, for the .#P-module Z(9 and the Z®_module 7)\, by using the bilinear
form By 0y : OZI(%)"O) X Z}({\,o) — Rand (, )p: 72 X 7;\% — R respectively, and reduction

modulo p, we can define Jantzen filtrations of Z(*?) and Z
Z(A’O) — Z(A’O) (0) D) Z(A’O)(l) D) Z(A’O) (2) BDEEE ,
7 =7 0> ) >Z2'2) >

Since W* (resp. Z()"O),7)\) is a finite dimensional F-vector space, in the Jantzen
filtration of W* (resp. Z (’\’0),7/\), all but finitely many inclusions are equalities.

Let v be an indeterminate. For A, € A", we define dy,(v), dg\);,jo)(v), dx.(v) €
Z[v] by

da(v) = D [WAE)/WAi+1) - LM -0,

i>0
45,0 @) = Y1200 (@) /200 (i 4 1) s L] -,
i>0

d(0) =S 2@/ Z i+ 1) : T -0
i>0

We call them v-decomposition numbers. Note that when we specialize v to 1, we
have dy, (1) = (W : L], 00 (1) = (2090 : L080)] o and dy,(1) = [Z7 : TV e

For W, Z(*0) and 7)\, by comparing bilinear forms, we have the following lemma
which is a refined version of Lemma 3.3 and Proposition 3.5.
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Lemma 4.3 ([W, Proposition 2.3, Lemma 2.5, Lemma 2.6]).
For each A\ € AT, we have the following.

(i). Under the isomorphism Z*0) = 7 as SP-modules, we have ZMO) (i) = z (i) for
any t € Z>g.
(ii). Let fy : ZX0) WA be the injective .P-homomorphism given by Proposition 3.5
(i) and (ii). Then we have fy '(W*(i)) = ZXO(i) for any i € Z>o.
(iii). For i € Zso, let v; © ZXO () — ZOO) be the inclusion map. Then, under the
isomorphism ZXM0) @ oo . = W as .#-modules, we have (1; @id.o)(ZX0 (i) @ oop
S C WA@).

This lemma implies analogues of Lemma 3.4 and Proposition 3.6, namely we have

the following proposition.
Proposition 4.4.  For A\, € AT and i € Z>o , we have
(i). [ZO0(0) /200 (i + 1) : L] o = [Z7(0)/Z (i +1) : T},
(ii). [WA@) /Wi +1) : LMy = [ZX00)/ZA0 (i + 1) « LD p if ap(X) = ap(p).

In particular, if ap(X) = ap(p) then we have

A0 =5
dru(v) = d") (v) = D (v).
In order to obtain the product formula for v-decomposition numbers, we need a

v-analogue of Lemma 3.2.
By using a certain basis of 73\%(2') and basis of Wﬁ[k] (i) (4,ix € Z>0,k=1,---,9)
and reduction modulo p, we can prove the following lemma.

Lemma 4.5 ([W, Proposition 2.11]).  Let A € A" and i € Z>q. Under the iso-
morphism 7>\ ~ WA g W n Corollary 2.12, we have

@= > WMo oW ().

(i1, sig)
i1 tig=i

This lemma implies the following proposition.

Proposition 4.6.  For \,u € A" such that ap(\) = ap(p) = (n1,- -+ ,ny) and

i € Z>0, we have

2@/ Z (i +1) Te = > [T @)W G+ 1) L )4,

(i1, vig) k=1
i1 tig=i
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Although this proposition is not a v-analogue of Lemma 3.2 directly, this plays a
similar role of Lemma 3.2 in the v-analogue setting.

We denote by dy ,m (v) v-decomposition numbers of 7 (A, ) for k = 1,--- g.
Then, Proposition 4.4 and Proposition 4.6 imply the following theorem.

Theorem 4.7 ([W, Theorem 2.14]).  For A\, u € AT such that ap(N\) = ap(p),
we have

d(v) = dyy(v H ik v (

8§5. Yvonne’s conjecture

Let F,[s] be the v-deformed Fock space with a multi-charge s. Uglov constructed
in [U] the canonical bases of F,[s|. Then Yvonne proposed a conjecture that v-
decomposition numbers for . are described by Uglov’s canonical bases of F,[s]. Here
we review some of them.
5.1. Let TI" = {A = (AW, ... A0} be the set of r-partitions. We fix s = (s1,--- ,5,) €

" and call it a multi-charge. Let F,[s] be the v-deformed Fock space of level r with

multi-charge s, namely F,[s] is a vector space over C(v) with a basis {|\, s) |A € TI"}
and the quantum group U, (sA[e) of type A( )1 acts on F,[s]. For the definition of this
action, see [U].

For A € 1", s = (81, ,8,), and M € Z, we say that |\, s) is M-dominant if
Si—Sit1> M+ [N fori=1,---,r

In [U], Uglov defined a bar-involution = : F,[s] — F,[s], © — T, which is semi-
linear with respect to the involution on C(v) given by v +— v~1, and commutes with
the action of U, (sl), i.e. w-Z = u-T for u € Uy(sle), x € Fy[s] (here T is the usual
bar-involution on U, (sl.)). Moreover, Uglov constructed the following basis of F,|s]
which is now called the Uglov canonical basis.

Proposition 5.2 ([U, Proposition 4.11]).  There exists a unique basis {G(\, s) |\ €
11"} of F,[s] satisfying the following properties;

(i). GH(A, 8) =G* (A s),
(ii). GT(\, 8) = |\, 8) mod vLT,
where L7 is the Clv]-lattice of F,[s] generated by {|\, s) |\ € II"}.

5.3. We define Aj\'“(v) € Clv], for A\, u € II", by

(5.1) = > AL()|p s)

pellr
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By [U], it is known that A;\ru(v) = 0 unless |A\| = |p|. Moreover, A;\ru(v) can be
interpreted by parabolic Kazhdan-Lusztig polynomials of an affine Weyl group.

5.4. In order to describe the Yvonne’s conjecture, we consider the cyclotomic g-Schur
algebra .#(A) over C with parameters (¢;Q1,---,Qy) = (&%, -+ ,£°"), where £ =
exp(27ife) € C and s = (s1,--- , s,) is a multi-charge. For A = (A, ... A(M) € 117,
we define an r-partition AT by

A= (@Y, ACDY L Oy,

where (A(Y)’ denotes the dual partition of the partition A(¥). Let dy,(v) € Z[v] be the
v-decomposition number defined in 4.2 associated with a suitable valuation ring R and
parameters in R (see [Y, 2.2] for details). In [Y], Yvonne gave the following conjecture.

Conjecture Suppose that |\, s) is O-dominant. Then we have

In view of this conjecture, one can expect that the counter-part of Theorem 4.7 will also
hold for the Fock space. In the next section, we shall discuss the product formula for

AL ).

Remark 1. In the case where r = 1 (namely .¥ is a ¢-Schur algebra associated
to the Iwahori-Hecke algebra J#(6,,) of &,,), the formula (5.2) at v = 1 is proved by
Valagnolo-Vasserot [VV], namely the following formula holds.

(5.3) (1) = A\ (1).

This formula had been conjectured by Leclerc-Thibon in [LT] as a generalization of the
LLT conjecture [LLT] for Iwahori-Hecke algebra .#°(S,,) of &,,. For v-decomposition
numbers, the conjecture is still open even in the case where r = 1. For r > 2, even the
formula (5.2) at v = 1 is not yet proved.

§6. Tensor products of the Fock spaces

In [SW2], we have proved the product formula for A;\ru(v) by decomposing the
Fock space F,[s] into a tensor product F,[s!)] @ --- ® F,[sl9], where each F,[sl*] is
the Fock space with smaller level than the original Fock space. The idea of the proof
is the following. By careful calculations of the image of the standard basis under the
bar-involution, we compare two bases, one is the original canonical basis of F,[s] and
another is a tensor product of canonical basis of Fv[s[k]] (k=1,---,g). This induces
the product formula for Aj\'“(v). Here we review some of them. In the last part, we also
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give a remark on the relation with the quasi R-matrix. Actually, our first approach for
the product formula of Aj\rﬂ(v) was to make use of the quasi R-matrix. But it did not

work well.

6.1. We fix p = (ry,---,7y) as in Section 2. Set sl = (s, 41, -, 8p, 1) for
k=1,---,9. Thus we can write s = (3[1],-~~ ,3[9]). For A € II", we express it as
(A Al as in 2.9, For A, € TI™, we denote ap(A) = ap(p) if |AF| = |ul¥]] for

k=1,---,g (this implies |A| = |u|).
6.2. Let F,[sl¥]] be the v-deformed Fock space with multi-charge s*! and with a

basis {|AlF], sl¥l) | Al € T}, By proposition 5.2, F,[s/¥]] has the canonical basis
{GH(IFL sl | AL € TI7* ). Put

(6.1) Gg* )\[k Z A [k]u[k |,u k]>
LS g
with A;klu[k] (v) € Clv].
We have an isomorphism as vector spaces

D:F,[s] SF,[s@- - @F,[s9]
such that |\, s) — [A sy @ .. @ |9, sl9]). Under this isomorphism,
{G;r()\, ) =gt s e...ogtldl sy e )

is also a basis of F,[s].
Note that A/\[k w1 (v) = 0 unless |AIFl| = [u[Fl]] then we have

(6.2) G+( Z (H A}Jk “[k ) |1, 8).

pell”

Note that if |\, s) is M-dominant then |A¥], sl¥l) is also M-dominant for k =
1,---,g, and that

g

(6.3) H Aj\'[klu[k] (v) = 0 unless ap(A) = ap(p).
k=1

Remark 2. Let —®---®™ be the bar-involution on F,[s!] @ - - @ F,[sl9] with
W@ @zl — M- @zl where 2 is the bar-involution on F,[s¥] defined in
[U]. This bar-involution ™ ® - - - ® — commute with the action of U, (;[e) Q---U, (sA[e)
on Fy[sl] @ @ F,[s9], but it does not commute with the action of U, (sl.) on F,|s]
under the isomorphism ®.
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For A € A, G (), s) is not invariant under the bar-involution ™ on F,[s] though
it is invariant under the bar-involution — ® --- ® ~ on F,[sl1] @ - -- @ F,[sl9]. Thus
G5 (A, s) does not coincide with G (A, s).

In [SW2], by comparing {G* (X, s)| A € TI"} with {G (A, s) | A € II"}, we proved
the following product formula for Aj\'“(v).

Theorem 6.3 ([SW2, Theorem 2.9]). For \,u € II" such that |\, s) is M-
dominant for M > 2|\|, and that ap(N) = ap(p), we have

g

(6.4) AL =1] Ay (0)-

k=1

We consider the special case p = (1,---,1). In this case, the right-hand side of the
formula in Theorem 3.7 is a product of decomposition numbers of the ¢g-Schur algebra
of type A. On the other hand, the right-hand side of the formula in Theorem 6.3 is a
product of coefficients for the Fock space with level 1. Thus by applying the result of
Varagnolo-Vasserot (5.3) to those products, we have the following corollary.

Corollary 6.4 ([SW2, Corollary 2.10]).  Let A\, u € AT be such that |\O| = |u?]
fori=1,---,r, and suppose that |\, s) is M -dominant for M > 2|\|. Then we have

dnu(1) = W s L = AT, (1),

Remark 3. We remark that the product formulas, Theorem 4.7 and Theorem 6.3,
are compatible with Yvonne’s conjecture (5.2). In fact, by applying (5.2) on both sides
of Theorem 4.7, we have

g
(6.5) m/\f H (lF1)E AR YT (v) if ap(A) = apg-

As the following argument shows, this is equivalent to (6.4). (Note that this is not
straightforward since (A1) # (AN in general.) Let p = (71, -+ ,7,) = (rg, -+ ,72,71)
and write A as A = (X[I], e ,X[g]) with respect to p in a similar way as in the case of
p. Then by applying Theorem 6.3 for p, we have

g

(6.6) A:T)\T( v) = ] 1A2—;?)[k](ﬁ)[k] (v) if aﬁ()\T) = aﬁ(uT),

But ap (A1) = ap(pl) if and only if ap(\) = ap(u), and we have

AFY = Dl * 1T (=1, ),
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and similar for x. Hence (6.5) follows from (6.6).

Example Forr =3, p = (2,1), A = ((2,1),(1,1),(2,2)) € AT, we have AT = ((2,2), (2),
Thus A = ((2,1), (1, 1)), APl = (2,2), QM) = ((2),(2.1)), OB)T = (2,2), (AT
((2,2),(2)) and (AD)] = (2,1). On the other hand, we have p = (1,2) (AN = (2,2)

L~

and (A2 = ((2), (2, 1)).

6.5. In the remainder of this paper, we give a rough sketch of the proof of Theorem
6.3. In order to show the formula (6.4), we have only to see the case where p = (r1,72),
since we can obtain the formula (6.4) for the general case by inductive arguments from
the case of p = (71,72). Thus, from now on, we assume that p = (1, 72).

In [U], the Fock space F,[s] is realized as the subspace of a semi-infinite wedge
product A*t% such that s = s; + -+ + s, (for definition, see [U, 4.1]), and the bar-
involution — on F,[s] is defined as the restriction of the bar-involution on A**% . Let
P(s) be the set of semi-infinite sequence k = (ky, ko, -+ ) € Z°° such that k; =s—i+1
for all sufficient large i. Then, A*T% is spanned by a set of semi-infinite wedges {uy =
g, AN ug, A+ |k € P(s)} (see [U, Section 3 and 4] for the definition of semi-infinite
wedges). For k = (kq, ko, -+) € P(s), we call ux an ordered wedge if ky > ko > ---, and
call uy an unordered wedge otherwise. It is known that A5t has a basis consisting of
ordered semi-infinite wedges which correspond to r-partitions with a various charge s
such that s; + - - + s, = 5. The bar-involution on A*T% maps an ordered wedge to an
unordered wedge. On the other hand, one can represent an unordered wedge as a linear
combination of ordered wedges by using the straightening law given in [U, Proposition
3.16]. Thus, the bar-involution on AT can be described by the straightening law for
wedges. This straightening law is compatible with the decomposition of the Fock space
F,[s]. Then careful calculations, by making use of the straightening law, leads to the
following proposition.

Proposition 6.6 ([SW2, Proposition 2.13]). Suppose that |\, s) is M -dominant
for M > 2|\|. Under the isomorphism ® : F,[s] = F,[sl]] @ F,[s!?)], we have

A, s) = A, s @ [ARL ST+ Y an|p, 8)

peEII™
ap(A)>ap(p)

with ay,, € Clv,v™1].
This proposition combined with (6.2) implies,

(6.7) Gh(A8)=Gi(As)+ D by, Gy(u.s)

peEII™
ap(N)>ap(p)
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with b} , € Clv,v™"]. Let

(6.8) GE (A, s) § Ry GZ (1, 8)
peIr
[l=IX]

with Ry, € Clv,o']. Then, by (6.7), the matrix (Rx,)jr|=|y is unitriangular with
respect to the order which is compatible with ap(\) > ap(p). Thus, by a standard
argument for constructing the canonical bases, we have the following theorem.

Theorem 6.7 ([SW2, Theorem 2.15]).  Suppose that |\, s) is M-dominant for
M > 2|\|. Then we have

GrA ) =Gi\ 9+ > buGlus
ap(§)€>l_la;(ﬂ)

with by, € vClv].

We now expand both sides of the formula in Theorem 6.7 to linear combinations of
the standard basis {|u, s) | € II"} as in (5.1) and (6.2) respectively. Then by comparing
coefficients of |u, s) of both sides, we have (6.4) for the case p = (r1,72). Thus, Theorem
6.3 is proved.

Remark 4. Recall that F,[s] & F,[sM] @ F,[s?]] and GE(A, s) = gF(ATsl)
Gt (Al in the case of p = (r1,7). Here we discuss the connection of the quasi
R-matrix with Theorem 6.3.

One can define the action of Uy (sl,) on F,[s] by the composite of the action of
Uv(;[e) ® Uv(;[e) on Fv[s[l]] ® F, [3[2]] and the coproduct A of Uv(;[e) defined in [U,
3.5]. In fact, if |), s) is O-dominant then this action on F,[s] coincides with the Uglov’s
action. Let © be the quasi R-matrix. (For definition, see [Lu, Ch.4]. Note that the
coproduct in [Lu] is different from ours.) Then ¢ = (T ® ™) 0 O is a bar-involution on
F,[s] such that 1) commutes with the action of U, (;[e) on F,[s] defined by using the
coproduct A. Thus, from the definition of © and the actions of U, (;[e), one can see, for
A € I1", that

(6.9) V(GEN9) =GEN 9+ D W, Gl s)

ap (M) Sap (1)
with b € C[v,v71]. Then, by a standard argument for constructing the canonical
bases, one can see that there exists a unique basis {GT(\, s) | A € II"} of F,[s] satisfying
the following properties;

). ¥(GF(\8) =G\, s),
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(ii). GT(\, 8) = |\, 8) mod vLT.
Moreover, we have

(6.10) GrA ) =Gl o)+ > baGhus)

pEIT
ap(A)>ap (1)
with EM € vClv]. In fact, by using the standard argument, for constructing canonical
bases, we obtain (i) and (6.10). The property (ii) is obtained from (6.10).
Set
G = > AL

pellr

with jiﬂ(v) € Clv]. Then, by a similar argument as in the case of Aj\'ﬂ(v), (6.10)
implies that, for A, u € II" such that ap(A) = ap(p),

(6.11) Av;ru(“) = Aj\r[l]um (v) - Aj\r[z]p,m (v).

But we note that G+ (A, 8) # G1(\, 8) in general since there exists p € II" such that
U(|p, 8)) # |1, 8). So we can not show that Zj\ru(v) = Aj\'u(v), and so Theorem 6.3 is
not obtained from the argument by using the quasi R-matrix.

But, as a consequence of Theorem 6.3, we see that A;\FM (v) = Z;\FM (v) for A\, p € II"
such that ap(\) = ap(p) and that |\, s) is M-dominant for M > 2|\|. In fact, the
right-hand side of the formula (6.11) coincides with the right-hand side of the formula
(6.4) in the case of p = (r1,72).
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